

B factories: present and future \Im

XLII International Meeting on Fundamental Physics January 26-31, 2014 - Benasque

B factories: 15 years of success

- Established CP violation in B system and measurement of the CKM parameters
- Observation of direct CPV in B decays
- Searches for new CP violation sources in B, D and τ decays
- Search for New Physics (NP) in rare decays
 - $B \rightarrow X_{s,d} \gamma, B \rightarrow X_{s,d} l^+l^-, B \rightarrow K^{(*)}vv, B \rightarrow \tau v, B \rightarrow D^{(*)}\tau v, B \rightarrow \text{ invisible, } \dots$
- Observation of direct Time Reversal violation
- Explore the region above the Y(4S) and study of B_s decays at the Y(5S)
- Discovery of several bottomonium (including η_b) and bottomonium-like states
- Observation of D⁰-D⁰bar mixing
- Discovery of unexpected states in charmed mesons and charmonium-like spectra
- Search for Lepton Flavor Violation (LFV) in τ and B decays
- Precise measurement of the hadronic contributions to the muon (g-2)
- Searches for low mass New Physics (NP) particles (light CP-odd Higgs, dark photons)
- Searches for heavy neutrinos in B decays

The colliders

Asymmetric-energy B factories => Flavor Physics at the intensity frontier

e⁻ √s≅ m(Y(4S))=10.58 GeV → Y(4S) Integrated Luminosity - Belle: $>1000 \text{ fb}^{-1}$ **PEP-II/BaBar** $e^-: 9$ GeV, $e^+: 3.1$ GeV, $\beta\gamma=0.56$ - BABAR: \sim 550 fb⁻¹ **KEKB/Belle** $e^-: 8 \text{ GeV}, e^+: 3.5 \text{ GeV}, \beta \gamma = 0.42$ mainly at the Y(4S), but Δ_{z} B also at Y(1,2,3,5S) and $\Delta_z \sim C\beta\gamma t_B$ Y(4S) in the continuum R ~ 200µm F. Anulli Benasque, 31-Jan-2014

The detectors

- Asymmetric beam energies to measure *B*-meson decay times
- Tracking & vertexing
- Cherenkov-based particle ID
- EM calorimeter
- μ/K_L system.

CP violation and the CKM Matrix

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

$$V_{CKM} = \begin{pmatrix} d & s & b \\ 1 - \frac{1}{2}\lambda^{2} & \lambda & A\lambda^{3}(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^{2} & A\lambda^{2} \\ A\lambda^{3}(1 - \rho - i\eta) & -A\lambda^{2} & 1 \end{pmatrix} + O(\lambda^{4})$$
$$\lambda^{2} = \frac{|V_{us}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2}}; \quad A^{2}\lambda^{4} = \frac{|V_{cb}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2}}; \quad \overline{\rho} + i\overline{\eta} = -\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}$$

The CKM is unitary
4 independent parameters:
3 angles and 1 phase
Vij are complex
Interfering amplitudes can give CP violating asymmetries
The CKM is the only source of CPV in the SM

 Measurements at *B* factories can overconstrain the Unitarity Triangle
 New Physics would be revealed in discrepancies among measurements Describes the quark mixing in weak charged transitions

$$q_i$$
 W^-
 $G_F V_{ij}$ q_j

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

$$B^{0} \rightarrow \pi^{-} \pi^{+}, \rho^{+}\rho^{-}$$

$$|V_{ud}V_{ub}^{*}|$$

$$V_{cd}V_{cb}^{*}|$$

$$A = \phi_{2}$$

$$B^{0} \rightarrow J/\Psi K^{0}$$

$$B \rightarrow D K$$

$$\gamma = \phi_{3}$$

$$\beta = \phi_{1}$$

$$(0, 1) \overline{\rho}$$

Benasque, 31-Jan-2014

Time-dependent CP asymmetries

- $\lambda_{f_{CP}}$

• *CP* violation arises from interference between the two paths (decay with and without mixing)

 $\lambda_{f_{CP}} \neq \pm 1 \quad \longleftrightarrow \quad \Gamma \; (\overline{B}^{0}_{phys}(t) \rightarrow f_{CP}) \neq \Gamma \; (B^{0}_{phys}(t) \rightarrow f_{CP})$

JCP

 f_{CP}

Time dependent CP asymmetry:

$$\begin{split} A_{CP}(t) &= \frac{\Gamma\left(\overline{B}_{phys}^{0}(t) \rightarrow f_{CP}\right) - \Gamma\left(B_{phys}^{0}(t) \rightarrow f_{CP}\right)}{\Gamma\left(\overline{B}_{phys}^{0}(t) \rightarrow f_{CP}\right) + \Gamma\left(B_{phys}^{0}(t) \rightarrow f_{CP}\right)} \\ &= C_{f_{CP}} \cos(\Delta m t) + S_{f_{CP}} \sin(\Delta m t) \end{split}$$

Independent

of phase

convention

$$C_{f_{CP}} = \frac{1 - \left|\lambda_{f_{CP}}\right|^2}{1 + \left|\lambda_{f_{CP}}\right|^2}$$
$$S_{f_{CP}} = \frac{-2 Im\lambda_{f_{CP}}}{1 + \left|\lambda_{f_{CP}}\right|^2}$$

amplitude ratio

mixing

Time-dependent CP asymmetries

- $\lambda_{f_{CP}}$

• *CP* violation arises from interference between the two paths (decay with and without mixing)

 $\lambda_{f_{CP}} \neq \pm 1 \iff \Gamma(\overline{B}^0_{phys}(t) \to f_{CP}) \neq \Gamma(B^0_{phys}(t) \to f_{CP})$

JCP

 $h_{f_{CP}}$

amplitude ratio

12

mixing

Time dependent CP asymmetry:

Independent

of phase

convention

Benasque, 31-Jan-2014

F. Anulli

$\sin 2\beta$ from b $\rightarrow c\bar{c}s$

Benasque, 31-Jan-2014

F. Anulli

The angle $\alpha \equiv \phi_2$

 $\alpha = \varphi_2$ accessible via $b \rightarrow u$ transitions in $B \rightarrow \pi \pi, B \rightarrow \rho \rho$, or $B \rightarrow \rho \pi$

Measure Time-dependent CP asymmetries as for $sin 2\beta$

Needs measurement of $B^+ \rightarrow \pi^+ \pi^0$ and $B^0 \rightarrow \pi^0 \pi^0$ processes and isospin analysis to recover sin2 α (see backup slides)

Global fits to extract α

F. Anulli

- Overall fit using $B \rightarrow \pi\pi$, $B \rightarrow \rho\rho$, $B \rightarrow \rho\pi$
- Tightest constraint from $B \rightarrow \rho \rho$
- $B \rightarrow \rho \pi$ is very promising but needs much more statistics => key channel for Belle-2
- LHCb just entered the game Benasque, 31-Jan-2014

CKMFitter $\alpha \text{ or } \phi_2 = \left(88.5_{-4.4}^{+4.7}\right)^{\circ}$ UTfit $\alpha \text{ or } \phi_2 = \left(88.7 \pm 3.1\right)^{\circ}$

Angle $\gamma = \phi_3$

Different methods for extracting γ depending on the D - meson decay mode

• *BABAR* and Belle have reconstructed the most sensitive decay modes using all or nearly all of their datasets

• Recently published results on combination of all analysis methods from both Collaborations

Belle CKM2012 arXiv:1301.2033
$$\gamma = (68^{+15}_{-14})^{\circ} \pmod{180^{\circ}}$$

BABAR PRD87 052015 (2013) $\gamma = (69^{+17}_{-16})^{\circ} \pmod{180^{\circ}}$

CKM summary

• All measurements of CKM parameters (not only from *B* factories) are used for global fits to constrain the apex of the UT.

• Fits performed by several groups. Most common CKMfitter and UTfit

CKM summary

• All measurements of CKM parameters (not only from *B* factories) are used for global fits to constrain the apex of the UT.

• Fits performed by several groups. Most common CKMfitter and UTfit

- Subset of measurements allow to check consistencies of specific parameters
- Generally good consistency, with some tension in few cases:
 - Inclusive vs Exclusive V_{ub}
 - for $B \rightarrow \tau v$ "case" see later

Fit including only CP-conserving parameters

• Consistency between:

- CP violating and CP conserving parameters

- *B*-factories results ($b \rightarrow d$ transitions), Bs oscillations ($b \rightarrow s$), and CPV in kaon system ($s \rightarrow d$)
- There is no significant evidence for a departure from the KM picture of CP violation and from the CKM matrix descritption of quark mixing
- However, there is still room for New Physics...

Direct observation of Time Reversal Violation

Phys. Rev. Lett. 102, 211801 (2013)

T, CP and CPT

- T, C, and P discrete symmetries related to each other via the CPT theorem:
 A QFT with local Lorentz invariant and a Hermitian Hamiltonian conserves CPT
- As a consequence, CP violation ==> T violation
- CPV well established in the SM framework of weak decays
- Can TV be directly observed, independently of CPT?
- In unstable systems, one needs to exchange |in> and |out> states and measure the asymmetry
 P(|i) = |f) = P(|f) = |i)

$$A_T = \frac{P(|i\rangle \to |f\rangle) - P(|f\rangle \to |i\rangle)}{P(|i\rangle \to |f\rangle) + P(|f\rangle \to |i\rangle)}$$

- What about using weak decays of B mesons?
- Large CP violation measured in many B decays (e.g. direct CPV in $B \rightarrow K\pi$), but it is essentially impossible to observe the time-reverse process $K\pi \rightarrow B$.
 - unfeasable to prepare a $K\pi$ initial state
 - in any case hadronic interactions will wash out any asimmetry from the rare weak $K\pi \rightarrow B$ processes

Measuring Time-Reversal Violation at the B factories

Solution: exploit the EPR entanglement of the B⁰- $\overline{B^0}$ pair produced at the $\Upsilon(4S)$

Bernabeu & Bañuls, PLB464, 117 (1999) $|i\rangle = \frac{1}{\sqrt{2}} \Big[B^0(t_1) \overline{B}^0(t_2) - \overline{B}^0(t_1) B^0(t_2) \Big] = \frac{1}{\sqrt{2}} \Big[B_{CP+}(t_1) B_{CP-}(t_2) - B_{CP-}(t_1) B_{CP+}(t_2) \Big]$

• Because of EPR the state of the 1st B decay at t_1 dictates the state of the other B at the same time t_1 , which will decay after a time $\Delta t = t_2 - t_1$

• This is the way CPV in the interference between decays with and without mixing is measured

Method described in J. Bernabeu et al. JHEP08 (2012) 064

Semileptonic decays project a B-flavor state:

 $l^+ \rightarrow B^0$ and $l^- \rightarrow \overline{B}^0$

Decays to J/ ψ K_{L,S} project a CP eigenstate:

 $J/\psi K_L \rightarrow B_{CP+}$ and $J/\psi K_S \rightarrow B_{CP-}$

 Test TV comparing the decay time distributions of the two processes

• 4 different T comparisons, plus 4 CP, and 4 CPT

Time-Reversal Violation: Results

$$\begin{split} g_{\alpha,\beta}^{\pm}(\Delta t) \propto e^{-\Gamma \Delta t} \begin{bmatrix} 1 + C_{\alpha,\beta}^{\pm} \cos(\Delta m \Delta t) + S_{\alpha,\beta}^{\pm} \sin(\Delta m \Delta t) \end{bmatrix} & \begin{array}{l} \alpha = \mathbf{B}^{\mathbf{0}} , \overline{\mathbf{B}}^{\mathbf{0}} \\ \beta = \mathbf{J}/\psi \mathbf{K}_{\mathbf{s}}, \mathbf{J}/\psi \mathbf{K}_{\mathbf{s}} \\ C_{\alpha,\beta}^{\pm} = \frac{1 - |\lambda|^2}{1 + |\lambda|^2} & S_{\alpha,\beta}^{\pm} = \frac{2Im\lambda}{1 + |\lambda|^2} \\ \end{array} & \begin{array}{l} \tau = \pm \Delta t > \mathbf{0} \\ \tau = \pm \Delta t > \mathbf{0} \\ \end{split}$$

Simultaneous ML fit to all flavor- and CP-eigenstates samples for Δt >0 and Δt <0 events. Obtain 8 sets of *S*, *C* parameters, define from these the T-violating parameters ΔS , ΔC

T-violation observed at >14σ ! Asymmetry consistent with expectation from CPT theorem and measured sin2β. Measurement independent from any assumption on CP or CPT

Time-Reversal Violation: Results

Simultaneous and independent test of T, CP, CPT. T and CP show compensating violation effects, while CPT is Benasque, 31-Jan-2014 consistent withino violation

Visualizing the time asymmetries

The T violation effects can be visualized defining the time asymmetries as:

New Physics in "rare" *B* decays

Search for indirect New Physics effects

- Different experimental and theoretical uncertainties among the various modes

- Some channel impossible or very challenging at hadronic colliders

- Large New Physics effects predicted for H⁺, Z', SUSY particles
- Indirect studies complementary to direct searches at the LHC

Inclusive $B \rightarrow X_s \gamma$

$B \rightarrow X_{s} \gamma$

- $B \rightarrow X\gamma$ and $B \rightarrow Xl^+l^-$ are FCNC processes forbidden at three level in the SM, but happen at loop level.
- OPE factorize short-distance from long-distance effects

$$H_{eff} = \frac{4G_F}{\sqrt{2}} \sum_{q} V_{qb} V_{qs(d)} \sum_{i} C_i(\mu) O_i \qquad q = u, c, t$$

- For radiative $b \rightarrow s\gamma$ decays, theory uncertainty on *BF* is at 7% level with calculations at NNLO (Misiak et. al, PRL 98, 0222002 (2007))
- Contributions from two effective Wilson coefficients, C_7^{eff} , and C_8^{eff}
- New Physics can contribute at the same level as SM (more loops with new particles)
 - modify the SM values of Wilson coefficients
 - Measurable changes in BF and CP asymmetry expected from NP
- Can add constraints on several NP models, in particular on the Two-Higgs Doublet Model (2HDM)

25

 $B \rightarrow X_s \gamma$

• Three different analysis approaches performed:

Fully inclusive (with lepton tag)	Inclusive with hadronic tag (full reco of the other B)	Sum of exclusive modes
 Advantage: Insensitive to final state fragmentation, theoretically clean 	 Advantage: theoretically clean low non-B background identify B charge and flavor E_γ is measured in the B- 	 Advantage: low background good photon resolution E_γ is measured in the B- decay frame
 Disadvantage: huge background E_γ is measured in Y(4S) frame does not distinguish between b → sγ and b→dγ 	 decay frame Disadvantage: low efficiency on the tag side 	 Disadvantage: sensitive to details of X_s fragmentation Missing X_s modes

$B \rightarrow X_s \gamma$: Branching Fractions

- BFs measured in bins of photon energy
- Different minimum energy reached by single measurements
- Results extrapolated to E_{γ} >1.6 GeV, and averaged

SM prediction @NNLO: $\mathcal{B}(B \to X_s \gamma)_{SM} = (315 \pm 23) \times 10^{-6}$

- Use extrapolated results to constrain $m(H^{\pm})$ in the type-II 2HDM
- Exclude at 95% CL charged Higgs for $m(H^{\pm}) < 327$ GeV, independent of tan β

Benasque, 31-Jan-2014

HFAG average:

$B \rightarrow X_{s} \gamma$: Semi-inclusive \mathcal{A}_{CP} results

- $\mathcal{A}_{C^{p}}(\mathsf{X}_{s}\gamma) = \frac{\Gamma(\overline{\mathsf{B}} \to \overline{\mathsf{X}}_{s}\gamma) \Gamma(\mathsf{B} \to \mathsf{X}_{s}\gamma)}{\Gamma(\overline{\mathsf{B}} \to \overline{\mathsf{X}}_{s}\gamma) + \Gamma(\mathsf{B} \to \mathsf{X}_{s}\gamma)}$ SM predictions yield $-0.6\% < \mathcal{A}_{CP}(X_s\gamma) < 2.8\%$
- Present world average $\mathcal{A}_{CP}(X_s\gamma) = -0.8 \pm 2.9\%$
- Recent BABAR analysis using 470 million Bbbar events, and a sum of exclusive decay modes
- Extract \mathcal{A}_{CP} from simultaneous fit to reconstructed masses of B and B samples
- Correct raw asymmetries for detector effects

In full X_s mass region the corrected \mathcal{A}_{CP} is measured to be:

$$\mathcal{A}_{CP}(X_s\gamma) = (1.73 \pm 1.93_{stat} \pm 1.02_{syst})\%$$

Good agreement with SM prediction

These new results have significantly lower uncertanties than previous measurements

Benasque, 31-Jan-2014

$B \rightarrow X_s \gamma: \Delta A_{CP}$

- The difference for charged and neutral B decays depends on C_7 and C_8 Wilson coeff. (Benzke et *al.*, PRL106.141801.2011) $\Delta A_{CP}(X_s \gamma) = A_{CP}(B^+ \rightarrow X_s^+ \gamma) - A_{CP}(B^0 \rightarrow X_s^0 \gamma) \approx 0.12 \frac{\tilde{\Lambda}_{78}}{m_b} Im \frac{C_8^{eff}}{C_7^{eff}}$ 17 MeV $< \tilde{\Lambda}_{78} < 190$ MeV
- In the SM, C_8 and C_7 are real ==> $\Delta A_{CP}=0$
- From the simultaneous fits to charged and neutral B samples *BABAR* measures

$$\Delta A_{CP}(X_s \gamma) = (5.0 \pm 3.9_{stat} \pm 1.5_{syst})\%$$

• Set 90% CL on $Im(C_8/C_7)$ for any value of Λ_{78} in the allowed range

ratio of Wilson coefficients C_8/C_7 for new physics in this process

Benasque, 31-Jan-2014

Inclusive $B \rightarrow X_s l^+ l^$ and Exclusive $B \rightarrow X_d l^+ l^-$

$B \rightarrow X_{s}l^{+}l^{-}$

• Within the SM, it proceeds via electroweak penguin and box diagram

- 3 effective Wilson coefficients: C_7^{eff} , C_9^{eff} , C_{10}^{eff}
- Expect BF in SM: $\mathcal{B}(X_s l^+ l^-) = (4.6 \pm 0.8) \times 10^{-6}$

- Recent BABAR analysis uses a sum of exclusive modes $B \to X_s e^+e^-$ and $B \to X_s \mu^+\mu^-$
- Reconstruct 10 X_s final states, with 1 kaon, and up to 2 charged and 1 neutral pion
 - It represents ~70% of the inclusive rate with $m(X_s) \le 1.8 \text{ GeV}/c^2$, accounting for K_{L}^0 modes
 - Unseen modes estimated with MC (inclusive generator model and JETSET fragmentation)
- Measure the total *BF* and partial *BF*s in 5 bins of $q^2=m_{\rm H}^2$ and 4 bins of $m_{\rm Xs}$

• General consistency with the SM predictions

$B \rightarrow X_s l^+l^-$: Forward-Backward Asymmetry

- Preliminary measurement of A_{FB} in inclusive $B \rightarrow X_s l+l$ decays presented by Belle at the EPS-HEP Conference (Yutaro Sato)
- Uses a sum-of-exclusive analysis based on 10 X_s exclusive modes

$$A_{FB} = -\operatorname{Re}\left[\left(2C_7^{eff} + \frac{q^2}{m_b^2}C_9^{eff}\right) \bullet C_{10}^{eff}\right]$$

- Sensitive to 3 effective Wilson Coefficients
- Can constrain New Physics model

• Inclusive measurements have smaller theoretical and similar experimental uncertainties than exclusive $B \rightarrow K^{(*)}l^+l^-$

$B \rightarrow \pi^{\pm,0} l^+l^- and B \rightarrow \eta l^+l^-$

- SM prediction of the order of $\sim 10^{-8}$
- The only observed channel (by LHCb) is $B^+ \rightarrow \pi^+ \mu^+ \mu^-$
 - $\mathcal{B}(B \rightarrow \pi^+ \mu^+ \mu^-) = (2.4 \pm 0.6 \pm 0.2) \times 10^{-8}$ JHEP 12, 125 (2012)
- B factories searched for both electron and muon modes, and for π^+ , π^0 , and η (only *BABAR*) B-> π^0
 - see no signal in any mode
 - set UL at 90% CL, for individual, isospin averaged, and lepton flavor averaged BF
- All UL within a factor ~2-3 of the SM predictions
- All modes will be observed at Belle II

F

Benasque, 31-Jan-2014

$B \rightarrow \tau \nu$ and $B \rightarrow D^{(*)} \tau \nu$

Common reconstruction methodology

- Take advantage of the clean $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ environment
 - perform a tagged analysis reconstructing both B mesons
- Fully reconstruct one B (B_{tag}) in hadronic modes
 => The direction of the B in the signal side is fully determined
- Select events by:

Btag hadronic reconstruction:

- High purity B-sample but low efficiency (ϵ <1%)
- New BABAR analyses 3x more efficient than previous

Alternative tag method uses semileptonic B decays

- Higher efficiency but lower purity
- In general similar sensitivity

F. Anulli

 Look for signal decays in the rest of event

$B \rightarrow D^{(*)} \tau \nu$ and $B \rightarrow \tau \nu$: motivations

- Tree-level decays mediated in the SM by a W^{\pm}
- BF and kinematic distributions (for D^(*)τν) sensitive to a charged Higgs H⁺
- Can probe extensions of the SM with an enlarged Higgs sector
 - e.g. Type-II Two Higgs Doublet Model (2HDM) of MSSM

$B \rightarrow \tau \nu$

- Tree-level leptonic decays - No QCD uncertainties from hadrons in the final state - BF depends on f_B and V_{ub} $\mathcal{B}(B \rightarrow \ell \nu)_{SM} = \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 |V_{ub}|^2 f_B^2 \tau_B$ Standard Model prediction:
 - $\mathcal{B}_{SM}(B \rightarrow \tau \nu) = (1.10 \pm [0.17_{stat} \pm 0.21_{th}]_{Vub} \pm [0.043_{stat} \pm 0.034_{th}]_{fb}) \times 10^{-4}$ - $|V_{ub}| = (4.15 \pm 0.50) \times 10^{-3}$ (PDG 2012) - $f_B = (190.6 \pm 3.7 \pm 2.9)$ MeV (Laiho, Lunghi and van de Water, 2012)
- Branching fraction theoretical expression depends on the NP model

For the 2HDM:

$$\mathcal{B}(B \to l\nu)_{2HDM} = \mathcal{B}(B \to l\nu)_{SM} \times (1 - tan^2\beta \frac{m_B^2}{m_H^2})^2$$

• Previous analyses used both hadronic and semileptonic tag

۲

$B \rightarrow \tau \nu$: results from Belle

- Full event reconstruction with Hadronic tag
 - $B_{sig} \rightarrow \tau \nu_{\tau;} \tau \rightarrow e \nu_{\tau} \nu_{e}, \mu \nu_{\tau} \nu_{\mu}, \pi \nu, \rho(\pi^{+}\pi^{0}) \nu_{\tau}$
 - i.e.only 1-prong τ decays are used (~70% of all τ decays)
- Main discriminating variable : E_{ECL}
 - sum of the energy of the calorimeter clusters not associated with the reconstructed B's
 - peak at zero for correctly reconstructed events
- 2 dimensional fit to:
 - Extra neutral energy E_{ECL}

$$- m_{miss}^2 = (p_{e^+e^-} - p_{tag} - p_{sig})$$

- PDFs obtained from MC, validated with control sampless:
 - Signal: $B \rightarrow D^{*0} l v$
 - Background: M_{bc} and E_{ECL} sidebands

$$Br(B \rightarrow \tau \nu) = [0.72 + 0.27 \pm 0.11] \times 10^{-4}$$

$B \rightarrow \tau \nu$: Results *vs* SM

- Assume *e*, μ modes unaffected by H⁻
- NP contributions expected to change both rates and kinematic distributions of the signal τ mode

Scalar helicity
amplitude
$$H_S^{2HDM} \approx H_S^{SM} \times \left(1 - \frac{\tan^2 \beta}{m_{H^{\pm}}^2} \frac{q^2}{1 \mp m_c/m_b}\right) - \text{for } B \to D\tau v$$

+ for $B \to D^* \tau v$

- Several theoretical (V_{cb}, FF) and experimental uncertainties cancel in the ratio
 - SM theoretical uncertainties: $\sigma^{th}(R(D)) \le 6\%$, $\sigma^{th}(R(D^*)) \le 2\%$
- Use leptonic τ decays to further reduce systematic uncertainties
 - same reconstructed final state for signal and normalizations channels
 - but 3 neutrinos in the final state of the signal mode

$B \rightarrow D^{(*)} \tau \nu$: fits and results

Dh

New analysis:

- x2 luminosity
- x3 higher efficiency (mainly ε_{tag})

Event selection:

- Reconstruct D^(*) candidate
- Exactly one extra lepton candidate $(\tau \rightarrow e\nu\nu, \mu\nu\nu)$
- Multivariate analysis to suppress • backgrounds (uses control sample and off-peak data)
- m_{miss} higher and lepton momentum p_1^* smaller for signal than normalization
- 2D Extended Maximum LH fit to • m_{miss}^2 and p_l^* to extract yields
- Simultaneous fit with $B \rightarrow D^{(*)}\pi^0 l\nu$ to • account for D** contribution

$B \rightarrow D^{(*)} \tau \nu$: results *vs* SM

• combined *BABAR* results 3.4σ higher than SM

Averages do not include the new BABAR results

Unpublished deviations from
SM of Belle results presented at
FPCP 2013 (A. Bozek) *R(D*)* : 3.0σ; *R(D)* : 1.4σ

• Combined Belle+BABAR: $R(D^{(*)})$: 4.8 σ

Benasque, 31-Jan-2014

$B \rightarrow D^{(*)} \tau \nu$: Type II 2HDM scan

2HDM affects fit variables distributions and hence the efficiency. ==> measured $R(D^{(*)})$ are not uniform in tan β/m_{H^+}

43

Type-II 2HDM - connection with LHC

$B \rightarrow D^{(*)} \tau \nu$: limits on Type-III 2HDM

General spin-0 interactions $\mathcal{H}_{eff} = \frac{4G_F V_{cb}}{\sqrt{2}} \Big[(\overline{c} \gamma_{\mu} P_L b) (\overline{\tau} \gamma^{\mu} P_L \nu_{\tau}) + S_R (\overline{c} P_R b) (\overline{\tau} P_L \nu_{\tau}) + S_L (\overline{c} P_L b) (\overline{\tau} P_L \nu_{\tau}) \Big]$ $Impact on R(D^{(*)}):$ $\mathcal{R}(D) = \mathcal{R}(D)_{SM} + A'_D \operatorname{Re}(S_R + S_L) + B'_D |S_R + S_L|^2$ $\mathcal{R}(D^*) = \mathcal{R}(D^*) = \mathcal{R}($

$$\mathcal{R}(D^*) = \mathcal{R}(D^*)_{\mathrm{SM}} + A'_{D^*} \operatorname{Re}(\boldsymbol{S}_{\boldsymbol{R}} - \boldsymbol{S}_{\boldsymbol{L}}) + B'_{D^*} |\boldsymbol{S}_{\boldsymbol{R}} - \boldsymbol{S}_{\boldsymbol{L}}|^2$$

Corresponds to Type-II 2HDM case for $S_L = 0$

Belle II and the SuperKEKB

Why a super flavor factory

- Despite all valuable results from *B*-factories, many questions remain unanswered
- We saw that processes that occur at one-loop level in the SM may be of O(1) in New Physics models: FCNC, neutral meson mixing, CP violation in B, D, τ decays. NP can be probed at energy scale not directly accessible at LHC.
- Physics motivations are complementary to LHC:
 - Search for direct production of New Physics particles at LHC can be effective for masses up to few TeV/c^2
 - If LHC finds NP, precision flavor physics is the main way to investigate its nature
 - If LHC does not find NP, high statistic B/D/ τ decays would be a unique way to search for the O(1 TeV) (MFV scenario) up to O(100 TeV) scale physics
 - Complementarity between Flavor Physics program at LHC and at a super B factory

Nano-beam scheme originally proposed by P. Raimondi for the Italian SuperB project => x40 peak Luminosity

Higher currents Reduced boost: **4 GeV (e+) vs 7 GeV (e-)** Larger crossing angle

SuperKEKB luminosity projection

Primary physics goals

- In three years from now LHCb and partly BESIII should have significantly improved the present *B* factory results in many processes
- Still e^+e^- colliders running at (or near) $\Upsilon(4S)$ will have considerable advantage in several classes of measurements, and will be complementary in many more

Main classes of measurements

• Missing Energy (E_{miss}):

 $\mathcal{B}(B \to \tau \nu), \mathcal{B}(B \to X_c \tau \nu), \mathcal{B}(B \to h \nu \nu),$

invisible decays of bottom and charmed hadrons, ...

• Inclusive:

 $b \rightarrow (d,s)\gamma$ and $b \rightarrow (d,s)\ell^+\ell^-$ (rate, asymmetries,...) ...

• Neutrals:

 $S(B \to K_S \pi^0 \gamma), S(B \to \eta' K_S), S(B \to K_S K_S K_S), \mathcal{B}(B \to K_S \pi^0 \gamma), \mathcal{B}(B \to K_S \pi^0 \gamma), \tau \to \mu\gamma$, Low mass *CP* – odd Higgs and Dark bosons searches,....

For detail descriptions of the physics program at a SuperB factory, see:

- Physics at Super B Factory (Belle II) arXiv:1002.5012
- SuperB Progress Reports: Physics (SuperB) arXiv:1008.1541

Benasque, 31-Jan-2014

$B \rightarrow \tau \nu$

- Particularly sensitive to NP, because of helicity supression
- Small tension with $\sin 2\beta$ and V_{ub} with present measurements
- Can be precisely (~3% error) measured at Belle II
- ECL (= extra energy in the calorimeter) is the the key variable for the measurement,
 - large machine background (environment significantly worse than in Belle) ==> crucial role of the EM calorimeter

LFV in τ decays

- LFV not forbidden by SM gauge symmetry
- SM extended to include v mixing predicts LFV of $O(10^{-54})$
- Any observation of LFV in lepton decays would mean NP
- Most of NP models predicts τ LFV *BF* of O(10⁻⁷-10⁻¹⁰)
- advantgae of using τ :
 - enhanced coupling to NP particles , many different decays ==> tests of different models
- Eventually ratio of *BF*'s can distinguish among models

		τ→μγ	τ→III
SM + v mixing	Lee, Shrock, PRD 16 (1977) 1444 Cheng, Li, PRD 45 (1980) 1908	10-54 - 10-40	10-40
SUSY Higgs	Dedes, Ellis, Raidal, PLB 549 (2002) 159 Brignole, Rossi, PLB 566 (2003) 517	10-10	10-7
SM + heavy Maj $v_{\rm R}$	Cvetic, Dib, Kim, Kim , PRD66 (2002) 034008	10 ⁻⁹	10-10
Non-universal Z'	Yue, Zhang, Liu, PLB 547 (2002) 252	10 ⁻⁹	10-8
SUSY SO(10)	Masiero, Vempati, Vives, NPB 649 (2003) 189 Fukuyama, Kikuchi, Okada, PRD 68 (2003) 033012	10-8	10-10
mSUGRA + Seesaw	Ellis, Gomez, Leontaris, Lola, Nanopoulos, EPJ C14 (2002) 319 Ellis, Hisano, Raidal, Shimizu, PRD 66 (2002) 115013	10-7	10-9

LFV in τ decays

Examples of NP search in charm decays

- CPV in D^0 - $\overline{D^0}$ mixing.
 - New HFAG average [March '13]

$$\Delta a_{CP}^{\rm dir} = (-0.33 \pm 0.12)\%$$

 LHCb should set the best results, but a cross checks from the SuperB is mandatory

- Radiatve D decays $(D \rightarrow X_u \gamma, D \rightarrow X_u l^+ l^-)$
 - $c \rightarrow u$ transitions
 - FCNC in the up sector can be different from those in the down sector (b \rightarrow s,d and s \rightarrow d)
 - in particular no top-enhancement in $c \rightarrow u$
 - Belle II can study them, tagging the ccbar events by reconstruction of the other "D" (technique already used for measuring absolute Ds BFs)

Belle II physics reach: a compact summary

	Belle' 06 (~0.5ab⁻¹)	5ab ⁻¹	50ab ⁻¹	
ΔS(φK ⁰)	0.22	0.073	0.029	
$\Delta S(\eta' K^0)$	0.11	0.038	0.020	
$\Delta S(K_SK_SK_S)$	0.33	0.105	0.037	
$\Delta S(K_S \pi^0 \gamma)$	0.32	0.10	0.03	
Br(X _s γ)	13%			
$A_{CP}(X_{s^{\gamma}})$	0.058	0.01	0.005	
$C_9 [A_{FB}(K^*II)]$		11%	4%	
C ₁₀ [A _{FB} (K*II)]		13%	4%	
$Br(B^{*} \rightarrow K^{*}\nu\nu)$	<9Br(SM)	33ab-1 for	δσ discovery	
$Br(B^{+} \rightarrow \tau \nu)$	3.5σ	10%	3%	
$Br(B^+ \rightarrow \mu \nu)$	<2.4Br(SM)	4.3ab ⁻¹ for	5o discovery	
$Br(B^+ \rightarrow D\tau v)$		7.9%	2.5%	
$Br(\tau\to\mu\gamma)$	<45	<30	<8]	
Βr(τ →μη)	<65	<20	<4 X1)-9
$\text{Br}(\tau \to 3\mu)$	<209	<10	<1	-
$\Delta sin2\phi_1$	0.026	0.016	0.012	
ΔΦ ₂ (ρπ)	68° — 95°	3°	1°	
$\Delta \Phi_3$ (Dalitz)	20°	7°	2.5°	
ΔV_{ub} (incl.)	7.3%	6.6%	6.1%	

Expected improvement in the determination of the CKM parameters

Conclusions

• The *B* factories continue to produce new and unique results

- The *B*-factories Physics Book will summarize their achievements

- *BABAR* and Belle are completing the CKM related program
 - The CKM picture of CP violation describes generally well the data
- Rare decays and *B* decays to a τ are ideal places to look for NP effects
 - 3.4 σ tension with SM in *BABAR* $B \rightarrow D^{(*)}\tau v$ decays. This result can be checked with additional measurements already at Belle and *BABAR*
- A significant part of physics programs are on exploring new areas, not in the originl *B*-factories' physics program, as :
- ==> *B* factories will continue to produce interesting results, until Belle II and SuperKEKB will be fully operational
- The unique features of SuperKEKB will allow Belle II to perform a physics program at the intensity frontier complementary to that of LHC

Conclusions

• The *B* factories continue to produce new and unique results

- The *B*-factories Physics Book will summarize their achievements

- *BABAR* and Belle are completing the CKM related program
 - The CKM picture of CP violation describes generally well the data
- Rare decays and *B* decays to a τ are ideal places to look for NP effects
 - 3.4 σ tension with SM in *BABAR B* $\rightarrow D^{(*)}\tau\nu$ decays. This result can be checked with additional measurements already at Belle and *BABAR*
- A significant part of physics programs are on exploring new areas, not in the originl *B*-factories' physics program, as :
- ==> *B* factories will continue to produce interesting results, until Belle II and SuperKEKB will be fully operational
- The unique features of SuperKEKB will allow Belle II to perform a physics program at the intensity frontier complementary to that of LHC

Luminosity and data sets

• Performances far beyond design...

• More than 96% of the delivered luminosity was recorded by the experiments

Experimental Techniques

Isospin relations for measuring α

$sin2\alpha$ ($\alpha \equiv \phi_2$)

- The study of the three main systems to extract α , that is $\pi\pi$, $\rho\rho$, and $\rho\pi$, is almost completed by both experiments, using the full data sets:
- $B \rightarrow \pi \pi$:
 - Recently published result on $B \rightarrow \pi^+\pi^-$ from BABAR and Belle
 - BABAR published also $B \rightarrow \pi^0 \pi^0$ on full dataset
- $B \rightarrow \rho \rho$:
 - VV final state, not pure CP eigenstate, => helicity analysis to measure CP
 - B $\rightarrow \rho^+ \rho^-$: old BABAR (384x10⁶ BB pairs) and Belle (535x10⁶ BB pairs)
 - − B → $\rho^0\rho^0$: full dataset from BABAR (2008) and Belle (NEW arXiv: 1212.4015)
- $\mathbf{B} \rightarrow (\rho \pi)^0$:
 - requires a Dalitz plot analysis
 - old Belle results (2007) on \sim 450x10⁶ BB pairs
 - NEW result from BABAR (ref.) ==> warning about lack of robustness in extracting a with current statistics!

$B \rightarrow \pi^+\pi^-$

 \Rightarrow good agreements between experiments (prev. tension removed)

CKM summary: the angles

Average of *B* factories results $\beta = \phi_1 = (21.4 \pm 0.8)^{\circ}$ $\alpha = \phi_2 = (88.5 \pm 4.5)^{\circ}$ $\gamma = \phi_3 = (67 \pm 11)^{\circ}$ $\alpha + \beta + \gamma = (177 \pm 12)^{\circ}$

• Good agreement with SM

• Need to improve precision on γ (and α) to better overconstrain the CKM with angles only

 $(\overline{\rho},\overline{\eta})$ constraints from fit to angles only

Transformed processes

- Define processes of interest and their T-transformed counterparts
- In total we can build 4 independent T comparisons (and 4 CP, and 4 CPT)

TRV: results

	Parameter	Result	Expected value (given CPV)
TV	$\Delta S_T^+ = S_{\ell^-, K_T^0}^ S_{\ell^+, K_C^0}^+$	$-1.37 \pm 0.14 \pm 0.06$	-1.4
	$\Delta S_{\mathbf{T}}^{-} = S_{\ell^{-},K_{L}^{0}}^{+} - S_{\ell^{+},K_{S}^{0}}^{-}$	$1.17 \pm 0.18 \pm 0.11$	1.4
	$\Delta C_T^+ = C_{\ell^-, K_L^0}^ C_{\ell^+, K_S^0}^+$	$0.10 \pm 0.14 \pm 0.08$	0.0
	$\Delta C_{T}^{-} = C_{\ell^{-},K_{L}^{0}}^{+} - C_{\ell^{+},K_{S}^{0}}^{-}$	$0.04 \pm 0.14 \pm 0.08$	0.0
CPV	$\Delta S^+_{C\!P} = S^+_{\ell^-, K^0_S} - S^+_{\ell^+, K^0_S}$	$-1.30 \pm 0.11 \pm 0.07$	-1.4
	$\Delta S^{-}_{CP} = S^{-}_{\ell^{-},K^{0}_{c}} - S^{-}_{\ell^{+},K^{0}_{c}}$	$1.33 \pm 0.12 \pm 0.06$	1.4
	$\Delta C^{+}_{CP} = C^{+}_{\ell^{-}, K^{0}_{S}} - C^{+}_{\ell^{+}, K^{0}_{S}}$	$0.07 \pm 0.09 \pm 0.03$	0.0
	$\Delta C^{-}_{C\!P} = C^{-}_{\ell^{-},K^{0}_{S}} - C^{-}_{\ell^{+},K^{0}_{S}}$	$0.08 \pm 0.10 \pm 0.04$	0.0
CPTV	$\Delta S^{+}_{CPT} = S^{-}_{\ell^{+}, K^{0}_{T}} - S^{+}_{\ell^{+}, K^{0}_{S}}$	$0.16 \pm 0.21 \pm 0.09$	0.0
	$\Delta S^{-}_{CPT} = S^{+}_{\ell^{+}, K^{0}_{T}} - S^{-}_{\ell^{+}, K^{0}_{S}}$	$-0.03 \pm 0.13 \pm 0.06$	0.0
	$\Delta C^+_{CPT} = C^{\ell^+, K^0_T} - C^+_{\ell^+, K^0_S}$	$0.14 \pm 0.15 \pm 0.07$	0.0
	$\Delta C^{-}_{CPT} = C^{+}_{\ell^{+}, K^{0}_{L}} - C^{-}_{\ell^{+}, K^{0}_{S}}$	$0.03 \pm 0.12 \pm 0.08$	0.0
Reference	$S^{+}_{\ell^{+},K^{0}_{S}}$	$0.55 \pm 0.09 \pm 0.06$	0.7
	$S^{-}_{\ell^{+},K^{0}_{S}}$	$-0.66 \pm 0.06 \pm 0.04$	-0.7
	$C^{+}_{\ell^{+},K^{0}_{S}}$	$0.01 \pm 0.07 \pm 0.05$	0.0
	C^{ℓ^+,K^0_S}	$-0.05\pm 0.06\pm 0.03$	0.0

Operator Product Expansion (OPE)

$B \rightarrow X_{s}l^{+}l^{-}$

- BABAR analysis uses ~470x10⁶ BBbar events
- Measure the total BF and partial BFs in 5 bins of $q^2=m_{ll}^2$ and 4 bins of m_{Xs}
- Exclusive final state reconstruction separately in each mode using kinematic variables

$$\mathbf{m}_{\rm ES} = \sqrt{\left(\frac{1}{4}\mathbf{E}_{CM}^2 - \mathbf{p}_{\rm B}^{\star 2}\right)} \quad \Delta \mathbf{E} = \mathbf{E}_{\rm B}^{\star} - \frac{1}{2}\mathbf{E}_{CM}$$

• Extract signal yield with 2D Maximum Likelihood fit to m_{ES} and likelihood ratio (based on signal/(signal+bckgd))

Belle is Belle II upgrade

Higher background (x10+20)

~

•

•

•

~

•

~

~

•

- Resistive Plate Counter (barrel outer Radiative Bhabha events dominate layers) Scintillator + WLSF + MPPC (endcaps + barrel 1 inner layers) Fake hits and pileup noise in EM EM Calorimeter: CsI(TI), waveform sampling (barrel) calorimeter Pure Csl + waveform sampling (endcaps) Radiation damage and higher Particle Identification occupancy Time-of-Propagation counter (barrel) electrons (7GeV) Higher trigger rates (x40) Prox. focusing Aerogel RICH (fwd) Beryllium beam Level1 trigger (0.5 \rightarrow 20 KHz) pipe 2cm diameter High performance DAQ, computing Vertex Detector 2 layers DEPFET + 4 layers DSŚD Important improvements positrons (4GeV) Central Drift Chamber Hermeticity of the detector He(50%):C2H6(50%), Small cells, long lever arm, fast electronics IP and secondary vertex resolution DR: KEK Report 2010-1 K and π^0 reconstruction efficiency K^{\pm}/π^{\pm} separation
- PID in the end-cap parts ~

KL and muon detector: