Flavour physics (3)

Sébastien Descotes-Genon

Laboratoire de Physique Théorique
CNRS \& Université Paris-Sud 11, 91405 Orsay, France

XLII International Meeting on Fundamental Physics
Benasque, 29 January 2014

Outline

- Why and how flavour is useful
- Flavour in the Standard Model
- Hints of NP in flavour data
- $\Delta F=1$ Flavour Changing Charged Currents: Charged Higgs ? Right-handed currents?
- $\Delta F=2$ Flavour Changing Neutral Currents: NP in boxes?
- $\Delta F=1$ Flavour Changing Neutral Currents: NP in radiative penguins?

Processes of interest

Semi/leptonic

Penguins

Mixing

Radiative

	Semi/leptonic	Penguins	Mixing	Radiative
Process	$\Delta F=1$ FCCC	$\Delta F=1 \mathrm{FCCC}$	$\Delta F=2$ FCNC	$\Delta F=2$ FCNC
NP sensitiv.	Small	Large ?	Large	Large
B	$B \rightarrow D \ell \nu, B \rightarrow \tau \nu$	$B \rightarrow \pi \pi$	$\Delta m_{d}, \Delta m_{s}$	$B \rightarrow K^{*} \mu \mu, B_{s} \rightarrow \mu \mu$
D	$D \rightarrow K \ell \nu, D_{s} \rightarrow \mu \nu$	$D \rightarrow K \pi$	x, y, ϕ	$D \rightarrow X_{u \ell \ell}$
K	$K \rightarrow \pi \ell \nu, \tau \rightarrow K \nu$	$K \rightarrow \pi \pi$	ϵ_{K}	$K \rightarrow \pi \nu \nu, K \rightarrow \mu \mu$

The NP point of view: SM as an effective theory

SM = effective low-energy theory from an underlying, more fundamental and yet unknown, theory

At low energies, below the scale \wedge of new particles
$\mathcal{L}_{S M+1 / \Lambda}=\mathcal{L}_{\text {gauge }}\left(A_{a}, \Psi_{j}\right)+\mathcal{L}_{\text {Higgs }}\left(\phi, A_{a}, \Psi_{j}\right)+\sum_{d \geq 5} \frac{C_{n}}{\Lambda^{d-4}} O_{n}^{(d)}\left(\phi, A_{a}, \Psi_{j}\right)$

The NP point of view: SM as an effective theory

SM = effective low-energy theory from
an underlying, more fundamental and yet unknown, theory
At low energies, below the scale \wedge of new particles
$\mathcal{L}_{S M+1 / \Lambda}=\mathcal{L}_{\text {gauge }}\left(A_{a}, \Psi_{j}\right)+\mathcal{L}_{\text {Higgs }}\left(\phi, A_{a}, \Psi_{j}\right)+\sum_{d \geq 5} \frac{c_{n}}{\Lambda^{d-4}} O_{n}^{(d)}\left(\phi, A_{a}, \Psi_{j}\right)$
New operators O_{n}, suppressed by powers of \wedge

- Describe impact of New Physics on "low-energy" physics
- Made of SM fields, compatible with its symmetries,
- Split high energies c_{n} and low energies O_{n}, separated by scale \wedge

The NP point of view: SM as an effective theory

SM = effective low-energy theory from
an underlying, more fundamental and yet unknown, theory
At low energies, below the scale \wedge of new particles
$\mathcal{L}_{S M+1 / \Lambda}=\mathcal{L}_{\text {gauge }}\left(A_{a}, \Psi_{j}\right)+\mathcal{L}_{\text {Higgs }}\left(\phi, A_{a}, \Psi_{j}\right)+\sum_{d \geq 5} \frac{c_{n}}{\Lambda^{d-4}} O_{n}^{(d)}\left(\phi, A_{a}, \Psi_{j}\right)$
New operators O_{n}, suppressed by powers of Λ

- Describe impact of New Physics on "low-energy" physics
- Made of SM fields, compatible with its symmetries,
- Split high energies c_{n} and low energies O_{n}, separated by scale \wedge
- New d.o.f. and energy scale of NP ?
- Symmetries and structure ?

High- p_{T} expts
Flavour expts

$\Delta F=1$ FCCC Charged Higgses ? Right-handed currents?

$N P$ in $\Delta F=1 \mathrm{FCCC}$

- Should be large to compete with tree-level SM contributions
- No obvious disagreement among these "clean" observables
- But some room for NP (γ, exclusive vs inclusive $\left|V_{x b}\right|$)
$B \rightarrow D\left({ }^{*}\right) \tau \nu$

with $H_{m n}$ helicity amplitude for $\left(D^{*}, W\right)$ [for D, only H_{00} and $H_{0 t}$]

$$
\frac{\Gamma(\bar{B} \rightarrow D \tau \nu)}{\Gamma(\bar{B} \rightarrow D \ell \nu)}=0.440 \pm 0.058 \pm 0.042{ }_{[\text {Babar] }],} \quad 0.430 \pm 0.091_{[\text {[Bele] }]} \quad 0.297 \pm 0.017_{[\mathrm{SM}]}
$$

$$
\frac{\Gamma\left(\bar{B} \rightarrow D^{*} \tau \nu\right)}{\Gamma\left(\bar{B} \rightarrow D^{*} \ell \nu\right)}=0.332 \pm 0.024 \pm 0.018_{[\text {Babar] }} \quad 0.405 \pm 0.047_{[\text {[Belle], }} \quad \begin{array}{r}
0.252 \pm 0.003_{[S M]} \\
\text { [Fajerf, Kamenik, Nizandzic] }
\end{array}
$$

SM prediction

- based on $B \rightarrow D\left(^{*}\right)$ form factors (4 for $B \rightarrow D^{*}, 2$ for $B \rightarrow D$)
- constrained by HQE, lattice $(B \rightarrow D)$ and experiment $\left(B \rightarrow D^{*}\right)$

Effective approach

$$
\frac{d \Gamma\left(B \rightarrow D^{*} \tau \nu\right)}{d q^{2}} \propto\left[\left(\left|H_{++}\right|^{2}+\left|H_{--}\right|^{2}+\left|H_{00}\right|^{2}\right)\left(1+\frac{m_{\tau}^{2}}{2 q^{2}}\right)+\frac{3}{2} \frac{m_{\tau}^{2}}{q^{2}}\left|H_{0 t}\right|^{2}\right]
$$

Scalar contribution, seen only in helicity-suppressed $O\left(m_{\tau}^{2}\right)$?

$$
\begin{aligned}
& \mathcal{H}_{e f f}=\frac{4 G_{F}}{} V_{c b} \\
& \sqrt{2} {\left[\bar{c} \gamma^{\mu} P_{L} b+g_{S L} i \partial^{\mu}\left(\bar{c} P_{L} b\right)\right] } \\
& \times \sum_{\ell=e, \mu, \tau} \bar{\ell} \gamma_{\mu} P_{L} \nu_{\ell}+\text { h.c. } \\
& \text { [Fajier, Kamenik, Nizandzic] }
\end{aligned}
$$

\Longrightarrow Natural interpretation in terms of charged Higgs contribution

Two-Higgs doublet models

- Different two-Higgs doublet models (2HDM) with ϕ_{1} and ϕ_{2}
- type I : ϕ_{1} coupling to both up- and down-type, ϕ_{2} to none
- type II : ϕ_{1} coupling to up-type, ϕ_{2} to down-type (and leptons)
- type III : ϕ_{1} and ϕ_{2} coupling both to both types of quarks with EWSB $\langle 0| \phi_{1}|0\rangle=\binom{0}{v_{1} / \sqrt{2}}$ and $\langle 0| \phi_{2}|0\rangle=\binom{v_{2} / \sqrt{2}}{0}$
- Higgs: 2 charged, 2 neutral scalar, one neutral pseudoscalar
- For instance, $2 \mathrm{HDM}(\mathrm{II})$ looks like SM with Yukawa matrices $Y^{D, U, E}$

$$
\mathcal{L}_{I I}=-\bar{Q}_{L} \phi_{1} Y^{d} d_{R}-\bar{Q}_{L} \phi_{2} Y^{u} u_{R}-\bar{E}_{L} \phi_{2} Y^{e} e_{R}+\text { h.c. }
$$

(SM would be $\phi_{2}=i \sigma_{2} \phi_{1}^{*}$)

- Extension of 2 HMD with Z_{2}-symmetry (I,II, X, Y) to aligned models

$$
\mathcal{L}_{A}=-\bar{Q}_{L}\left(\phi_{1} \Gamma_{1}+\phi_{2} \Gamma_{2}\right) d_{R}-\bar{Q}_{L}\left(\phi_{1} \Delta_{1}+\phi_{2} \Delta_{2}\right) u_{R}-\bar{E}_{L}\left(\phi_{1} \Pi_{1}+\phi_{2} \Pi_{2}\right) e_{R}+\text { h.c. }
$$

with proportionality between Γ_{1} and Γ_{2}, Δ_{1} et Δ_{2}, Π_{1} and Π_{2} avoiding FCNC at tree level

Which 2HDM?

$2 \mathrm{HDM} \mathrm{II}\left(t=\tan \beta / m_{H^{+}}\right)$

2HDM III

- not compatible with the most usual 2HDM of type II
- not compatible with "aligned" extension
- compatible with 2HDM model of type III
- more observables, sensitive to scalar: D^{*} polarisation, τ helicity
- relies on scalar form factors and validity of HQE
- e.g., lattice-inspired $B \rightarrow D \tau \nu$ FFs increases SM prediction:
$0.297 \pm 0.017 \rightarrow 0.31 \pm 0.02$
[Becirevic, Kosnik, Tayduganov]

Looking for confirmation: $B \rightarrow \tau \nu$

- Up to Winter 2012, discrepancy in SM for $B \rightarrow \tau \nu$ vs $\sin (2 \beta)$: 2.8σ [Moriond 12]
- Often interpreted in terms of charged Higgs exchange

$$
\operatorname{Br}\left(B \rightarrow \tau \nu_{\tau}\right)_{2 H D M I I}=\operatorname{Br}_{S M}\left(1-\tan ^{2} \beta \times m_{B}^{2} / m_{H^{+}}^{2}\right)^{2}
$$

Failing to confirm: $B \rightarrow \tau \nu$

- Used to have significant discrepancy in SM for $B \rightarrow \tau \nu$ vs $\sin (2 \beta)$
2.8σ [Moriond 12] $\rightarrow 1.6 \sigma$ [ICHEP 12]
- Reduction in 2012 due to new Belle result changing WA
- Brings CKM-independent $d \Gamma(B \rightarrow \pi \ell \nu) / d q^{2} / \operatorname{Br}(B \rightarrow \tau \nu)$ closer to non-perturbative estimates (sum rules, lattice)
[A. Khodjamirian et al.]

Right-handed currents

$$
\mathcal{H}_{\text {eff }}=-\frac{4 G_{F}}{\sqrt{2}} \bar{u} \gamma^{\mu}\left[\left(1+\epsilon_{L}\right) V P_{L}+\epsilon_{R} \tilde{V} P_{R}\right] d\left(\bar{\ell}_{L} \gamma_{\mu} \nu_{L}\right)+\text { h.c. }
$$

for instance through W_{R} from $S U_{C}(3) \otimes S U_{L}(2) \otimes S U_{R}(2) \otimes U_{Y}(1)$, broken at a heavy scale of a few TeV into the SM group

- V and \tilde{V} unitary, $\epsilon_{L, R} \ll 1$

- useful for $\left|V_{u b}\right|$ to agree between
- $B \rightarrow \tau \nu_{\tau}\left(\gamma_{\mu} \gamma_{5} B\right.$-coupling, orange)
- $B \rightarrow \pi \ell \nu_{\ell}$ ($\gamma_{\mu} B$-coupling, green)
- $B \rightarrow X_{u} \ell \nu_{\ell}$ (mixture, blue)
- does not solve problem of $\operatorname{Br}\left(B \rightarrow D\left(^{*}\right) \tau \nu_{\tau}\right) / \operatorname{Br}\left(B \rightarrow D\left({ }^{*}\right) \ell \nu_{\ell}\right)$
- no hint from $b \rightarrow \boldsymbol{s} \gamma\left(^{*}\right)$ (see later)
- explicit models involve additional H^{0} generating tree-level $\Delta F=2$

New particles in the box?

NP in neutral-meson mixing?

In SM, $B_{d} \bar{B}_{d}$ dominated by top boxes

$$
\phi_{B_{d}}=\arg \left(\left[V_{t b} V_{t d}^{*}\right]^{2}\right)=2 \beta
$$

NP in neutral-meson mixing?

In SM, $B_{d} \bar{B}_{d}$ dominated by top boxes

$$
\phi_{B_{d}}=\arg \left(\left[V_{t b} V_{t d}^{*}\right]^{2}\right)=2 \beta
$$

Adding contribution from higher-order operators, including LO $\left(\bar{b}_{L} \gamma_{\mu} d_{L}\right)^{2}$
$A_{\Delta B=2} \propto \frac{\left(y_{t}^{2} V_{t b}^{*} V_{t d}\right)^{2}}{16 \pi^{2} m_{t}^{2}}\langle\bar{B}|\left(\bar{b}_{L} \gamma_{\mu} d_{L}\right)^{2}|B\rangle$

NP in neutral-meson mixing?

In SM, $B_{d} \bar{B}_{d}$ dominated by top boxes

$$
\phi_{B_{d}}=\arg \left(\left[V_{t b} V_{t d}^{*}\right]^{2}\right)=2 \beta
$$

Adding contribution from higher-order operators, including LO $\left(\bar{b}_{L} \gamma_{\mu} d_{L}\right)^{2}$
$A_{\Delta B=2} \propto \frac{\left(y_{t}^{2} V_{t b}^{*} V_{t d}\right)^{2}}{16 \pi^{2} m_{t}^{2}}\langle\bar{B}|\left(\bar{b}_{L} \gamma_{\mu} d_{L}\right)^{2}|B\rangle\left[1+\sum_{i} \frac{c_{n}}{\Lambda^{2}} \frac{\langle\bar{B}| O_{n}|B\rangle}{\langle\bar{B}|\left(\bar{b}_{L} \gamma_{\mu} d_{L}\right)^{2}|B\rangle}\right]$

NP in neutral-meson mixing?

In SM, $B_{d} \bar{B}_{d}$ dominated by top boxes

$$
\phi_{B_{d}}=\arg \left(\left[V_{t b} V_{t d}^{*}\right]^{2}\right)=2 \beta
$$

Adding contribution from higher-order operators, including LO $\left(\bar{b}_{L} \gamma_{\mu} d_{L}\right)^{2}$
$A_{\Delta B=2} \propto \frac{\left(y_{t}^{2} V_{t b}^{*} V_{t d}\right)^{2}}{16 \pi^{2} m_{t}^{2}}\langle\bar{B}|\left(\bar{b}_{L} \gamma_{\mu} d_{L}\right)^{2}|B\rangle\left[1+\sum_{i} \frac{c_{n}}{\Lambda^{2}} \frac{\langle\bar{B}| O_{n}|B\rangle}{\langle\bar{B}|\left(\overline{(\bar{L}} \gamma_{\mu} d_{L}\right)^{2}|B\rangle}\right]$

We can get an upper bound on \wedge by

- Combining information from B and K mixing
- Assuming a typical size for $c_{N P}$
- Getting how much th. and exp. uncertainties leave room for NP

$\Delta F=2$ FCNC constraints

Operator	Bounds on \wedge in $\mathrm{TeV}\left(c_{n}=1\right)$$\operatorname{Re}$$\operatorname{Im}$		$\underset{\operatorname{Re}}{\substack{\text { Bounds on } \\ c_{n} \\ (\Lambda=}} \begin{aligned} & 1 \mathrm{TeV}) \\ & \operatorname{Im} \end{aligned}$		Observables
$\left(\bar{s}_{L} \gamma^{\mu} d_{L}\right)^{2}$	9.8×10^{2}	1.6×10^{4}	9.0×10^{-7}	3.4×10^{-9}	${ }_{\text {M }}$
$\left(\bar{s}_{R} d_{L}\right)\left(\bar{s}_{L} d_{R}\right)$	1.8×10^{4}	3.2×10^{5}	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_{K} ; \epsilon_{K}$
$\left(\bar{c}_{L} \gamma^{\mu} u_{L}\right)^{2}$	1.2×10^{3}	2.9×10^{3}	5.6×10^{-1}	1.0×10^{-7}	$\Delta m_{D} ;\|q / p\|, \phi_{D}$
$\left(\bar{c}_{R} u_{L}\right)\left(\bar{c}_{L} u_{R}\right)$	6.2×10^{3}	1.5×10^{4}	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_{D} ;\|q / p\|, \phi_{D}$
$\left(\bar{b}_{L} \gamma^{\mu} d_{L}\right)^{2}$	5.1×10^{2}	9.3×10^{2}	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_{d}} ; S_{\psi} K_{S}$
$\left(\bar{b}_{R} d_{L}\right)\left(\bar{b}_{L} d_{R}\right)$	1.9×10^{3}	3.6×10^{3}	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_{d}} ; S_{\psi K_{S}}$
$\left(\bar{b}_{L} \gamma^{\mu} s_{L}\right)^{2}$	1.1×10^{2}		7.6×10^{-5}		$\Delta m_{B_{S}}$
$\left(\bar{b}_{R} s_{L}\right)\left(\bar{b}_{L} s_{R}\right)$	3.7×10^{2}		1.3×10^{-5}		

[Isidori, Nir, Perez 2010]
Neutral meson mixing $(\Delta F=2) \mathrm{SM}$-like, and c_{i} / Λ^{2} must be small:

- Significant mass gap
- Couplings with close-to-SM pattern of flavour violation
- Additional selection rules

$\Delta F=2$ FCNC constraints

Operator	Bounds on \wedge in $\mathrm{TeV}\left(c_{n}=1\right)$ $\operatorname{Re} \quad \operatorname{lm}$	Bounds on $c_{n}(\Lambda=1 \mathrm{TeV})$ Re Im	Observables
$\begin{gathered} \left(\bar{s}_{L} \gamma^{\mu} d_{L}\right)^{2} \\ \left(\bar{s}_{R} d_{L}\right)\left(\bar{s}_{L} d_{R}\right) \end{gathered}$	$\begin{array}{ll} \hline 9.8 \times 10^{2} & 1.6 \times 10^{4} \\ 1.8 \times 10^{4} & 3.2 \times 10^{5} \\ \hline \end{array}$	9.0×10^{-7} 3.4×10^{-9} 6.9×10^{-9} 2.6×10^{-11}	$\Delta m_{K} ; \epsilon_{K}$ $\Delta m_{K} ; \epsilon_{K}$
$\begin{gathered} \left(\bar{c}_{L} \gamma^{\mu} u_{L}\right)^{2} \\ \left(\bar{c}_{R} u_{L}\right)\left(\bar{c}_{L} u_{R}\right) \end{gathered}$	1.2×10^{3} 2.9×10^{3} 6.2×10^{3} 1.5×10^{4}	5.6×10^{-1} 1.0×10^{-1} 5.7×10^{-8} 1.1×10^{-8}	$\begin{aligned} & \Delta m_{D} ;\|q / p\|, \phi_{D} \\ & \Delta m_{D} ;\|q / p\|, \phi_{D} \end{aligned}$
$\begin{gathered} \left(\bar{b}_{L} \gamma^{\mu} d_{L}\right)^{2} \\ \left(\bar{b}_{R} d_{L}\right)\left(\bar{b}_{L} d_{R}\right) \end{gathered}$	$\begin{array}{ll} 5.1 \times 10^{2} & 9.3 \times 10^{2} \\ 1.9 \times 10^{3} & 3.6 \times 10^{3} \end{array}$	$\begin{array}{ll} 3.3 \times 10^{-6} & 1.0 \times 10^{-6} \\ 5.6 \times 10^{-7} & 1.7 \times 10^{-7} \end{array}$	$\begin{aligned} & \Delta m_{B_{d}} ; S_{\psi K_{S}} \\ & \Delta m_{B_{d}} ; S_{\psi K_{S}} \end{aligned}$
$\begin{gathered} \left(\bar{b}_{L} \gamma^{\mu} s_{L}\right)^{2} \\ \left(\bar{b}_{R} s_{L}\right)\left(\bar{b}_{L} s_{R}\right) \end{gathered}$	$\begin{aligned} & 1.1 \times 10^{2} \\ & 3.7 \times 10^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 7.6 \times 10^{-5} \\ & 1.3 \times 10^{-5} \\ & \hline \end{aligned}$	$\begin{aligned} & \Delta m_{B_{S}} \\ & \Delta m_{B_{S}} \end{aligned}$

[Isidori, Nir, Perez 2010]
Neutral meson mixing $(\Delta F=2) \mathrm{SM}$-like, and c_{i} / Λ^{2} must be small:

- Significant mass gap
- Couplings with close-to-SM pattern of flavour violation
- Additional selection rules

NP flavour problem: BSM models with many flavour violation sources

- Decoupling
[\wedge large compard to $\wedge_{E W}$, loop suppression]
- Universality [Minimal Flavour Violation: all flavour viol. from Yukawa]
- Alignment [Loops with NP only, diagonal in flavour basis]

Minimal Flavour Violation (1)

Remain as close as possible to SM pattern of flavour breaking

- Very large flavour group of the SM gauge sector $U(3)^{5}=S U(3)_{Q} \times S U(3)_{U} \times S U(3)_{D} \times \ldots$
- Broken only by quark Yukawa couplings Y_{U} and Y_{D}
- Responsible for suppression of FCNC, pattern of CP violation

Write extensions of the SM with
Minimal Flavour Violation

$$
\mathcal{L}=\bar{Q}_{L}^{i} Y_{D}^{i k} d_{R}^{k} \phi+\bar{Q}_{L}^{i} Y_{\cup}^{i k} u_{R}^{k} \phi_{c}+\text { h.c. }
$$

- Promoting global flavour symmetry as "exact"
- Introducing Y_{D} and Y_{u} as v.e.v of auxiliary fields
- Write operators invariant under this symmetry

	$S U(3)_{Q_{L}}$	$S U(3)_{U_{R}}$	$S U(3)_{d_{R}}$
Q_{L}	3	1	1
u_{R}	1	3	1
d_{R}	1	1	3
Y_{D}	3	1	$\overline{3}$
Y_{U}	3	$\overline{3}$	1

Minimal Flavour Violation (2)

- Example of dim-6 MFV operator: $\left.\left[\bar{Q}_{L}^{i}\left(Y_{U} Y_{U}^{\dagger}\right) Q_{L}^{j}\right]\right] \times \bar{E}_{L} E_{L}$

$$
Y_{D}=\left(y_{d}, y_{s}, y_{b}\right), \quad Y_{U}=V^{\dagger}\left(y_{u}, y_{c}, y_{t}\right) \quad\left(Y_{U} Y_{U}^{\dagger}\right)_{i j} \simeq y_{t}^{2} V_{3 i}^{*} V_{3 j}
$$

- Same CKM structure as SM for flavour-changing loop processes
- Only flavour-independent magnitude change wr.t. SM, thus hidden in hadronic uncertainties and cancel in ratios like

$$
\left(\Delta m_{d} / \Delta m_{s}\right)_{M F V}=\left(\Delta m_{d} / \Delta m_{s}\right)_{S M}
$$

- Reduces bounds on the scale of NP down to a few TeV
- Not a theory of flavour (no explanation on structure of Yukawas and why only source of flavour breaking)
- Plausible, but not verified (no unambigouous deviations from SM in flavour-independent part)

$\Delta F=2 \mathrm{FCNC}$ constraints in the future

- Stage I: $7 \mathrm{fb}^{-1} \mathrm{LHCb}$ data $+5 \mathrm{ab}^{-1}$ Belle II + lattice improv.
- Stage II: $50 \mathrm{fb}^{-1}$ LHCb data $+50 \mathrm{ab}^{-1}$ Belle II + lattice improv.

NP in B_{d} and B_{s} mixings

$$
M_{12}^{q}=\left(M_{12}^{q}\right)_{\mathrm{SM}} \times\left(1+h_{q} e^{2 i \sigma_{q}}\right)
$$

$$
\text { from } C_{i j} / \Lambda^{2} \times\left(\bar{b}_{L} \gamma^{\mu} q_{L}\right)^{2}
$$

[J. Charles et al.]

Couplings (Stage II)	NP loop	Scales (in TeV) probed by	
	B_{d} mixing	B_{s} mixing	
$\left\|C_{i j}\right\|=\left\|V_{t i} V_{t j}^{*}\right\|$	tree level	17	19
(CKM-like)	one loop	1.4	1.5
$\left\|C_{i j}\right\|=1$	tree level	2×10^{3}	5×10^{2}
(no hierarchy)	one loop	2×10^{2}	40

Dimuon asymmetry

CP-violation in mixing through comparison of wrong-sign decays $\left(\ell^{-} \leftarrow \bar{B}(b \bar{q}) \leftrightarrow B(\bar{b} q) \rightarrow \ell^{+}\right)$ $a_{S L}^{q}=\frac{\Gamma\left(\bar{B}_{q}(t) \rightarrow \ell^{+} \nu X\right)-\Gamma\left(B_{q}(t) \rightarrow \ell^{-} \nu X\right)}{\Gamma\left(\bar{B}_{q}(t) \rightarrow \ell^{+} \nu X\right)+\Gamma\left(B_{q}(t) \rightarrow \ell^{-} \nu X\right)}$

- Same-sign dimuon charge asym. $A_{S L}=(-0.85 \pm 0.28) \%$ [CDF, D8] linear combination of $a_{S L}^{d}$ and $a_{S L}^{s}$, disagrees with SM at 3σ

$$
A_{S L}^{S M}=-(0.020 \pm 0.003) \%
$$

- Individual semileptonic asyms. from $B_{q} \rightarrow D_{q} \mu X$ OK with SM

$$
\begin{aligned}
& a_{S L}^{d}=(0.38 \pm 0.36) \% \\
& a_{S L}^{s}=(-0.22 \pm 0.52) \%
\end{aligned}
$$

[B-factories, Tevatron]
[DØ, LHCb]

Evolution of the B_{q} system

$$
i \frac{d}{d t}\binom{\left|B_{q}(t)\right\rangle}{\left|\bar{B}_{q}(t)\right\rangle}=\left(M^{q}-\frac{i}{2} \Gamma^{q}\right)\binom{\left|B_{q}(t)\right\rangle}{\left|\bar{B}_{q}(t)\right\rangle}
$$

- Non-hermitian Hamiltonian (only 2 states) but M and Γ hermitian
- Mixing due to non-diagonal terms $M_{12}^{q}-i \Gamma_{12}^{q} / 2$

Eff. Hamiltonian integrating out heavy W, Z, t

- M_{12}^{q} dominated by dispersive part of top boxes - related to heavy virtual states $(t \bar{t} \ldots)$
- Γ_{12}^{q} dominated by absorptive part of charm boxes
- common B and \bar{B} decay channels into final states with $c \bar{c}$ pair
- non local contribution, computed assuming quark-hadron duality and expanded in $1 / m_{b}$ and α_{s} series of local operators

New Physics in M_{12}

- M_{12} dominated by (virtual) top boxes
[affected by NP, e.g., if heavy new particles in the box]
- Γ_{12} dominated by tree decays into (real) charm states
[affected by NP if changes in (constrained) tree-level decays]
- Assume NP in $\Delta F=2$ only via $M_{12}^{q}=\left(M_{12}^{q}\right)_{S M} \Delta_{q}$, affecting all observables describing B_{d} and B_{s} mixings
- Hard to accomodate non-SM $A_{S L}$ with $\operatorname{SM} \Delta m_{d, s}, \Delta \Gamma_{s}$.

New physics also in $\Gamma_{12}^{s} ?$

$$
\Delta M_{s}=2\left|M_{12}^{s}\right| \quad \Delta \Gamma_{s}=2\left|\Gamma_{12}^{s}\right| \cos \left(\phi_{s}\right) \quad a_{S L}^{s}=\frac{\Gamma_{12}^{s}}{M_{12}^{s}} \sin \left(\phi_{s}\right)
$$

Could solve $A_{S L}$, but significant deviation of $\Delta \Gamma_{s}$ w.r.t. SM

$A_{\Delta B=2}=\langle\bar{B}| \mathcal{H}_{\text {eff }}^{\Delta B=2}|B\rangle-\frac{1}{2} \int d^{4} x d^{4} y\langle\bar{B}| T \mathcal{H}_{\text {eff }}^{\Delta B=1}(x) \mathcal{H}_{\text {eff }}^{\Delta B=1}(y)|B\rangle$

- Change in $b \rightarrow c \bar{c} s$ modes or new decay mode competing in Γ_{12}^{s} would affect Γ_{s}^{11} and thus Γ_{s} (in good agreement with SM)
- Change in $b \rightarrow c \bar{c} s$ modes affects also $B_{d} \rightarrow J / \psi K_{s}$ and $B_{s} \rightarrow J / \psi \phi$ and thus determination of B_{d}, B_{s} mixing angles
- Change in Γ_{12}^{s} impacts M_{12}^{s} (same box diagams with same particles) and thus ΔM_{s} (in good agreement with SM)
Maybe, but no model-independent way of connecting $\Gamma_{12}^{s}, \Gamma_{11}^{s}, M_{12}^{s}$

Specific model of New Physics in Γ_{12}^{s}

- $\tau \bar{\tau}$ intermediate states due to NP $(\bar{b} s)(\bar{\tau} \tau)$ operators ?
- Eff. Hamiltonian analysis of $b \rightarrow \boldsymbol{s} \gamma, b \rightarrow \boldsymbol{s} \ell^{+} \ell^{-}, b \rightarrow \boldsymbol{s} \gamma \gamma$: room for scalar or vector $(\bar{b} s)(\bar{\tau} \tau)$ able to enhance $\left|\Gamma_{12}^{s}\right|$ by 30-40\%

- But M_{12}^{S} and Γ_{12}^{S} correlated in specific models (e.g., $S U(2)$ singlet scalar leptoquark) making it difficult to accomodate all data ($\sim D 2$)
- General problem for $\left(M_{12}^{S}\right)_{N P} /\left(\Gamma_{12}^{s}\right)_{N P}$ real, linking $\Delta M_{s}, \Delta \Gamma_{s}, a_{S L}^{S}$ [weakest ΔM_{s} constraint if light NP scale or GIM-like mechanism]

Other explanations

- Direct CP-violation in muonic semileptonic b or c decays
- Requires inclusive asymmetries $A_{\mathrm{dir}}^{c}=O(1 \%)$ or $A_{\mathrm{dir}}^{b}=O(0.3 \%)$
- Experimentally possible, but realistic models genrarting such asymmetry?
[Gronau et al.; SDG, Kamenik]
- CP-violatioñ in interference for $B_{d} \rightarrow c \bar{c} d \bar{d}$
- Contribution to the dimuon asymmetry proportional to $\sin (2 \beta)$

$$
\begin{aligned}
& p \bar{p} \rightarrow B^{+} \bar{B}^{0} X, B^{+} \rightarrow \mu^{+} X, \bar{B}^{0} \rightarrow D^{+} D^{-}, D^{+} \rightarrow \mu^{+} Y \\
& p \bar{p} \rightarrow B^{-} B^{0} X, B^{-} \rightarrow \mu^{-} X, B^{0} \rightarrow D^{+} D^{-}, D^{-} \rightarrow \mu^{-} Y
\end{aligned}
$$

- interference due to evolution of B^{0} or \bar{B}^{0} before decaying into $D^{+} D^{-}$
- which could explain a good part of the effect on $A_{S L}$
- not taken into account in the current DØ analysis

$\Delta F_{z=1} \mathrm{FCNC}$ Z^{\prime} boson

Effective Hamiltonian for radiative decays

$$
b \rightarrow \boldsymbol{s} \gamma\left(^{*}\right): \mathcal{H}_{\Delta F=1}^{S M} \propto \sum^{10} V_{t s}^{*} V_{t b} C_{i} Q_{i}+\ldots
$$

- $Q_{7}=\frac{e}{g^{2}} m_{b} \overline{\mathbf{s}} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) \stackrel{F_{\mu \nu}^{i=1}}{F} \quad$ [real or soft photon]
- $Q_{9}=\frac{e^{2}}{g^{2}} \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma_{\mu} \ell \quad[b \rightarrow s \mu \mu$ via $Z /$ hard $\gamma]$
- $Q_{10}=\frac{e^{2}}{g^{2}} \bar{s}_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma_{\mu} \gamma_{5} \ell \quad[b \rightarrow s \mu \mu$ via $Z]$

NP changes short-distance C_{i} (including new phases)
and/or add new long-distance ops Q_{i}^{\prime}

- Chirally flipped operators ($W \rightarrow W_{R}$)
$Q_{7} \propto \overline{\boldsymbol{s}} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) F_{\mu \nu} b \rightarrow Q_{7^{\prime}} \propto \bar{s} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) F_{\mu \nu} b$
- Scalar/pseudoscalar operators $(\gamma \rightarrow H)$
$Q_{9} \propto \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma_{\mu} \ell \rightarrow Q_{S} \propto \bar{s} b\left(1+\gamma_{5}\right) \bar{\ell} \ell, Q_{P} \propto \bar{s} b\left(1+\gamma_{5}\right) \bar{\ell}_{5} \ell$
- Tensor operators $(\gamma \rightarrow T)$
$Q_{9} \propto \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma_{\mu} \ell \rightarrow Q_{T} \propto \overline{\boldsymbol{s}} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) b \bar{\ell} \sigma_{\mu \nu} \ell$

Processes of interest

	$B \rightarrow\left(X_{s}, K^{*}\right) \gamma$	$B \rightarrow\left(X_{s}, K, K^{*}\right) \ell^{+} \ell^{-}$	$B_{s} \rightarrow \ell^{+} \ell^{-}$
$C_{7}, C_{7^{\prime}}$	\times	\times	
$C_{9}, C_{9^{\prime}}$		\times	
$C_{10}, C_{1^{\prime}}$		\times	\times
$C_{S}, C_{S^{\prime}}, C_{P}, C_{P^{\prime}}$		\times	\times
$C_{T}, C_{T^{\prime}}$		\times	

Hadronic inputs

- $B_{s} \rightarrow \mu \mu$: decay constant (lattice)
- Exclusive $B \rightarrow K\left(^{*}\right)$: form factors (lattice, light-cone sum rules)
- Inclusive $B \rightarrow X_{s}$: OPE matrix elements
(fit combined with $B \rightarrow X_{c} \ell \nu$)
Once short-distance C_{i} determined, it remains to find the appropriate underlying model

$B_{s} \rightarrow \mu \mu:$ the framework

$$
\begin{aligned}
& \operatorname{Br}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=\tau_{B_{s}} \frac{G_{F}^{2}}{\pi}\left(\frac{\alpha}{4 \pi \sin ^{2} \theta_{W}}\right)^{2} f_{B_{s}}^{2} m_{B_{s}}^{3} \sqrt{1-\frac{4 m_{\mu}^{2}}{m_{B_{s}}^{2}}}\left|V_{t b}^{*} V_{t s}\right|^{2} \\
& \times\left[\frac{m_{B_{s}}^{2}}{m_{b}^{2}}\left|C_{S}-C_{S^{\prime}}\right|^{2}\left(1-\frac{4 m_{\mu}^{2}}{m_{B_{S}}^{2}}\right)+\left|\frac{m_{B_{s}}}{m_{b}}\left(C_{P}-C_{P^{\prime}}\right)+2 \frac{m_{\mu}}{m_{B_{s}}}\left(C_{10}-C_{10^{\prime}}\right)\right|^{2}\right] \\
& \text { (b) } \\
& \operatorname{Br}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)_{s M}=\tau_{B_{s}} \frac{G_{F}^{2}}{\pi}\left(\frac{\alpha}{4 \pi \sin ^{2} \theta_{W}}\right)^{2} f_{B_{s}}^{2} m_{B_{s}} m_{\mu}^{2} \sqrt{1-\frac{4 m_{\mu}^{2}}{m_{B_{s}}^{2}}}\left|V_{t b}^{*} V_{t s}\right|^{2} \eta_{Y}^{2} Y^{2}\left(m_{t} / M_{W}\right)
\end{aligned}
$$

- LHCb+CMS: $\operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)_{\exp }=(2.9 \pm 0.7) \cdot 10^{-9}(>5 \sigma)$
- NLO pred from global fit: $\operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}, \mathrm{th}}=\left(3.55_{-0.34}^{+0.18}\right) \cdot 10^{-9}$

$B_{s} \rightarrow \mu \mu:$ predicting the branching ratio

- Comparing theoretical and experimental predictions
- Theoretically: CP-average at fixed $t=0$
- Experimentally: CP-average integrated over t (including B_{s} mixing)
[SDG, Matias, Virto, De Bruyn, Fleischer, Knegiens,Koppenburg, Merk, Pellegrino, Tuning]

$$
\begin{aligned}
& \operatorname{Br}\left(B_{s} \rightarrow f\right)_{t h}=\frac{1-y_{s}^{2}}{1+A_{\Delta \Gamma}^{f} y_{s}} \operatorname{Br}\left(B_{s} \rightarrow f\right)_{\text {exp,untag }} \quad y_{s}=\frac{\Delta \Gamma_{s}}{2 \Gamma_{s}} \\
& \Gamma\left(B_{s}(t) \rightarrow f\right)+\Gamma\left(\bar{B}_{s}(t) \rightarrow f\right)=e^{-\Gamma_{H t} t / 2}\left(1+A_{\Delta \Gamma}^{f}\right)+e^{-\Gamma_{L} t / 2}\left(1-A_{\Delta \Gamma}^{f}\right)
\end{aligned}
$$

In SM: $A_{\Delta \Gamma}^{\mu \mu}=1, \operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)_{t=0} \simeq 0.91 \cdot \operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)_{\text {time integrated }}$
[De Bruyn, Fleischer, Knegiens,Koppenburg, Merk, Pellegrino, Tuning]

- Choice of inputs and higher orders
- $B r \propto m_{t}^{3}$ via the short-distance Wilson coefficient
- $m_{t}^{\bar{M} s}$ from $m_{t}^{\text {pole }}$ ("measured"), but at which order (NLO or $\mathrm{N}^{3} \mathrm{LO}$?)
- SM prediction with NNLO strong and NLO weak corrections:

$$
\operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)_{\mathrm{SM}, \text { th }, \text { time integrated }}=(3.65 \pm 0.23) 10^{-9}
$$

[Bobeth,Gorbahn,Hermann,Misiak,Stamou,Steinhauser]

Constraints on models

- Model independent approach: pattern of cancellation between $C_{10}, C_{10^{\prime}}, C_{P}, C_{P^{\prime}}$ to mimic $\left|C_{10}^{S M}\right|$, and $C_{P} \simeq C_{P^{\prime}}$
- Particularly stringent constraint for susy models (and 2HDM models), especially at large $\tan \beta$

- grey: direct searches
$H, A \rightarrow \tau \tau$
- red: $B_{s} \rightarrow \mu \mu$ constraint for different benchmark points

$B_{s} \rightarrow \mu \mu$ versus $B_{d} \rightarrow \mu \mu$

Combination of LHCb and CMS measurements

- $\operatorname{Br}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)_{\exp }=(2.9 \pm 0.7) \times 10^{-9}$ (at more than 5σ)
- $\operatorname{Br}\left(B_{d}^{0} \rightarrow \mu^{+} \mu^{-}\right)_{\exp }=\left(3.6_{-1.4}^{+1.6}\right) \times 10^{-10}$ (at less than 3σ)

[Kamenik, updated of Straub]
- $\operatorname{Br}\left(B_{d}^{0} \rightarrow \mu \mu\right)_{\mathrm{SM}, \text { th }, \text { time integrated }}=(1.06 \pm 0.09) 10^{-10}$, below $\exp ?$
- Sensitive to FCNC scalar currents and electroweak penguins
- Stringent constraint on models in the future, especially non-MFV couplings for $b d$ and $b s$ FCNC

Inclusive radiative

$B \rightarrow X_{s} \gamma$

- Exp aver: $\operatorname{Br}\left(B \rightarrow X_{s} \gamma\right)_{E_{\gamma}>1.6 \mathrm{GeV}}=(3.43 \pm 0.21 \pm 0.07) \times 10^{-4}$
- NNLO SM prediction $\mathrm{Br}=(3.13 \pm 0.22) \times 10^{-4}$
[Misiak,Steinhauser]
- Strong constraint on NP, in particular for models with $H^{+} \mathrm{f}$

$B \rightarrow X_{s} l \ell$
- Branching ratios for $\ell=e, \mu$, recent binned results by Babar
- NNLO SM prediction at low and high q^{2}
- Weak constraint on NP, due to large number of operators involved

Isospin asymmetry in $B \rightarrow K \ell^{+} \ell^{-}$

- Integrated over $q^{2}: 4.4 \sigma$ from 0 (but nothing for $B \rightarrow K^{*} \mu^{+} \mu^{-}$)
- Purely spectator quark effect
- Requires calculation of $1 / m_{b}$-suppressed corrections in QCD factorisation (weak annihilation, quark-loop spectator scattering)
- In SM, small non-local effects/soft-gluon diagrams, with a prediction below 1.5\% (but with large uncertainties)
- No clue of which NP could produce such an effect. . .

Hard to break isospin for K and not K^{*} !

$B \rightarrow K^{*} \ell \ell$

- Angular analysis yields $\operatorname{Re}\left[A B^{*}\right], \operatorname{Im}\left[A B^{*}\right]$ between 8 amplitudes A $A=V_{t b} V_{t s}^{*} \sum C_{i} \times$ form factors \times kinematic factors
- $B \rightarrow K^{*} V^{*}(\rightarrow \ell \ell)$ with given helicities for K^{*} and V^{*}, chirality of $\ell \ell$
- depending on $q^{2}=s$ invariant mass of the lepton pair
- Optimized observables in terms of angular coefficients
- Relations among form factors in effective theories
for large- or low-recoil of the K^{*} meson
- Ratios of angular coefficients with controlled hadronic uncertainties in these two kinematic regimes

$B \rightarrow K^{*} \ell \ell$ angular observables

[LHCb; SDG, Matias, Virto]
Meaning of the discrepancy in P_{2} and P_{5}^{\prime}
between data (crosses) and SM predictions (purple) ?

Global fit to radiative decays

Standard χ^{2} frequentist analysis (asymmetric errors combined in quadrature but no experimental correlations)

$C_{i}=C_{i}^{S M}+C_{i}^{N P}$

- $B \rightarrow K^{*} \mu \mu$:
$P_{1}, P_{2}, P_{4}^{\prime}, P_{5}^{\prime}, P_{6}^{\prime}, P_{8}^{\prime}, A_{F B}$
- $B \rightarrow X_{s} \gamma: \mathrm{Br}$
- $B \rightarrow X_{s} \mu^{+} \mu^{-}: \mathrm{Br}$
- $B_{s} \rightarrow \mu \mu: B r$
- $B \rightarrow K^{*} \gamma: A_{l}$ and $S_{K^{*} \gamma}$

Several sets of data of $B \rightarrow K^{*} \mu \mu$ [LHCb only]

- full: 3 fine large-recoil bins
- dashed: 3 fine large-recoil bins + low-recoil bins
- orange: 1 large recoil-bin only

Model building

Need for $C_{9}^{N P}$ confirmed by

- Alternative analysis with different angular observables and binning
- Lattice analysis of $B \rightarrow K^{*} \ell \ell$ and $B_{s} \rightarrow \phi \ell \ell$ large-recoil Br
[W. Altmannshofer, D. Straub; Horgan et al.]]

Which model for this pattern ?

- Contribution to (real) C_{9} : FCNC coupling b and $s \propto V_{t s}^{*} V_{t b}$
- No (or small) contribution to $C_{S, P}$: vector meson (Z^{\prime} style)
- No (or small) contribution to $C_{9^{\prime}}$: coupling to left-handed b and s
- No (or small) contribution to $C_{10\left({ }^{\prime}\right)}$: vector coupling to muons

Z^{\prime} boson: the simplest version

Such a Z^{\prime} would also affect at least

- $B_{s} \bar{B}_{s}$ mixing
$\left[\Delta_{B_{s}}=\Delta m_{s} / \Delta m_{s}^{S M}-1\right]$
- G_{F}, leading to unitarity violation in 1st row of $V_{C K M}$

$$
\left[\Delta_{C K M}=1-\left|V_{u d}\right|^{2}-\left|V_{u s}\right|^{2}-\left|V_{u b}\right|^{2}\right]
$$

- $b \rightarrow s \nu \bar{\nu}$

Correlation between deviations (depend on $M_{Z^{\prime}}=1,3,10 \mathrm{TeV}$) OK within current bounds
[R. Gauld, F. Goertz, U. Haisch]

Z^{\prime} boson: more evolved versions

Left-handed scenario

- Z' FCNC coupling only to left-handed down-type quarks
- large contrib to C_{9} requires Δm_{d} and Δm_{s} enhanced w.r.t. SM
- ... requiring lower values of bag parameters to agree with data

3-3-1 models

- $S U_{C}(3) \otimes S U_{L}(3) \otimes U_{X}(1)$ broken above EW scale
- No anomaly: 3 generations, different representations for 1st-2nd and 3rd generations (justification for large m_{t} ?)
- $Q=T_{3}+\beta T_{8}+X$ with $|\beta| \leq \sqrt{3}$
- Additional gauge bosons, in particular neutral Z^{\prime} with tree-level FCNC (strong correlations for NP in radiative C_{i})
- $\beta=-\sqrt{3}$ with $M_{Z^{\prime}}=O(7 \mathrm{TeV})$ agree with most constraints
- ... but problems of internal consistency for $M_{z^{\prime}}>4 \mathrm{TeV}$ and potentially large deviations in $\Delta m_{d}, \Delta m_{s}$

Alternative models

MSSM

- Easy to generate contributions to $C_{7}, C_{7^{\prime}}$
- Difficult to shift C_{9} (and $C_{9^{\prime}}$) significantly from SM value

(a)

(b)

(c)

Composite models

- Mixing of light d.o.f. with composite heavy partners
- Similar problems as MSSM: OK for dipole operators, but not $C_{9,9^{\prime}}$
- Maybe large compositeness for one muon chirality, but $C_{10,10^{\prime}}$?
[D.Straub, W.Altmanshoffer; F. Mahmoudi, S. Neshatpour, J. Virto]

Outlook

Outlook

Flavour physics

- Low-energy window on electroweak scale and beyond
- Using SM symmetries to look for tell-tale signs of NP
- Exploiting different scales through a series of effective theories
- Long distances: non-perturbative QCD source of uncertainties
- Overall agreement with CKM pattern embedded in SM
- Interesting deviations: can we check them/understand them ?

Two approaches to analyse flavour physics observables

- Model-independent: focus on class of quark processes to constrain c / Λ^{2} and operator structure
- Model-dependent: design model and connect it with other flavour constraints (and high- p_{T} if possible)

Powerful tool to probe and constrain not only SM but also NP
if enough data from different sources to extract meaningful patterns (more from LHCb, but also CMS, ATLAS, NA62. . .)

