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» Study N = 1 theories hologrphically. Localization has not been successful
for these theories.
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For N'= 1" hard to calculate the partition function in the field theory

> The goal is to calculate Fgﬁ:? and Fg\i:ﬁ holographically.

> Precision test of holography! In AdSs/CFT4 one typically compares
numbers. Here we have a whole function to match.

> Previous results for holography for N' = 1* and N = 2* on R*. [rcpw],
[GPPZ], [Pilch-Warner], [Buchel-Peet-Polchinski], [Evans-Johnson-Petrini], [Polchinski-Strassler], ... On
5% the holographic construction is more involved.



Plan

v

N =1* SYM theory on S*
» The gravity dual of N' = 2* on §*

Holographic calculation of FQZ:Z*

v

v

Holography for N' = 1* SYM theory on S*

v

Outlook



N = 1* SYM theory on S*



N = 1* SYM on R*

The field content of N =4 SYM is

A, X1,2,3,4,5,6 A1,2,3,4 -



N = 1* SYM on R*

The field content of N =4 SYM is

A, X1,2,3,4,5,6 A1,2,3,4 -

Organize this into an N = 1 vector multiplet

Ay, Y1 = M,

and 3 chiral multiplets

1 } .
Xi=Xi,  Zi=—= (X +iXs), =123

V2



N = 1* SYM on R*

The field content of N =4 SYM is

A, X1,2,3,4,5,6 A1,2,3,4 -

Organize this into an N = 1 vector multiplet

Ay, Y1 = A,
and 3 chiral multiplets
1 ) .
Xi =i Zy = —=(X; + iXj43), j=123.

V2
Only SU(3) x U(1)g of the SO(6) R-symmetry is manifest.



N = 1* SYM on R*

The field content of N =4 SYM is

A, X1,2,3,4,5,6 » A1,2,3,4 -
Organize this into an N = 1 vector multiplet

Ay, Y1 = A,
and 3 chiral multiplets

1 } .
Xi=Xi,  Zi=—= (X +iXs), =123

V2
Only SU(3) x U(1)g of the SO(6) R-symmetry is manifest.

The N = 1" theory is obtained by giving (independent) mass terms for the
chiral multiplets.
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When there is a will there is a way! [Pestun], [Festuccia-Seiberg], ...

4 4
ﬁﬁf:l* = ﬁﬁ/:z;
) N - .
+ ﬁtr(Z1Z1 + Z2Zs + ZSZS)
+ tr (ml i1 2y 2y + moing ZaZa + m3ﬁ13Z3Z~3)
1 L o L
~3 tr (mixix1 + maxeXz + maxsxs + miX1X1 + MmaXa2Xe + M3X3X3)

1 L s

— ﬁ tr [m,;e”kZiZjZk + ﬁb,f”kziZjZk]

+ % tr (m1 Z12 + m2Z22 + ngg + 212 + T~IL2Z~22 + r?L;;Zg2> .
15 (real) relevant couplings in the Lagrangian 4+ 1 complex gaugino vev + 1
complexified gauge coupling. A 19 (real) parameter family of N' =1
deformations of A/ = 4 SYM. Only 18 of these parameters are visible as modes
in 1IB supergravity.

For mz = 3 =0, m1 = ma = m and 7y = Mo = M we get the N/ = 2*
theory.



Results from localization for N/ = 2*

The SU(N) gauge symmetry is generally broken to U(1)"! by a vev for Zs.
Z3 = diag(al, ey CLN) .

After supersymmetric localization the path integral for the theory on S*
reduces to a finite dimensional integral over the Coulomb moduli a;. [Pestun]

/HdaZ (Z l) H(az‘ - aj)QZl—looplzin5t|2€7Sd ,

i=1 i<j

where

5. N
N S a? I l H?(ai — )
i Z oop — . ,
p— “ oo H(ai — aj + mR)H(a; — aj — mR)

oo x2 n 712/n
H(z) = H 1+ ) e .
n=1

The function Zine: is Nekrasov's partition function with parameters
E1 = &2 = 1/R



Results from localization for N/ = 2*

Russo and Zarembo solved (numerically) this matrix model at large N. They
found an infinite number of (quantum) phase transitions as a function of A.



Results from localization for N/ = 2*

Russo and Zarembo solved (numerically) this matrix model at large N. They
found an infinite number of (quantum) phase transitions as a function of A.

One caveat. They assume that Zine = 1 for large N. This is important and will
be checked holographically.



Results from localization for N/ = 2*

Russo and Zarembo solved (numerically) this matrix model at large N. They
found an infinite number of (quantum) phase transitions as a function of A.

One caveat. They assume that Zine = 1 for large N. This is important and will
be checked holographically.
The result for N, > 1 is

_ o 2) 10 ML (mR)?) > 3
FS4——logZ——7(1+(mR) ) log T6m2 .




Results from localization for N/ = 2*

Russo and Zarembo solved (numerically) this matrix model at large N. They
found an infinite number of (quantum) phase transitions as a function of A.

One caveat. They assume that Zine = 1 for large N. This is important and will
be checked holographically.

The result for N, > 1 is

N? o A1+ (mR)?) etz
FS4:—logZ:—7(1+(mR) ) log T6m2 .
This answer depends on the regularization scheme. The scheme independent
quantity is
d*Fga on? mR((mR)? + 3)
d(mR)3 ((mR)? +1)?

This is the unambiguous result one can aim to compute holographically.
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In Euclidean signature the fields z and Z are independent.

For x = 0 recover the truncation for A’ = 2* on R*. [Pilch-Warner]
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Supergravity setup

The Euclidean Lagrangian is

=L ry 2%y
=g |TRH1T

5 8 52
vz_4<nl4+2nzl+zz+7il(z z~) )

1— 22

SU(1,1)

This is a non-linear sigma model with target R x H? ~ O(1,1) x 70

To preserve the isometries of S* take the “domain-wall” Ansatz
ds®> = L2 dsZy + dr?
=n(r), z=2z(r), zZ=2%r).
The masses of the scalars around the AdSs vacuum are

2P = -4, myL* = 3.

mi L? = my
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Plug the Ansatz in the supersymmetry variations of the 5d A/ = 8 theory and
use the “conformal Killing spinors” on §*

A 1
VHC = 575'7#4 )
to derive the BPS equations

.30 (25— 1) [2(2 4 2) + (2 — 2)]
M (Z - D+ 2 +1]

. 30(25 - 1) [2(242) — (2 — 2)]

o= 28 (22 — 1)+ 22 + 1]
ne_ [17 (771)+7 +1} n(’(izfl)jL%ZJrl]
()= 9L2n?(zz — 1)
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Solving the BPS equations iteratively, order by order in the asymptotic
expansion as r — oo, we find (with L = 1)

2r
24 _ € 1.9
e = 4+6( H+...,
o | 204
n=ldte gr[gr+W}+._.7

(z+2):e_2r[2/1,r—|—v} +.o,

N~ N~

(z—2)=pe "+e [g,u,(,uQ - 3) r+ %(21}(#2 —3) + 4y’ — 3))} +....

Here v and v are integration constants. Think of them as the “source” and
“vev" for the operator O,. Compare to field theory to identify ;1 = imR.
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IR expansion

At 7 = 1. the S* shrinks smoothly to zero size. Solve the BPS equations close
to r = r., and require that the solution is smooth to find

Tno'? 420 (
817](]4

12 12
o - —1 2 854 13119 2
=0 — ([ 2 ) (r— )21 — (222270 ) ()
n=10 ( T ) (r—mr) { ( 810700 (r—mr)"+
1 o fm® =1 ne® 2110° (410° + 5) 2
2 (z+2) = 708 +1 lT/oG +2 15(n0® + 2)? (r=r)"
1 N\ 'r/06 -1
E(Z_Z)*1/7706+1

Here, 1o is the only free parameter since one can set 7. = 0 by the shift
symmetry of the equations.

= (r—r)’+ —r) 4,

2

2 2(3ne'? — 10m0% — 20
10“ (310 10 )(T .

708 + 2 15(106 + 2)2 - )




Numerical solutions

One can find numerical solutions by “shooting” from the IR to the UV. There
is a one (complex) parameter family parametrized by 7, so

v=u(no), and  p=p(mp).

(z+2)/2 (z=2)/2

04

n gZA/eb

025

010

005




Numerical solutions

+ pli

For real 7o one finds the following results for v()

no>1
v
i'i -10
05 K
/ -0 \\
\\\\

02
08

From the numerical results one can extract the following dependence

‘ v(p) = —2p — p log(1 — 1) ‘




Holographic calculation of ng\ﬁ:?



Calculating F from supergravity

» By the holographic dictionary the partition function of the field theory is
mapped to the on-shell action of the supergravity dual. [Maldacena], [GKP],
[Witten]



Calculating F from supergravity

» By the holographic dictionary the partition function of the field theory is
mapped to the on-shell action of the supergravity dual. [Maldacena], [GKP],
[Witten]

» The on-shell action diverges and one has to regulate it using holographic
renormalization. [Skenderis], ...



Calculating F from supergravity

» By the holographic dictionary the partition function of the field theory is
mapped to the on-shell action of the supergravity dual. [Maldacena], [GKP],
[Witten]

» The on-shell action diverges and one has to regulate it using holographic
renormalization. [Skenderis], ...

» There is a subtlety here. If we insist on using a supersymmetric
regularization scheme there is a particular finite counterterm that has to

be added. Only with it one can successfully compare ‘;375 with the field

theory result.



Calculating F from supergravity

» By the holographic dictionary the partition function of the field theory is
mapped to the on-shell action of the supergravity dual. [Maldacena], [GKP],
[Witten]

» The on-shell action diverges and one has to regulate it using holographic
renormalization. [Skenderis], ...

» There is a subtlety here. If we insist on using a supersymmetric
regularization scheme there is a particular finite counterterm that has to
be added. Only with it one can successfully compare ‘ng with the field
theory result.

.. 5
> Without knowing this finite counterterm we can only hope to match %
with field theory.
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Calculating F from supergravity

The full renormalized 5d action is
Sren - SSD + Sct + Sfinite .
Differentiate the renormalized action w.r.t. u to find

dFSUGRA N2 4 9 1
i = ﬁvol(s )(4u — 121}(;1)) =N <§p — v(u)) .

Finally we arrive at the supergravity result
3 FPSUGRA

2
dﬂg :—N2U”(M)I—QN2 ,LL(?) M )

(1 —p?)?
Set 1 = imR and compare this to field theory

d*Fgs __ >mR((mR)*+3)
d(mR)3 2N ((mR)2 +1)2

Lo and behold

d3FS4 d3 FSUGRA
d(mR)® —  dpd

. 5 SUGRA . .
Without the finite counterterm we can only match 4 fizﬁ with field theory.
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The dual of the 18-parameter family of deformations of A" =4 SYM is
captured by a 5d A/ = 2 gauged supergravity with a scalar coset

S0(4,4)
1,1 1,1 _—
O, 1) x 0L ) X 550550
This model is a consistent truncation of |IB supergravity.

There are special cases which allow for a very explicit analysis.

> m; = m; and m1 = mg = mas - in flat space this is the GPPZ/PS flow.
[Girardello-Petrini-Porrati-Zaffaroni], [Polchinski-Strassler]. It has 50(3) global symmetry.
On S* we need 4 supergravity scalars.

> mq = 1y and mg = mg = 0 - in flat space this is the Leigh-Strassler flow.
[Freedman-Gubser-Pilch-Warner] On' S we need 3 supergravity scalars.
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= 1*
The dual of the 18-parameter family of deformations of A" =4 SYM is
captured by a 5d A/ = 2 gauged supergravity with a scalar coset

50(4,4)

0(1,1) x O(1,1) x 5004 x S0(0)

This model is a consistent truncation of |IB supergravity.

There are special cases which allow for a very explicit analysis.

> m; = m; and m1 = mg = mas - in flat space this is the GPPZ/PS flow.
[Girardello-Petrini-Porrati-Zaffaroni], [Polchinski-Strassler]. It has 50(3) global symmetry.
On S* we need 4 supergravity scalars.

> mq = 1y and mg = mg = 0 - in flat space this is the Leigh-Strassler flow.
[Freedman-Gubser-Pilch-Warner] On' S we need 3 supergravity scalars.

For both examples we found explicit supergravity truncations and (numerical)
BPS solutions on S*.

The hard part is to extract the third derivative of the free energy from the
numerical solutions.

No results from localization to guide us.



LS on S*

From holographic renormalization one again finds
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LS on S*

From holographic renormalization one again finds
d3FSUGRA
du?
On the whole complex p-plane v” (1) vanishes linearly around g = 0. It is an
odd function of p and falls off for |u| > 1 as
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There is a pole at ¢ = %1 with



Summary

> We found a 5d supegravity dual of N' = 2* SYM on §%.

> After careful holographic renormalization we computed the universal part
of the free energy of this theory.

» The result is in exact agreement with the supersymmetric localization
calculation in field theory.

> This is a precision test of holography in a non-conformal Euclidean
setting.
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» The results extend immediately to A/ = 2* mass deformations of quiver
gauge theories obtained by Zj orbifolds of N' =4 SYM.

[Azeyanagi-Hanada-Honda-Matsuo-Shiba]



Outlook

> Uplift of the A/ = 2” solution to |IB supergravity. Will allow for a
holographic calculation of Wilson or 't Hooft line vevs. In addition one
can study probe D3-branes. [Chen-Lin-Zarembo]

» Holography for N' = 1% on other 4-manifolds. [Cassani-Martell]

> Extensions to other A = 2 theories in 4d with holographic duals, e.g.
pure N =2 SYM? [Gauntlett-Kim-Martelli-Waldram]

» Extensions to other dimensions.
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Extensions to other dimensions.

» Can we see some of the large N phase transitions argued to exist by
Russo-Zarembo in IIB string theory?

> Revisit supersymmetric localization for A" = 1 theories on S*. Can one
find the exact partition function (modulo ambiguities)?

[Gerchkovitz-Gomis-Komargodski]

» For 4d N = 2 conformal theories Zga gives the Zamolodchikov metric.
What is the “meaning” of Zg4 for non-conformal theories?

> Broader lessons for holography from localization?



GRACIAS!



Comments

For a CFT on S* of radius R with cutoff e — 0
4 2
FS4 = Q4 (?) + a9 (g) + @0 — Ganom log (g) + O(E/R) .

For supersymmetric theories with a supersymmetric regularization scheme
g4 = 0.

For massive theories there is an extra scale, m, so az = az(me) and
ao = ag(me). Expand this for small me

g = Qg + m262ﬁ2 + (’)(m4e4) s
Qg = 5[0 + O(mzez) .

The nonuniversal contribution to the free energy is
_ (R\?*, .
Qi (?) —+ ao + ﬂg(mR)Q .

Thus 3 derivatives w.r.t. mR eliminate the ambiguity.

For nonsupersymmetric theories the 5th derivative of Fga w.r.t. mR is
universal.
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