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Formulation of the problem

Let T >0, p1, 2 < 1/4 and define Q := (0,1) x (0, T)

ut—uxx—%u— (152X)2u:0 (x,t) € Q

1
u(0,t) = f(t), u(l,t)=0 &
u(x,0) = up(x)
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Formulation of the problem

Let T >0, p1, 2 < 1/4 and define Q := (0,1) x (0, T)

=0 (x,t)eQ

Theorem (Null-controllability)

For any time T > 0 and any initial datum ug € L?(0,1) there exists a
control function f € L2(0, T) such that the solution of (1) satisfies
u(x, T)=0.
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State of the art

SINGULAR POTENTIALS

® J. Vancostenoble and E. Zuazua - Null controllability for the heat equation with

singular inverse-square potentials (2008)

® S. Ervedoza - Control and stabilization properties for a singular heat equation

with an inverse-square potential (2008)

® C. Cazacu - Controllability of the heat equation with an inverse-square potential
localized on the boundary (2014)
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DEGENERATE COEFFICIENTS (u; — (a(x)uy)x = 0)

® P. Martinez and J. Vancostenoble - Carleman estimates for one-dimensional
degenerate heat equations (2006)
® P. Cannarsa, P. Martinez and J. Vancostenoble - Carleman estimates for a class

of degenerate parabolic operators (2008)

® M. Gueye - Exact boundary controllability of 1-d parabolic and hyperbolic
degenerate equations (2014)
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Proposition

Let u3, i3 € R be such that pi + 3 < 1/4. Then, for any z € H(0,1) it holds

L 1,2 1 2
> ui — > ——— dx.
/0 Zde_Ml/o e dx—i—pz/o e dx (2)

V. Felli and S. Terracini - Elliptic equations with multi-singular inverse-square
potentials and critical nonlinearity
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Proposition

There exists a constant M > 0 such that for any z € H3(0,1) it holds

1 1 1 (12 1/t 2
2 2 > = c it [ .
/ozxdx—i—/\/l/ozdx74/0 X2dx—|—4/0 (lfx)zdx 3)
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Proposition
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L 1,2 1 2
> ui — > ——— dx.
/0 Zde_Ml/O e dx—i—pz/o e dx (2)

V. Felli and S. Terracini - Elliptic equations with multi-singular inverse-square
potentials and critical nonlinearity

Proposition

There exists a constant M > 0 such that for any z € H3(0,1) it holds

1 1 1 (12 1/t 2
2 2 > = c it [ .
/ozxdx—i—/\/l/ozdx74/0 X2dx—|—4/0 (lfx)zdx 3)

Sketch of the proof.

We rewrite z = z1 + z> + z3 with z; := z¢;, i =1,2,3 and (¢i)i=1,2,3 a
partition of the unity such that

supp(¢1) = (1/2,1), supp(¢2) = (0,1/2), ¢3=1—¢1—¢2

and we apply Hardy inequality. O
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Proposition

For all v < 2 and n > 0 there exists a positive constant Co = Co(~y, n)
such that, for any z € H}(0,1) it holds

1 1 2 pl 2 1 2
2—~ (1-—7) / z / z
2 2 > [E—
CO/O zxdx—&—i2 /0 z°dx > 7 X2 dx+n . =) dx.
(4)
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Sketch of the proof.

Lo, vy—1 z z \°
OS/ (xzzx—w—i— ) dx.
0 2 xz 1l-x

We expand this expression, apply integration by parts and estimate using
Holder inequality, Cauchy-Schwarz inequality and Hardy-Poincaré

—~
N
~

inequalities. 0

P. Martinez and J. Vancostenoble - Carleman estimates for one-dimensional
degenerate heat equations (2006)

5/10



Hilbert Uniqueness Method

Adjoint system

vt—l—vxx—l—ﬂév—i— (152 )2v:0 (x,t) € Q

(5)
v(0,t) = v(1,t) =0
v(x, T) = vr(x)

Theorem (Observability inequality)

Let T > 0. For any vt € L?(0,1) the solution of (5) satisfies

1 T
/ v(x,0)? dx < C/ {Xz/\l vf} dt, (6)
0 0 x=0
with 1
A ::5(1—\/1—4;;1). (7)
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Carleman estimate

Theorem

There exists a constant Ry > 0 such that, for all R > Ry, every solution v of
(5) satisfies

R3C1/ 03 [xﬁ*l(l—x)s] 2,~2Ro dxdt+RC2/ 0—— 1 )2 2R gt
B —

2
+RGs / 0 5o e R dxdt + RCs / - x)] vZe 2R dxdt
Q X

Q
< RCs/Té’ |:X2>\1 vf}
0
(8)

where C;, i = 1,...,5 are positive constants and, for @, 3 > 0, the weight
function o is defined as o(x, t) := 0(t)p(x) with

dt,

x=0

1 3 BxPArtL 221 +1 20 +1 5
) = (m) P =Tt T T T a3
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Proof of the observability inequality

e From (9) we have

2 T
/071‘/2)\ e 2R dxdt gCl/ 0 [xzAl vf]
X+ 4N
Q 0
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Proof of the observability inequality

e From (9) we have

2 T
/071‘/2)\ e 2R dxdt gCl/ 0 [xzAl vf]
x1=2X1
Q 0

e There exist two positive constants P; and P» such that

T 37
4’4

3T 1 T
/ / v dxdt < Cz/ 0 [xz)‘l vf]
I 0 0

dt;

x=0

0 —2Ro

> Py in (0,1) x { } , 0e R0 <Py in (0, T);

X1—2A1
hence

dt.
x=0
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e There exist two positive constants P; and P» such that

T 37
4’4

3T 1 T
/ / v dxdt < Cz/ 0 [XZ)“ vf]
I 0 0

d 1 1
— vZdx > fM/ v dx;
dt Jo 0

dt;

x=0

0 —2Ro

> Py in (0,1) x { } , 0e R0 <Py in (0, T);

1271
hence

dt.
x=0

e Using (3)

hence

dt.

x=0

1 5 T
/ v(x,0)? dxdt < 7e2MTC2/ 0 [xzk1 vf]
0 0
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THANKS FOR YOUR ATTENTION!
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