#### Spintronic devices

#### P.P.Freitas



INESC-Microsistemas e Nanotecnologias/ Instituto Superior Técnico (Lisbon,PT) and International Iberian Nanotechnology Laboratory (Braga, PT)



#### http://www.inesc-mn.pt







#### Frontiers on Magnetism, Benasque, February 2014

-Present markets:

Data storage : PC+consumer electronics

Sensors: automotive: current, power, position-linear and angular, battery cell monitoring navigation systems-digital compass

MRAM: 1st generation

-Emerging markets: NVM: STT-RAM (MRAM), M-FPGA (integrated Sensor + CMOS)

-New sensor markets:

Low power ( <mW) , low noise (nT/sqrt(Hz),medium landscape (<5mm2) integrated sensors -point of care biosensor arrays (MR sensor arrays, microfluidics, CMOS, packaging) -scanning sensor arrays (high resolution current imaging, non destructive testing) (MR, CMOS, packaging) -remote sensor networks ( hybrid RF antenna-MR sensor microsystems)

Very low noise -pT/sqrt(Hz)-integrated sensors for low frequency (1Hz) applications -MCG/MEG-hybrid MEMS-flux guide-MR sensor arrays -smart microelectrode arrays for neuroelectronics



Courtesy of Seagate



# II-SOLID STATE NON-VOLATILE MEMORIES MTJ-MRAM



### 3 MRAM Approaches

|                            |                                             | $\rightarrow$                                                            |                                       |  |
|----------------------------|---------------------------------------------|--------------------------------------------------------------------------|---------------------------------------|--|
|                            | FIMS writing                                | TAS+ FIMS writing                                                        | CIMS writing                          |  |
| Stabilization scheme       | Shape anisotropy                            | Exchange biased<br>storage layer                                         | Shape anisotropy                      |  |
| Bit shape                  | Elliptic with AR~1,5                        | Circular                                                                 | Elliptic with AR~1,5                  |  |
| Writing current            | l <sub>w</sub> #(AR-1).t.M <sub>s</sub> /√L | I <sub>w</sub> #J <sub>h</sub> .L <sup>2</sup>                           | I <sub>w</sub> #J <sub>c</sub> .L²/AR |  |
| Writing speed              | ~1-2ns                                      | ~1-2ns                                                                   | <0,5ns                                |  |
| Useable range              | L>200nm(no toggle)                          | 35nm <l<200nm< th=""><th>25nm<l<150nm< th=""></l<150nm<></th></l<200nm<> | 25nm <l<150nm< th=""></l<150nm<>      |  |
| Superparamagnetic<br>limit | 25nm                                        | 35nm                                                                     | 25nm                                  |  |

#### NEXT MRAM project (2000-2005)



#### At least 15 different types of sensors using magnetoresistive devices are already being integrated in automobiles



\*Information from Sensitec website

#### Advantages:

- Contactless, wear-free operating principle for angular and linear measurement
- Large air gap
- Large permissible air gap tolerances
- Withstands extreme operating conditions
- Full redundancy possible
- Failsafe design
- Flexible integration
- High bandwidth for measurements in time slots of less than 100 ms

Continuously variable transmission (CVT)

### IV-MagnetoResitive (MR) Biochips: diagnostics



### **V-Biomedical imaging applications**



- Requirements:
- Magnetoencephalography-fT
- Magnetocardiography –pT
- Low field MRI-fT
- Increase GMR/TMR sensitivity, decrease noise background
- Devices:
- GMR/TMR + fluxguide hybrid sensors
- MEMS + GMR/TMR hybrid sensors



J.Smit, Physica <u>16</u>, 612 (1951); T.R.McGuire and R.I.Potter, IEEE Trans.Magn., <u>11</u>, 1018(1975); O.Jaoul, I.A.Campbell, and A.Fert, J.Magn.Magn.Mater., <u>5</u>, 23(1977); L.Berger, AIP Conf.Proc., .<u>34</u>, 355(1976); L.Berger, P.P.Freitas, J.D.Warner, and J.E.Schmidt, J.Appl.Phys., .<u>64</u>, 5459 (1988).

## AMR in thin Ni<sub>80</sub>Fe<sub>20</sub> films



Buffer controls grain size, mean free path and specularity

How to make an AMR sensor? 1-Control the magnetics of the thin NiFe slab: Magnetic Energy of a semi-infinite thin film (w>>h,t)



B.D.Cullity(1972) Introduction to Magnetic Materials, A.W, MA

Theory Magnetic Recording, N.Bertram, p.172

#### 2- R vs H response for a single NiFe stripe



Chapter 7, Theory of Magnetic Recording, N.Bertram, 1994 N.Smith, IEEE Trans.Magn., 23, 259, 1987  $\frac{H}{NON linear near H} = 0$ 

# 3-Biased Soft Adjacent Layer AMR sensor



Chapter 7, Theory of Magnetic Recording, N.Bertram, 1994 N.Smith, IEEE Trans.Magn., 23, 259, 1987 H<sub>ext</sub> Linearized output

### Micromagnetic simulation for SAL and MR layers



AMR heads used till 1995 in HDD and still in use for tape recording



 $\Delta V = \frac{1}{2} (\Delta R/R).I.Rsq.(W/h) < 1-\cos(\theta_f - \theta_p) >$ 

1-C.Tsang, R.E.Fontana, T.Lin, D.E.Heim, V.S.Speriosu, B.A.Gurney, and M.L.Williams, IEEE Trans.Magn., <u>30</u>, 3801 (1994).

3- B.Dieny, V.S.Speriosu, S.S.Parkin, B.A.Gurney, D.R.Wilhoit, and D.Mauri, Phys.Rev.B, <u>43</u>, 1297(1991).

4- D.E.Heim, R.E.Fontana, C.Tsang, V.S.Speriosu, B.A.Gurney, and M.L.Williams, IEEE Trans.Magn.., <u>30</u>, 316 (1994); P.P.Freitas, J.L.Leal, L.V.Melo, N.J.Oliveira, L.Rodrigues, and A.T.Sousa, Appl.Phys.Lett., <u>65</u>, 493 (1994);

J.L.Leal, N.J.Oliveira, L.Rodrigues, A.T.Sousa, and P.P.Freitas, IEEE Trans.Magn., <u>30</u>, 3031(1994).

#### Spin Valve sensors-magnetic response



### SV materials



#### Spin Valve Sensor: biasing



### Sensor design issues

......



### Micromagnetic simulation for SV sensor



## Spin Valve Sensor Transfer Curve

Ta20Å/NiFe30Å/CoFe20Å/Cu28Å/CoFe25Å/MnIr60Å/Ta25Å



#### How to chose the best sensor? Noise spectrum



### The Magnetic Tunnel Junction-I

incoherent tunneling through an amorphous barrier



Julliere's model for incoherent tunneling Accross amorphous barriers (AlOx, TiOx)



TMR=2P<sub>1</sub>P<sub>2</sub>/1+P<sub>1</sub>P<sub>2</sub> P=[D<sub>↑</sub>( $\varepsilon_F$ )-D<sub>↓</sub>( $\varepsilon_F$ )]/ [D<sub>↑</sub>( $\varepsilon_F$ )+D<sub>↓</sub>( $\varepsilon_F$ )] P %

CoFe

half metal

55

100

#### Tunnel Junctions deposited by Ion Beam Nordiko 3000 deposition system

#### INESC-MN



### 1nm thick barriers for read heads



### INESC-MN





Fully Automatic Measurement of magnetotransport properties :

- Resistance
- Magnetoresistance Transfer Curve
- Current-Voltage Characteristic
- MR Bias Voltage Dependence
- Breakdown Voltage
- Current Induced Switching

Integrated Data Analysis Software

6" Wafers measurement capability (2 or 4 contacts)

#### Probe Card



#### 36 Kelvin Needles



#### Patterned Junctions Transport Properties TMR(%)

### INESC-MN



Hf < 2Oe, TMR > 50%, RA < 500 Ohm  $\mu$ m<sup>2</sup>, Therm. Stab. 320 to 350C

### The Magnetic Tunnel Junction-II Coherent tunneling through a crystalline MgO barrier

2) Magn Anneal



1h, 330°C, 1T



#### Start: 10/30/2013 10:41 AM End: N/A Job: 330C\_1T\_2hr Comments:



### Stack dep (10 target PVD)



#### The TMR device: process

4) stack magn. characterization



Performed using time independent solutions of the LLG equation.

| Interfacial/interlayer Surface<br>Coupling constants     | (erg/cm²) |  |
|----------------------------------------------------------|-----------|--|
| Exchange coupling between PL and AFM                     | 0.34      |  |
| Antiferromagnetic coupling for the SAF<br>(PL/spacer/RL) | -0.53     |  |
| Ferromagnetic coupling between SAF<br>and FL             | 0.02      |  |

| Layer   | M <sub>s</sub><br>(emu∕cm³) | t<br>(nm) | l <sub>ex</sub><br>(nm) | H <sub>k</sub><br>(Oe) |
|---------|-----------------------------|-----------|-------------------------|------------------------|
| FL      | 1140                        | 2.5       | 3.5                     | 15                     |
| Barrier | -                           | 1         | -                       | -                      |
| RL      | 1140                        | 2.5       | 3.5                     | 15                     |
| Spacer  | -                           | 0.85      | -                       |                        |
| PL      | 1070                        | 2.3       | 3                       | 15                     |
| AMF     | -                           | 15        | -                       | -                      |

#### Linear response optimization: 2<sup>nd</sup> annealing temperature VSM plots obtained in a matrix of annealing temperature vs NiFe thickness



5 Ta / 15 Ru / 5 Ta / 15 Ru / 5 Ta / 5 Ru / 17 PtMn / 2.0 CoFe<sub>30</sub> / 0.85 Ru / 2.6 CoFe<sub>40</sub>B<sub>20</sub> / MgO 4x123 3kW 600sccm /  $3.0 \text{ CoFe}_{40}B_{20}$  / 0.21 Ta / 8 NiFe / t<sub>Mnlr</sub> / 2 Ru / 5 Ta / 10 Ru



The annealing temperature used to produce the linear response must be optimized for each stack : notice that Hf, Hc and Hk change with the temperature even after obtaining linear response.

#### The basic TMR device: process 5) CIPT transfer curve characterization



#### CIPT Transfer Curve for a specific probe spacing

9.7









4 TMR 10x10 µm<sup>2</sup> Surface defects



Buried defects

#### The TMR device-process 7) MTJ ion milling , w/wo SIMS end point detection



Early Etching Stage : Large incident angle reduces shadow effects, but results in heavy redeposition

Cu

At the level of the barrier: Shallow incident angle

increases the etching in the sidewalls of the pillar, reducing the amount of redeposited material

#### Final oxidation step:

Any material deposited in the sidewalls of the junction is oxidized, becoming an insulator.





Multiproject Wafer Service (200mm and 150mm, INL and INESC MN)



MTJ stacks deposited on Si/SiO<sub>2</sub> blank wafers and patterned with minimum feature sizes of 1 $\mu$ mm

Process extension to 100 nm features available TMR sensor: output, noise, detectivity

noise power S<sup>2</sup><sub>v</sub>(f) = 2 e I R<sup>2</sup> coth 
$$\left(\frac{eV}{2K_BT}\right) + \alpha \frac{V^2}{A} \frac{1}{f}$$
 (V<sup>2</sup>/Hz)

sensor output 
$$\Delta V = \left(\frac{\Delta R}{R}\right) \left(1 - \left(\frac{V_b}{V_c}\right)^n\right) V_b < H > /(2 H_k^{eff})$$
 (V)

**Defining** 
$$\mathbf{x} = \Delta \mathbf{V} / \langle \mathbf{H} \rangle$$
 (V/T)

#### Then minimum field detectable is

$$D^{2}=S^{2}/y^{2} = (1/y^{2}) \left[(2eR/V) \ coth \ (eV/2K_{B}T) + \alpha \frac{1}{Af}\right]$$
(T<sup>2</sup>/Hz)

#### For a series of N sensors

$$D^{2}=S^{2}/\gamma^{2} = (1/\gamma^{2}) \left[ (2eR/V_{tot}) \ coth \ (eV/2NK_{B}T) + \alpha \frac{1}{A N f} \right]$$
  
For  $V_{tot}/N \iff K_{B}T$ ,  $D^{2}=S^{2}/\gamma^{2} = (1/\gamma^{2}) (4NRK_{B}T/V_{tot}^{2} + \alpha \frac{1}{A N f})$ (T<sup>2</sup>/Hz)
Full Wheatstone Bridge Magnetic sensor requirements









# Bridge output is immune to thermal drifts

Intermag 2012 : GG-07

Vancouver May 11<sup>th</sup>, 2012

Slide 2/11

## Final Device Geometry Full Whetstone Bridge Incorporating MTJs connected in Series





# Current in plane Transfer Curves MTJ Stack I vs. MTJ Stack II after annealing







Slide 11/11

# NDT Testing with TMR sensors



Aluminum Mock-up with a width of 100  $\mu$ m and a depth ranging of 0.2, 0.5 and 1 mm

#### In collaboration with INESC ID

**FP7-IMAGIC** 



 $TJ933 - \frac{Si}{Al_2O_3} (100nm) / [5 Ta / 25 CuN]x6 / 5 Ta / 5 Ru / 20 IrMn / 2 CoFe_{30} / 0.85 Ru / 2.6 CoFe_{40}B_{20} / MgO 2x41 / 2 CoFe_{40}B_{20} / 0.21 Ta / 4 NiFe / 0.20 Ru / 6 IrMn / 2 Ru / 5 Ta / 10 Ru$ 

200mm wafer processed at INL



(Ta/Cu) x n Buffer minimizes Interconnect resistance contribution

# **Previous results – Buried defects**



INESC-MN

#### Internal TMR probe tests at INESC MN





# **Friction Stir Welding detection**



INESC-MN



# Scanning probes current imaging in Ics









820µm

**INESC MN-NEOCERA** 

SPIN, 2011

# TMR sensor linearization strategies2: thin CoFeB ( out of plane)



#### glass/Ta 5/Ru 18 /Ta 3/PtMn 18/CoFe 2.2/ Ru 0.9/ CoFeB3/MgO1.35/CoFeB 1.55 / Ru 5/Ta 5

P. Wiśniowski et al, JAP 103,07A910 (2008)

P. Wiśniowski et al, IEEE Trans. Mag.,44(11), 2551-2553 (2008)

|                              | Thick Free layer |
|------------------------------|------------------|
| TMR @ 20°C                   | 76%              |
| Sensitivity @ 0 Oe &<br>20°C | 250 V/V/Tesla    |
| Linear range @20°C           | [-5 Oe; 5 Oe]    |
| Voltage Noise @ 10           | 700 nV/vHz       |
| kHz & 20°C                   | (for single TMR) |
| Voltage Noise @ 10           | 70 nV/vHz        |
| MHz & 20°C                   | (for single TMR) |
| Field Noise @ 10             | 6 nT/√Hz         |
| kHz & 20°C                   | (for single TMR) |
| Field Noise @ 10             | 0.6 nT/√Hz       |
| MHz & 20°C                   | (for single TMR) |

Slide 5

# Reaching pT detectivity with MR sensors Magneto Cardiography



#### Magneto-CardioGraphy :

Amplitude: 10<sup>-11</sup> - 10<sup>-10</sup> T Frequency: 0,1 – 1kHz Temporal resolution: 1ms

Contactless (no electrodes) and non invasive technique Cartography of circulating currents Additional information to Electro-Cardiography







#### Lisbon, January 12-13th, 2012

With permission from M.Pannetier, C.Fermon

19



Lisbon, January 12-13th, 2012

#### With permission from M.Pannetier, C.Fermon

21

#### Hybrid MTJ+flux guide structures: towards pT detection at RT and low freq.



Goal: increase volume of free layer-reduce magnetic 1/f noise increase junction area-decrease barrier 1/f noise increase sensitivity: flux guides + MgO MTJ

#### **Biomagsens Mid Term Review**

#### **INESC-MN**



**Biomagsens Mid Term Review** 

### **INESC-MN**

## INL approach to picoTesla field detection

Large Arrays of linear MTJs integrating large area MTJs





# **INESC-MN's static, multiplexed MR biochip**



Tech review, Lab On Chip 2012

#### 1-d) Spotting biological targets on the biosensing platform



1 μM Oligo solution, Cy5 labeled 200 pL droplets

Disposable biochip

#### **Snip2Chip Lisbon meeting**

#### **INESC-MN**

# Blood finger-prick

Plasma injected in the detection chip

Sample preparation step separation of plasma from blood cells

Protein/DNA Biochip

#### Cell free DNA detection in blood As cancer biomarker



## Measurement of the chip





## Also used for protein and immuno assays



The signal obtained...



Elisabete Fernandes, PhD Student Contact E-mail: elisabete.fernandes@deb.uminho.pt

# Detecting labelled cells in flow







Synaptic current monitoring with high Spatial resolution ( with A.Sebastiao, IMM, V.Santos, ICVS)









#### **INESC MN and IMM**

#### Rat hippocampus

MAGNETRODES, FP7 (2013-2016)

#### Si Needles with MR sensors or planar electrode array of MR sensors



FP7 MAGNETRODES (2013-2015) Probe desigb for in-vivo applications





# Silicon probes







# Flexible Probes (polyimide)



#### Results – MTJ response





**INESC MN** 

#### Applications



## **Process for STT Nano-oscilators: Simulations**

**INESC MN** 

#### **Micromagnetic Simulations**

Dot = 50 nm



Accurately choose the properties/dimensions of nanostructures to fabricate in accordance with the envisaged application

# NESC MN



## INL



Obrigado!

# MR DEVICE MICROFABRICATION PROCES Current-perpendicular-to-plane (CPP) device fabrication



# Microfabrication process





The complete stack is ~1800Å thick





#### 3) Ion Beam Milling





Stop point is signaled by the transparency of the substrate

# **Optical lithography - DWL**



#### 4) Resist Strip



Microstrip 2001 (Fuji) is used to remove the remaining photo-resist



~2 hours in a hot bath (65° C) + Ultrasounds

# 750μm x 50μm

At this point, the shape of what will become the bottom contact lead is defined.
## 5) 2<sup>nd</sup>. Lithography : Junction Pillar Definition



Minimum Junction Area :  $1x1 \ \mu m^2$ 



Stop point must be after the barrier and before the substrate. Calibration samples are used to monitor the etching stop point.



### 6) Junction Pillar Etching



### Early Etching Stage :

Large incident angle reduces shadow effects, but results in heavy redeposition

#### At the level of the barrier:

Shallow incident angle increases the etching in the sidewalls of the pillar, reducing the amount of redeposited material

#### Final oxidation step:

Any material deposited in the sidewalls of the junction is oxidized, becoming an insulator.

## **Critical Step #1 : Ion Milling of a NanoPillar**

## **Etch Stop Point Detection**







visually in an optical microscope.

**10)** Top Lead Definition : Metal deposition + Lift-off

## Al (3000Å) + TiWN<sub>2</sub> (150Å)







# Up to 70,000 sensor devices in a 200mm diameter wafer

