
Non-perturbative modeling of neutron stars

C. Adam
University of Santiago de Compostela

XLIII International Meeting on Fundamental Physics, Benasque

based on work in collaboration with

C. Naya, J. Sanchez-Guillen, J.M. Speight, R. Vazquez, A. Wereszczynski

March 14, 2015



General idea:

Use a solitonic model of nuclear matter (the "BPS Skyrme
model") to

model properties of (nuclei and) neutron stars (NS)
study the difference in NS properties between mean field
(MF) theory and full field theory calculations
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Neutron Stars

Neutron Star Structure from Nucl. Phys.
Dany Page, http://www.astroscu.unam.mx/neutrones/NS-Picture/NStar/



Neutron Stars: theoretical description

Self-gravitating nuclear (etc.) matter⇒ Einstein equations
Tolman-Oppenheimer-Volkoff (TOV) approach
Perfect fluid em-tensor

T ρσ = (p + ρ)uρuσ − pgρσ

Spherically sym. metric

ds2 = A(r)dt2 − B(r)dr 2 − r 2(dθ2 + sin2 θdφ2)

into Einstein eqs. Gρσ = κ2

2 Tρσ ⇒ TOV equations

TOV1 : M ′ = 4πr 2ρ, B(r) ≡
(

1− κ2

8π
M(r)

r
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TOV2 : rp′ = (ρ+ p)
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To close system: equation of state (EoS) ρ = ρ(p)
Then: integrate TOV & ρ(p) from r = 0, ρ(r = 0) ≡ ρ0 to
r = R where p(R) = 0; M = M(R)→ Fig.

EoS: from some model of nuclear matter
Problem: normally neither perfect fluid nor algebraic EoS
⇒ approximation . . . mean field (MF) theory
Example: Walecka model (QHD): EFT of nucleons Ψn,
mesons (nucl. forces) σ, ωµ etc.
MF: σ, ωµ → const.; thermal PI over Ψn

⇒ partition function Z (V ,T , c.c)⇒ EoS (T → 0)
How "good" is MF theory? . . . difficult. How to go beyond?
Worse with gravity? (metric couples to derivatives)



M vs. R from various Nucl. Phys. EoS
J. M. Lattimer, Ann. Rev. Nucl. Part. Sci. 62 (2012) 485
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Figure 3: Typical M − R curves for hadronic (black curves) and SQM (green

curves) equations of state (EOSs). The EOS names are identified in Refer-

ence (13) and their P − n relations are displayed in Figure 2. Regions of the

M −R plane excluded by general relativity, finite pressure, and causality are in-

dicated. Orange curves show contours of R∞ = R(1−2GM/Rc2)−1/2. The region

marked “rotation” is bounded by the realistic mass-shedding limit for the highest

known pulsar frequency, 716 Hz, for PSR J1748-2446J (14). Figure adapted from

Reference (15).



Skyrme models

Degrees of freedom of QCD:
high energy: quarks and gluons
low energy: hadrons

⇒ low energy effective field theory (EFT) of hadrons
(currently unknown)
Supported by large Nc : QCD = EFT of mesons
One proposal: Skyrme model

primary fields: mesons
baryons and nuclei realized as top. solitons ("vortices" in
"meson fluid")
simplest case (two flavors): target space = SU(2) (isospin)
matrix U (three pions)
topological charge = baryon number B



Original Skyrme model

L = L2 + L4︸ ︷︷ ︸+L0 , L0 = −λ0U(TrU) . . . potential

Lskyrme e.g. Uπ = 1
2 Tr(1− U) vac

L2 = −λ2 Tr (LµLµ), L4 = λ4 Tr ([Lµ, Lν ]2), Lµ = U†∂µU

Description of nuclei:
Some successes: (iso-) spin excitational spectra
Main problems:

- too large binding energies: ∃ topological energy bound
E ≥ cB, but not saturated (non-BPS theory)
⇒ generalize to (near) BPS theory
- Large B: crystals (not liquid)



Generalizations
Poincare invariance & standard Hamiltonian (quadratic in
time derivatives): quite restrictive

L = L2 + L4 + L0 + L6

L6 = −(24π2)2λ6BµBµ, Bµ =
1

24π2 Tr (εµνρσLνLρLσ)

Bµ . . . baryon current with baryon number B =
∫

d3xB0

∃ BPS? YES: L0 + L6



BPS Skyrme model
Energy functional

E06 =

∫
d3x(µ2U + λ2π4B2

0) ≡
∫

d3xE06

BPS bound and equation

E06 ≥ 2π2λµ|B|〈
√
U〉, B0 = ± µ

π2λ

√
U

BPS solutions ∀B comp

static energy: ∞ many base space sym. (SDiff(R3))
⇒ solutions with arbitrary shapes, same vol
e-m-tensor of a perfect fluid. Static case:

T 00 = ρ, ρ = λ2π4B2
0 + µ2U ,

T ij = pδij , p = λ2π4B2
0 − µ2U



Thermodynamics and MF
∂µTµν = δij∂ip = 0 ⇒ p ≡ λ2π4B2

0 − µ2U = P = const.

B0 = ± µ

π2λ

√
U + P/µ , ρ| = 2µ2U|+ P

Energy (∀ solutions)

E(P) = BE1(P) = Bπ2λµ

〈
2U + P/µ√
U + P/µ

〉

Volume (EoS)

V (P) = BV1(P) = Bπ2 λ

µ

〈
1√

U + P/µ

〉

Standard thermodyn. relation

P = −∂E
∂V



ρ| = ρ(x ,P) NOT (algebraic) EoS (except for
UΘ = Θ(Tr(1− U)))
MF: average (constant) density

ρ̄ = ρ̄(P) =
E(P)

V (P)

MF-EoS ρ̄(P):
large P: ρ̄ ∼ P + ρ̄∞ (maximally stiff)
small P: ρ̄ ∼ ρ̄0 + f (P) where f (P) ∼ P

1
2 , ∼ P ln P (soft)

average baryon density

n̄b(P) =
B

V (P)

ρ̄ to be used in MF TOV calculations
Limiting case UΘ: ρ| = ρ̄(P) = const. ⇒ MF = exact



BPS Skyrme model and nuclear matter
perfect fluid e-m tensor & SDiff . . . field theory realization of
liquid droplet model of nuclear matter
(classical) BPS skyrmions: zero binding energies; small
corrections (e.g. Semiclass. quantization & Coulomb
energies: good description of nuclei)
∀B: finite V (finite ρ) solutions with P = 0 (BPS sol.) . . .
nuclear saturation
Macroscopic (thermodyn) properties encoded in microscopic
(field theory) properties: no thermodyn limit needed
Further improvement: Near BPS Skyrme model

L = ε(L2 + L4 + L̃0) + L0 + L6︸ ︷︷ ︸
LBPS

complicated numerics



BPS Skyrmions as neutron stars
Mean field theory

EoS ρ̄(p) & TOV1 & TOV2

Exact: BPS Skyrme model coupled to gravity
Matter action

S06 =

∫
d4x |g| 12

(
−λ2π4|g|−1gρσBρBσ − µ2U

)
Energy-momentum tensor (perfect fluid)

T ρσ = −2|g|− 1
2

δ

δgρσ
S06 = (p + ρ)uρuσ − pgρσ

4-velocity
uρ = Bρ/

√
gσπBσBπ

energy density and pressure

ρ = λ2π4|g|−1gρσBρBσ + µ2U
p = λ2π4|g|−1gρσBρBσ − µ2U



In general ρ(x), p(x) . . . p 6= p(ρ) . . . NO universal EoS.
Axially sym. ansatz for baryon number B Skyrme field
U(x) = eiξ(x)~n(x)·~τ (h ≡ (1/2)(1− cos ξ))

h = h(r), ~n = (sin θ cos Bφ, sin θ sin Bφ, cos θ)

⇒ ρ(r), p(r), B0(r) & radially symmetric metric
Compatible with Einstein eq. Gρσ = κ2

2 Tρσ
⇒ TOV1 & TOV2 where now

ρ
p =

4B2λ2

Br 4 h(1− h)h′2 ± µ2U(h)

are NOT independent
Two eq. for B and h . . . no need for EoS
Now: fit λ, µ to infinite nuclear matter:
E/B = En − Eb = (939.6− 16.3) MeV = 923.3 MeV
saturation density B/V = n0 = 0.153 fm−3



Integrate: "shooting from center" from r = 0 to r = R
r = 0: h(0) = 1 (anti-vac), B(0) = 1 (no enclosed matter),
one free constant ρ(0)
r = R: h(R) = 0 (vacuum) and p′(R) ≡ 0 (one condition)
⇒ different solutions . . . different B
Solutions exist up to maximum value of B or n = B/B�

Potentials: U = Θ(h), Uπ = 2h and U2
π = 4h2

Compare exact and MF results⇒ Figs.
E.g., Mmax,MF ≥ Mmax,exact

Big differences for local quantities (ρ(r),B(r), . . .)
Compare results and observations
E.g., Mmax ∼ 2M� established, indications for Mmax ∼ 2.5M�;
10 km < Rmax < 20 km



Neutron star mass vs. neutron star radius
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EoS
typically ∂M/∂R > 0 . . . stiff EoS

On-shell EoS: solution ρ(r),p(r) ⇒ ρ(p)

MF: on-shell EoS ≡ MF-EoS
exact: NO (algebraic) off-shell EoS
On-shell EoS NOT universal (solution-dependent):

numerically p(ρ) = a(B)ρb(B)

EoS of polytrope but a = a(B), b = b(B)
Concretely, stiffer for larger B (larger M, i.e., stronger gravity)



On-shell EoS
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ρ(r) and ρ̄(r)
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B(r)
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Summary

Exact vs. MF
BPS Skyrme model allows to study this difference
Differences can be considerable (e.g., Mmax,MF ≥ Mmax,exact)
Big differences for local quantities
¿Big difference e.g. for mom. of inertia?
¿Necessary to go beyond MF also in other models of NS?
. . . Difficult



BPS Skyrmions as NS
BPS Skyrme model produces very good results also for
neutron stars (e.g., Mmax and Rmax)
Rather stiff (effective) EoS⇒ M(R) is monotonously
growing function
Different from most Nucl. Phys. descriptions with fixed EoS
But completely compatible with (not very precise)
observational data
dM/dR > 0 one observational "smoking gun"
Precise quantitative predictions still premature:
¿which potential? ¿precision of fit values?
¿more terms from full near-BPS Skyrme model?



Backup



Gravitational (and binding) mass loss
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T. Klähn et al, Phys. Rev. C74 (2006) 035802.

9

radius to

M < 2.2 M⊙(1000 Hz/νmax)(1 + 0.75j)

R < 19.5 km(1000 Hz/νmax)(1 + 0.2j) .
(17)

Here j ≡ cJ/GM2 (where J is the stellar angular mo-
mentum) is the dimensionless spin parameter, which is
typically 0.1-0.2 for these systems. There is also a limit
on the radius for any given mass.
These limits imply that for any given source, the ob-

served νmax means that the mass and radius must fall
inside an allowed “wedge”. Therefore, any allowed EoS
must have some portion of its corresponding mass-radius
curve fall inside this wedge. The wedge becomes smaller
for higher νmax, therefore the highest frequency ever ob-
served (1330 Hz, for 4U 0614+091; see [68]) places the
strongest of such constraints on the EoS. Note, though,
that another NS could in principle have a greater mass
and thus be outside this wedge, but an EoS ruled out
by one star is ruled out for all, since all NS have the
same EoS. As can be seen from Fig. 5, the current con-
straints from this argument do not rule out any of the
EoS we consider. However, because higher frequencies
imply smaller wedges, future observation of a QPO with
a frequency ∼ 1500− 1600 Hz would rule out the stiffest
of our EoS. This would therefore be a complementary re-
striction to those posed by RX J1856.5-3754 (discussed
below) and the implied high masses for some specific NSs,
which both argue against the softest EoS.
If one has evidence for a particular source that a given

frequency is actually close to the orbital frequency at
the ISCO, then the mass is known (modulo slight uncer-
tainty about the spin parameter). This was first claimed
for 4U 1820–30 [69], but complexities in the source phe-
nomenology have made this controversial. More recently,
careful analysis of Rossi X-ray Timing Explorer data for
4U 1636–536 and other sources [11] has suggested that
sharp and reproducible changes in QPO properties are
related to the ISCO. If so, this implies that several NSs
in low-mass X-ray binaries have gravitational masses be-
tween 1.9M⊙ and possibly 2.1M⊙ [11]. In Fig. 5 we
display the estimated mass 2.0 ± 0.1M⊙ for 4U 1636–
536, which would eliminate NLρ and NLρδ as the softest
proposed EoS even in the weak interpretation, and allow
only DBHF, DD and D3C in the strong one, see Tab. IV.

5. Mass-Radius relation constraint from RX J1856

After the discovery of the nearby isolated NS RX
J1856.5-3754 (hereafter short: RX J1856) the analysis
of its thermal radiation using the apparent blackbody
spectrum with a temperature T∞ = 57 eV [70] yielded
a lower limit for the photospheric radius R∞ of this ob-
ject. The distance of RX J1856 was initially estimated
to be 60 pc. Since R∞ crucially depends on this quan-
tity a very small value of R∞ ≈ 8 km was derived which
could not have been explained even with RX J1856 be-
ing a self-bound strange quark star [70]. The true stellar

radius R is given by R∞ = R(1 − R/RS)
−1/2, with the

Schwarzschild radius RS = 2GM/R. New measurements
predict a distance of at least 117 pc, which results in
R∞ = 16.8 km and turns RX J1856 from the formerly
smallest known NS into the largest one [13]. The result-
ing lower bound in the mass radius plane is shown in
Fig. 5. There are three ways to interpret this result:

A) RX J1856 belongs to compact stars with typical
masses M ∼ 1.4M⊙ and would thus have to have
a radius exceeding 14 km (see Fig. 2). None of the
examined EsoS can meet this requirement.

B) RX J1856 has a typical radius of R ∼ 12 − 13
km, implying that the EoS has to be rather stiff
at high density in order to allow for configurations
with masses above ∼ 2 M⊙. In the present work
this condition would be fulfilled for DBHF, DD and
D3C. This M > 1.6 M⊙ explanation implies that
the object is very massive and it is not a typical
NS since most of NSs have M < 1.5 M⊙, as follows
from population synthesis models.

C) RX J1856 is an exotic object with a small mass
∼ 0.2 M⊙, which would be possible for all EsoS
considered here. No such object has been observed
yet, but some mechanisms for their formation and
properties have been discussed in the literature [71].
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FIG. 5: Mass-Radius constraints from thermal radiation of
the isolated NS RX J1856.5-3754 (grey hatched region) and
from QPOs in the LMXBs 4U 0614+09 (green hatched area)
and 4U 1636-536 (orange hatched region) which shall be re-
garded as separate conditions to the EsoS. For the mass of
4U 1636-536 a mass of 2.0 ± 0.1 M⊙ is obtained, so that the
weak QPO constraint would exclude the NLρ and NLρδ EsoS
whereas the strong one would leave only DBHF, DD and D3C.

It cannot be excluded, however, that the distance mea-
surement could be revised by a future analysis. If the



T. Klähn et al vs. BPS Skyrme model
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T. Klähn et al, Phys. Rev. C74 (2006) 035802.
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Observed Neutron Star Masses
J. M. Lattimer, Ann. Rev. Nucl. Part. Sci. 62 (2012) 485NUCLEAR EOS AND NEUTRON STAR MASSES 55

Figure 7: Measured neutron star masses with 1-σ errors. References in parenthe-

sis following source names are identified in Table 1.



M and R from Photospheric Radius Expansion (PRE) bursts
J. M. Lattimer, A. W. Steiner, Eur. Phys. J. A50 (2014) 40

12 Lattimer & Steiner: Neutron Star Constraints

Table 2. PRE X-ray bursters and estimated Eddington fluxes, angular areas and distances taken from the indicated references.
Values and uncertainties for α, γ and R∞ reflect assumptions about fc and X as discussed in the text.

PRE Source D FEdd,∞ A α γ R∞
kpc 10−8 erg cm−3s−1 km2kpc−2 km km

EXO 1745-248[39] 6.3± 0.6 6.25± 0.2 1.17± 0.13 0.188± 0.035 76.86± 17.33 14.57± 1.64
4U 1608-522[40] 5.8± 1.0 15.41± 0.65 3.246± 0.024 0.247± 0.058 90.22± 17.09 20.36± 3.68
4U 1820-30[41] 8.2± 0.7 5.39± 0.12 0.9198± 0.0186 0.235± 0.041 69.16± 13.62 15.82± 1.58
KS 1731-260[42] 8.0± 0.4 4.45± 0.12 0.884± 0.051 0.199± 0.032 82.79± 16.57 15.63± 1.18
SAX J1748.9-2021[43] 8.2± 0.6 4.03± 0.44 0.897± 0.096 0.177± 0.036 97.64± 23.08 15.74± 1.61

Table 3. PRE X-ray burster solutions resulting from Monte Carlo trials with parameters taken from their uncertainty intervals.
Only solutions with real values of R are accepted; the fraction of Monte Carlo acceptances is shown in the last column.

PRE Source α γ R∞ R M acceptance
km km km M� %

zph = z

EXO 1745-248 0.117± 0.006 109.0± 14.2 12.77± 1.62 9.11± 1.55 1.45± 0.28 4.87
4U 1608-522 0.115± 0.010 110.8± 16.4 12.73± 2.22 9.21± 1.74 1.41± 0.38 0.861
4U 1820-30 0.121± 0.004 103.4± 7.5 12.48± 0.96 8.81± 1.04 1.46± 0.19 0.0311
KS 1731-260 0.121± 0.004 124.5± 9.0 15.01± 1.03 10.58± 1.23 1.76± 0.21 1.01
SAX J1748.9-2021 0.116± 0.008 132.9± 17.4 15.27± 1.65 11.05± 1.86 1.69± 0.33 9.67

zph = 0

EXO 1745-248 0.158± 0.021 85.35± 15.55 13.25± 1.67 10.00± 1.45 1.42± 0.27 66.3
4U 1608-522 0.167± 0.020 103.5± 16.2 17.20± 3.08 12.41± 1.98 1.96± 0.49 20.7
4U 1820-30 0.173± 0.014 87.04± 10.39 15.03± 1.58 10.63± 1.25 1.77± 0.25 24.5
KS 1731-260 0.163± 0.018 92.29± 13.68 14.87± 1.21 11.01± 1.28 1.64± 0.22 59.2
SAX J1748.9-2021 0.154± 0.023 102.1± 20.7 15.26± 1.64 11.70± 1.61 1.58± 0.30 72.9

rapid gravitational settling timescales (of order seconds),
only the lightest element in accreted matter remains in
its atmosphere. Thus, these transient X-ray sources, also
known as QLMXBs, are believed to have low-magnetic
field H or He atmospheres. The emitted X-ray spectra, for
a given composition, will depend largely on R and Teff ,
and, to a lesser extent, on gravity g = GM(1 + z)/R2.

In contrast, the observed spectrum will depend on the
distance D and on the amount of interstellar absorption
between the source and the observer, usually parameter-
ized by NH , the column density of H. The absorption is
important, as it has an energy dependence of E−8/3 and
can significantly reduces the observed flux near the peak
and at lower energies. It is often difficult to determine dis-
tances to field sources, while distance determinations of
globular clusters are relatively accurate. For this reason,
attention has been focused on systems in globular clusters.

Fitting the observed spectrum in principle can pro-
vide estimates for R∞, Teff,∞, g and NH , but due to lack
of resolution and poor statistics, the deduced NH is of-
ten at odds with the amount of absorption deduced from
HI radio surveys. Although it is obvious that an under-
estimate of absorption will lead to an underestimate of
mass and radius, because decreasing the absorption has
a similar effect to decreasing the distance, it is possible
through analytic considerations to predict the magnitude

of the effect. For simplification, we first consider the case
of a blackbody emitter. The observed energy dependence
of the flux from an absorbed blackbody with an effective
temperature T obeys

F (E, T,NH) = αE3 e
−bNH21/E

8/3

eE/kT − 1
, (82)

where α is a constant and b ' 0.16 keV8/3 represents
the approximate effects of absorption [45]. NH21 is the
hydrogen column density in units of 1021 cm−2.

For a given T , the maximum flux occurs at E0 where
dF/dE = 0, or

E0 =
[
3 + (8/3)bNH21E

−8/3
0

] (
1− e−E0/kT

)
kT. (83)

Therefore E0 > 3kT in general, and the exponential term
is small. The observed flux, neglecting gravity and red-
shift, is (

R

D

)2 ∫ EU

EL

F (E, T,NH)dE, (84)

where EL ∼ 0.3 keV and EH ∼ 10 keV represent the low-
and high-energy cutoffs of the X-ray detector response. To
compare the effect of changing the amount of absorption
on the inferred radius, we assume that both the total ob-
served flux and the peak energy E0 are held fixed as NH is

z . . . redshift at R; zph . . . redshift at photosphere



BPS Skyrme model: limit of generalized Skyrme model

L06 = L6 + L0

∞ many symmetries,∞ many conservation laws

BPS (Bogomolny) bound

∞ many exact solutions saturating the BPS bound

Parametrization for U

U = eiξ~n·~σ = cos ξ + i sin ξ~n · ~σ ~n2 = 1

and stereographic projection

~n =
1

1 + |u|2
(
u + ū,−i(u − ū),1− |u|2

)

⇒ L06 = − λ2 sin4 ξ

(1 + |u|2)4 (εµνρσξνuρūσ)2 − µ2V (ξ)



Symmetries

∞ many target space diffeomorphisms
L6 is square of pullback of the volume form in target space
SU(2) ∼ S3,

dΩ = −2i
sin2 ξ

(1 + |u|2)2 dξdudū

⇒ has all volume-preserving diffeomorphisms (VPDs) on
target space S3 as symmetries.
L0 = −µ2V (ξ) respects some of them: the ones that act
nontrivially only on u, ū ⇒ area-preserving diffeos on target
space S2 spanned by u, but may depend on ξ as a
parameter:

ξ → ξ , u → ũ(u, ū, ξ) , (1 + |ũ|2)−2dξdũd ¯̃u = (1 + |u|2)−2dξudū

∞ many conservation laws . . . integrable



Poincare Symmetries

Energy functional for static fields: base space VPDs

E =

∫
d3x

(
λ2 sin4 ξ

(1 + |u|2)4 (εmnl iξmunūl )
2 + µ2V (ξ)

)

≡
∫

d3x
(λ2

4
(
M(ξa)εmnlξ1

mξ
2
nξ

3
l
)2

+ µ2V (ξ3)
)

ξ ≡ ξ3, u ≡ ξ1 + iξ2, M ≡ 2 sin2(ξ3)
(
1 + (ξ1)2 + (ξ2)2

)−2

Both d3x and εijk∂iξ∂ju∂k ū invariant under VPDs on base space
R3. NOT a Noether symmetry.

M target volume density: dΩ = Md3ξ



Bogomolny (BPS) bound

BPS bound B . . . top. charge (baryon number)

E =

∫
d3x

(
λ2

4
M2(εjklξ1

j ξ
2
k ξ

3
l )2 + µ2V (ξ)

)

=

∫
d3x

(
λ

2
Mεjklξ1

j ξ
2
k ξ

3
l ± µ

√
V
)2

∓
∫

d3xµλM
√

V εjklξ1
j ξ

2
k ξ

3
l

≥ ±(2λµπ2)

[
1

2π2

∫
d3xM

√
V εjklξ1

j ξ
2
k ξ

3
l

]

= 2λµπ2|B| 1
2π2

∫

S3
dΩ
√

V (ξ) ≡ 2λµπ2 <
√

V >S3 |B|

BPS eq.:
λ

2µ
Mεjklξ1

j ξ
2
k ξ

3
l = ∓

√
V
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Binding energy per atomic mass number A in MeV vs. A, for the most abundant nucleus for each A


