Exponential decay of the solutions of Klein-Gordon equation in unbounded domains

Romain JOLY

Institut Fourier, Université de Grenoble

Including joint-works with Nicolas Burq, Camille Laurent and Julien Royer

Benasque, september 2015

Damped Klein-Gordon equation

<

• \mathbb{R}^d endowed with $K(x) \in \mathcal{C}^2_b(\mathbb{R}^d)$ with bounded geometry:

$$orall (x,\xi)\in \mathbb{R}^{2d} \;,\;\; \mathcal{K}_{sup}|\xi|^2\geq \xi^\intercal.\mathcal{K}(x).\xi\geq \mathcal{K}_{inf}|\xi|^2 \;.$$

- Δ_K = div(K(x)∇·) Laplacian operator associated to the metric
- $H^1(\mathbb{R}^d)$ endowed with the scalar product

$$\langle u|v\rangle_{H^1} = \int_{\mathbb{R}^d} (\nabla u(x))^{\mathsf{T}} . K(x) . (\overline{\nabla v(x)}) + u(x)\overline{v(x)} \, dx \; .$$

• Damping $\gamma \geq 0$ in $\mathbb{L}^{\infty}(\mathbb{R}^d)$ with support ω .

We consider the damped Klein-Gordon equation :

$$\begin{cases} \partial_{tt}^2 u + \gamma(x) \partial_t u = \Delta_{\mathcal{K}} u - u & (x, t) \in \mathbb{R}^d \times \mathbb{R}^*_+ \\ (u(\cdot, 0), \partial_t u(\cdot, 0)) = U_0 = (u_0, u_1) & \in H^1(\mathbb{R}^d) \times L^2(\mathbb{R}^d) \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Damped Klein-Gordon equation

We set

$$U = (u, \partial_t u) \quad X = H^1(\mathbb{R}^d) \times L^2(\mathbb{R}^d) \quad A = \begin{pmatrix} 0 & Id \\ \Delta_K - Id & -\gamma \end{pmatrix}$$

The solutions of the damped Klein-Gordon equation are the trajectories of the semigroup $U(t) = e^{At}U_0$.

The energy $E(U(t)) = \frac{1}{2} \|e^{At} U_0\|_X^2$ is a Lyapunov function

$$\partial_t E(U(t)) = -\int_{\mathbb{R}^d} \gamma(x) |u_t(x)|^2 dx \; .$$

If γ does not vanish in large areas, E(U(t)) decays to zero for any solution U(t).

Uniform stabilisation?

$$\exists M, \lambda > 0$$
, $\|e^{At}\|_{\mathcal{L}(X)} \leq Me^{-\lambda t}$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Stabilisation and Hamiltonian flow

With the Laplacian operator $\Delta_{\mathcal{K}} = \operatorname{div}(\mathcal{K}(x)\nabla \cdot)$, we associate the symbol $g(x,\xi) = \xi^{\intercal}.\mathcal{K}(x).\xi$ and the Hamiltonian flow $\varphi_t(x_0,\xi_0) = (x(t),\xi(t))$ defined on \mathbb{R}^{2d} by

$$egin{aligned} &arphi_0(\mathbf{x}_0,\xi_0)=(\mathbf{x}_0,\xi_0)\ &\partial_tarphi_t(\mathbf{x},\xi)=(\partial_\xi g(\mathbf{x}(t),\xi(t)),-\partial_\mathbf{x}g(\mathbf{x}(t),\xi(t))) \end{aligned}$$

We introduce the mean value of the damping on geodesics

$$\langle \gamma \rangle_T(x,\xi) = \frac{1}{T} \int_0^T \gamma(\varphi_t(x,\xi)) dt$$

where $\gamma(x,\xi) := \gamma(x)$. We also consider the sphere

$$\Sigma = \{(x,\xi) \in \mathbb{R}^{2d} , \xi^{\mathsf{T}} \mathcal{K}(x) \xi = 1\}$$

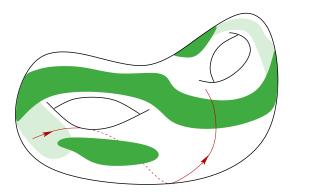
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Stabilisation and Hamiltonian flow

On Ω compact manifold (possibly with boundary), C. Bardos, G. Lebeau, J. Rauch and M. Taylor have shown that the stabilisation $\|e^{At}\|_{\mathcal{L}(X)} \leq Me^{-\lambda t}$ is (almost) equivalent to the existence of T such that

$$\min_{(x,\xi)\in\Sigma} \langle \gamma \rangle_T(x,\xi) > 0.$$

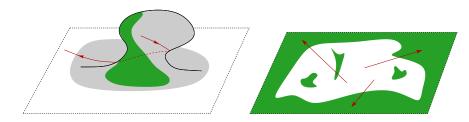
This is the famous geometric control condition.



Stabilisation and Hamiltonian flow

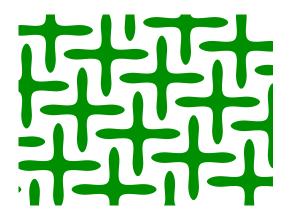
If Ω is not bounded:

- decay of the local energy [Lax, Morawetz, Phillips, 1963], [Morawetz, Ralston, Strauss, 1978], [N. Burq, 1998], [Aloui, Khenissi, 2002]...
- decay of the global energy (including semilinear cases) if γ(x) ≥ α > 0 outside a compact set [Zuazua, 1990-1992], [Feireisl, 1995], [Dehman, Lebeau, Zuazua, 2003], [R.J., C. Laurent, 2013].



《曰》 《圖》 《圖》 《圖》

Stabilisation if the damping may vanish?



▲ロト ▲御ト ▲画ト ▲画ト ▲目 ● の Q @

Theorem – N. Burq & R.J. (2014-2015)

Assume that there exists $\tilde{\gamma} \in C^0(\mathbb{R}^d, \mathbb{R})$ uniformly continuous such that $\gamma \geq \tilde{\gamma} \geq 0$ and that there exist T > 0 and $\alpha > 0$ satisfying $\langle \tilde{\gamma} \rangle_T(x,\xi) \geq \alpha > 0$ for all $(x,\xi) \in \Sigma$.

Then the semigroup generated by the damped Klein-Gordon equation satisfies

 $\exists M, \lambda > 0$, $\forall t \ge 0$, $|||e^{At}|||_{\mathcal{L}(X)} \le Me^{-\lambda t}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Theorem – R. Chill & A. Haraux (2003)

Let u be solution of

$$\begin{cases} \partial_{tt}^{2} u + \partial_{t} u = \Delta_{K} u & (x, t) \in \mathbb{R}^{d} \times \mathbb{R}^{*}_{+} \\ (u(\cdot, 0), \partial_{t} u(\cdot, 0)) = (u_{0}, u_{1}) & \in H^{1}(\mathbb{R}^{d}) \times L^{2}(\mathbb{R}^{d}) \end{cases}$$

and v be solution of

$$\begin{cases} \partial_t v = \Delta_K v \quad (x,t) \in \mathbb{R}^d \times \mathbb{R}^*_+ \\ v(\cdot,0) = u_0 + u_1 \end{cases}$$

Then, $\|u(t) - v(t)\|_{H^1} \leq C \frac{\|u_0\|_{H^1} + \|u_1\|_{L^2}}{t}.$

In particular, there are solutions of the damped wave equation decaying with polynomial rate $1/t^{d/4}$ for $d \leq 3$.

Work in progress: R.J. & J. Royer

Let γ be as in the main theorem. Assume that γ is \mathbb{Z}^d -periodic and denote by $\langle \gamma \rangle$ is mean value on $[0,1]^d$.

Let u be solution of

$$\begin{cases} \partial_{tt}^{2} u + \gamma(x) \partial_{t} u = \Delta_{K} u & (x, t) \in \mathbb{R}^{d} \times \mathbb{R}^{*}_{+} \\ (u(\cdot, 0), \partial_{t} u(\cdot, 0)) = (u_{0}, u_{1}) & \in H^{1}(\mathbb{R}^{d}) \times L^{2}(\mathbb{R}^{d}) \end{cases}$$

and v be solution of

$$\begin{cases} \langle \gamma \rangle \partial_t v = \Delta_K v \quad (x,t) \in \mathbb{R}^d \times \mathbb{R}^*_+ \\ v(\cdot,0) = u_0 + u_1 \end{cases}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Then, $||u(t) - v(t)||_{H^1} \le C \frac{||u_0||_{H^1} + ||u_1||_{L^2}}{t}$.

(works also for $\frac{1}{g(x)}\Delta_K$ by diffeomorphism)

Open problems

Appendix: sketch of the proofs
Proof: high frequencies
Proof: low frequencies

Theorem – Gearhart-Prüss-Huang (1985)

Let e^{At} be a C^0 -semigroup on a Hilbert space X. Assume that there exists M > 0 such that $|||e^{At}||| \le M$ for all $t \ge 0$. Then e^{At} is exponentially stable if and only if $i\mathbb{R} \subset \rho(A)$ and

$$\sup_{\mu\in\mathbb{R}}|||(A-i\mu Id)^{-1}|||_{\mathcal{L}(X)} < +\infty .$$
 (1)

(日) (國) (필) (필) (필) 표

We argue by contradiction: assume that there exists (μ_n) such that $|||(A - i\mu_n Id)^{-1}||| \to +\infty$. Two cases :

- High frequencies $(\mu_n) \to +\infty$
- Low frequencies $(\mu_n) \rightarrow \mu \in \mathbb{R}$

N.B.: we may assume that $\gamma \in \mathcal{C}_b^{\infty}$.

We use the usual arguments with pseudo-differential operators:

- High frequencies: micro-local analysis,
- Low frequencies: Carleman-like estimates.

One has to be careful and to check that all arguments can be extended in the unbounded case. Examples:

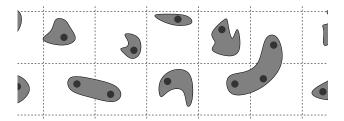
- default measure is useless, since it yields a convergence only on compact sets. We have to go back to the arguments beyond.
- the construction of the Carleman weight must satisfy uniform estimates: positivity on a compact set is no more sufficient.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

To deal with low frequencies, that is to construct a suitable Carleman weight, we only need the following assumption.

Network Control Condition:

There exist *L*, *r*, *a* > 0 and a sequence $(x_n) \subset \mathbb{R}^d$ such that $\gamma(x) > a$ on $\bigcup_n B(x_n, r)$ and $\forall x \in \mathbb{R}^d$, $d(x, \bigcup \{x_n\}) \leq L$.



・ロト ・御ト ・モト ・モト

Open problems

Appendix: sketch of the proofs
Proof: high frequencies
Proof: low frequencies

Theorem – N. Burg & R.J. (2014-2015)

Assume that γ belongs to $L^{\infty}(\mathbb{R}^d)$ and satisfies (NCC) only. Then the semigroup generated by the damped Klein-Gordon equation satisfies:

for any k > 0 and $U_0 \in H^{k+1} \times H^k$

$$\forall t \geq 0 \;, \; \| e^{At} U_0 \|_{H^1 imes L^2} \leq rac{C_k}{\ln(2+t)^k} \| U_0 \|_{H^{k+1} imes H^k} \;.$$

Proof: use the same Carleman-type estimate as the one proved for low frequencies, but keep track of the exponential dependence of the constants with respect to the frequency.

Consider now solutions with **unbounded energy** but with **bounded uniformly local energy**: fix some $\rho > 0$ and consider

$$\|u\|_{L^{2}_{ul}(\mathbb{R}^{d})} = \sup_{x \in \mathbb{R}^{d}} \left(\int_{B(x,\rho)} |u|^{2} \right)^{1/2}$$

and the same for higher Sobolev norms.

Corollary

Assume that there exists $\tilde{\gamma} \in C^0(\mathbb{R}^d, \mathbb{R})$ uniformly continuous such that $\gamma \geq \tilde{\gamma} \geq 0$ and that there exist T > 0 and $\alpha > 0$ satisfying $\langle \tilde{\gamma} \rangle_T(x,\xi) \geq \alpha > 0$ for all $(x,\xi) \in \Sigma$.

Then the semigroup generated by the damped Klein-Gordon equation on the uniformly local Sobolev spaces satisfies

$$\exists M, \lambda > 0 , \quad \forall t \ge 0 , \quad |||e^{At}|||_{\mathcal{L}(H^1_{ul} \times L^2_{ul})} \le M e^{-\lambda t}$$

Using H.U.M. method of Lions

Corollary

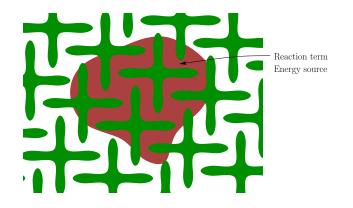
Let ω be a non-empty subset of \mathbb{R}^d . Assume that all the assumptions of our main result hold for $\gamma = \mathbb{1}_{\omega}$. Then, there exists T > 0 such that, for all $(u_0, u_1) \in H^1(\mathbb{R}^d) \times L^2(\mathbb{R}^d)$ and all $(\tilde{u}_0, \tilde{u}_1) \in H^1(\mathbb{R}^d) \times L^2(\mathbb{R}^d)$, there exists a control $v \in L^1((0, T), L^2(\omega))$ such that the solution u of $\begin{cases} \partial_{tt}^2 u - \operatorname{div}(K(x)\nabla u) + u = \mathbb{1}_{\omega}v(x, t) \quad (t, x) \in (0, T) \times \mathbb{R}^d, \\ (u, \partial_t u)(\cdot, 0) = (u_0, u_1) \end{cases}$ satisfies $(u, \partial u)(\cdot, T) = (\tilde{u}_0, \tilde{u}_1)$.

(日) (國) (필) (필) (필) 표

Non-linear equation

$$\begin{cases} \partial_{tt}^2 u + \gamma(x) \partial_t u = \operatorname{div}(\mathcal{K}(x) \nabla u) - u - f(x, u) & (t, x) \in \mathbb{R}_+ \times \mathbb{R}^d \\ (u, \partial_t u)(\cdot, 0) = (u_0, u_1) \in H^1(\mathbb{R}^d) \times L^2(\mathbb{R}^d) \end{cases}$$

where f has compact support with respect to x.



<ロ> (四) (四) (三) (三)

æ

Assume there exists $1 \le p < (d+2)/(d-2)$ such that

$$|f(x,u)| \leq C(1+|u|)^p$$
, $|f'(x,u)| \leq C(1+|u|)^{p-1}$

and $\liminf_{|u| \to +\infty} \max_{x \in \text{supp}(f)} f(x, u)u \ge 0$.

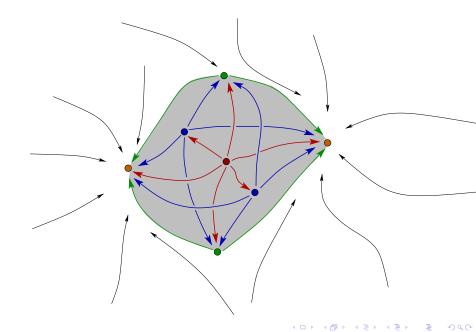
Corollary

Assume the hypothesis of our main result. If $f \in C^{\infty}(\mathbb{R} \times \mathbb{R}, \mathbb{R})$ is as above, with compact support in x and analytic with respect to u, then the dynamical system generated by the semilinear damped wave equation admits a compact global attractor \mathcal{A} and the energy

$$E(u) := E(u, \partial_t u) = \frac{1}{2} \int_{\mathbb{R}^d} (|\partial_t u|^2 + |\nabla u^{\mathsf{T}}.\mathcal{K}(x).\nabla u| + |u|^2) + \int_{\mathbb{R}^d} \mathcal{V}(x, u)$$

is a Lyapunov function.

If moreover $f(x, u) \ge 0$, then stabilisation holds.



One of key arguments:

$$\begin{cases} \partial_{tt}^2 v = \Delta_K v - v - f'_u(x, u)v \\ v \equiv 0 \text{ on supp}(\gamma) \end{cases} \implies v \equiv 0 .$$

- [Zuazua, 1992], [Feireisl, 1995] and [Dehman, Lebeau, Zuazua, 2003] : flat geometry, $\gamma(x) \ge \alpha > 0$ and $f(x, u)u \ge 0$ outside a compact set (unique continuation property of Ruiz).
- [R.J., Laurent, 2012] : curved geometry, f analytic and γ(x) ≥ α > 0 and f(x, u)u ≥ 0 outside a compact set (regularisation result of [Hale, Raugel, 2003] and unique continuation property with semi-analytic coefficients of [Robbiano, Zuily, 1998])
- [N. Burq, R.J., 2014] : natural geometry for γ but f analytic and compactly supported in x.

Corollary – R.J. & C. Laurent (2013)

Let ω a non-empty open subset of \mathbb{R} . We assume that there exist L > 0 and $\varepsilon > 0$ such that ω contains a interval of size ε in each interval [x, x + L], $x \in \mathbb{R}$. Let $f \in C^1(\mathbb{R} \times \mathbb{R}, \mathbb{R})$ compactly supported in x and satisfying

$$\liminf_{|s|\to+\infty} \max_{x\in supp(f)} f(x,s)s \geq 0.$$

Then, for all $E_0 \ge 0$, there exists T > 0 such that, for all (u_0, u_1) and $(\tilde{u}_0, \tilde{u}_1) \in H^1(\mathbb{R}) \times L^2(\mathbb{R})$ with energy $E \le E_0$, there exists a control $v \in L^1((0, T), L^2(\omega))$ such that the solution of

$$\begin{cases} \partial_{tt}^2 u - \operatorname{div}(K(x)\nabla u) + u + f(x, u) = \mathbb{1}_{\omega}v(x, t) \\ (u, \partial_t u)(\cdot, 0) = (u_0, u_1) \end{cases}$$

satisfies $(u, \partial u)(\cdot, T) = (\tilde{u}_0, \tilde{u}_1).$

Open problems

Appendix: sketch of the proofs
Proof: high frequencies
Proof: low frequencies

<ロト <四ト <注入 <注下 <注下 <

Linear stabilisation:

• Regularity assumption " $\tilde{\gamma}$ uniformly continuous" for the damping really necessary?

Non-linear stabilisation:

- Non-linear case with f not compactly supported (but still satisfying f(x, u)u ≥ 0 outside a compact set).
- Non-linear case with f non-analytic.

Other asymptotic behaviors:

- Asymptotic behavior of the solutions of the non-linear damped wave equation compared to the ones of the parabolic PDE?
- Non-linear behavior when the linear semigroup follows other types of decay (polynomial decay etc.)

Thanks

Thank you for your attention

Aneto, Benasque 2013

Open problems

Appendix: sketch of the proofs
Proof: high frequencies
Proof: low frequencies

<ロト <四ト <注入 <注下 <注下 <

Theorem – Gearhart-Prüss-Huang (1985)

Let e^{At} be a C^0 -semigroup on a Hilbert space X. Assume that there exists M > 0 such that $|||e^{At}||| \le M$ for all $t \ge 0$. Then e^{At} is exponentially stable if and only if $i\mathbb{R} \subset \rho(A)$ and

$$\sup_{\mu \in \mathbb{R}} |||(A - i\mu Id)^{-1}|||_{\mathcal{L}(X)} < +\infty .$$
(2)

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ ─ 吾

We argue by contradiction: assume that there exists (μ_n) such that $|||(A - i\mu_n Id)^{-1}||| \rightarrow +\infty$. Two cases :

- High frequencies $(\mu_n) \to +\infty$
- Low frequencies $(\mu_n) \rightarrow \mu \in \mathbb{R}$

N.B.: we may assume that $\gamma \in \mathcal{C}_{\boldsymbol{b}}^{\infty}$.

We use the usual arguments with pseudo-differential operators, micro-local analysis (high frequencies) and Carleman-like estimates (low frequencies). One has to be careful and to check that all arguments can be extended in the unbounded case. Examples :

- default measure is of no use, since it yields a convergence only on compact sets. We have to go back to the arguments beyond.
- the construction of the Carleman weight must satisfy uniform estimates: positivity on a compact set is no more sufficient.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Notations:

We use pseudo-differential operators. For a symbol $a(x, \xi)$, we use Weyl's quantification

$$\operatorname{Op}_{h}(a)u = \frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{2d}} e^{i(x-y)\cdot\xi} a\left(\frac{x+y}{2}, h\xi\right) u(y) \, dy \, d\xi \, \, .$$

<ロ> (四) (四) (四) (四) (四) (四) (四)

Examples:

- $u \mapsto f(x)u$ has for symbol f(x)
- **2** $h\nabla$ has for symbol $i\xi$

3 Open problems

Appendix: sketch of the proofs
 Proof: high frequencies
 Proof: low frequencies

We use microlocal analysis and the assumption $\langle \tilde{\gamma} \rangle_T(x,\xi) \ge \alpha > 0$ for all $(x,\xi) \in \Sigma$.

We set $h = 1/\mu$, it is sufficient to show

Proposition

The operator
$$P_h = h^2(\Delta_K - Id) - ih\gamma(x) + Id$$
 has a L^2 -resolvant satisfying $\|(P_h)^{-1}f\|_{L^2} \leq \frac{C}{h}\|f\|_{L^2}$.

(日) (四) (코) (코) (코) (코)

We argue by contradiction: let (u_h) be a sequence such that $||u_h||_{L^2} = 1$ and $P_h u_h = o_{L^2}(h)$.

Proof: high frequencies

$$(u_h)$$
 a sequence with $||u_h||_{L^2} = 1$ and
 $P_h u_h = h^2 (\Delta_K - Id) u_h - ih\gamma(x) u_h + u_h = o_{L^2}(h)$

- u_h is concentrating on $\{(x,\xi), \xi^{\mathsf{T}}K(x)\xi = 1/h^2\}$. Indeed, at the first order $\operatorname{Op}_h(-\xi^{\mathsf{T}}K(x)\xi + 1)u_h = o(1)$.
- **2** If $a(x,\xi)$ is a symbol of order 0 and if $g(x,\xi) = \xi^{T}.K(x).\xi$, then

$$[\operatorname{Op}_{h}(a), P_{h}] = -ih\operatorname{Op}_{h}(\{\xi^{\mathsf{T}}K(x)\xi, a(x,\xi)\}) + \mathcal{O}_{L^{2} \to L^{2}}(h^{2})$$

$$\langle [\operatorname{Op}_h(a), P_h] u_h | u_h \rangle_{L^2} = 2ih \langle \operatorname{Op}_h(a\gamma) u_h | u_h \rangle_{L^2} + o(h)$$

and we obtain

$$\langle \operatorname{Op}_h(2a\gamma + \{g, a\})u_h | u_h \rangle_{L^2} \xrightarrow[h \longrightarrow 0]{} 0$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Proof: high frequencies

Goal: find $a(x,\xi)$ a symbol of order 0 such that $2a\gamma + \{g,a\} \ge \alpha > 0$ on $\Sigma = \{(x,\xi) , \xi^{\mathsf{T}}\mathcal{K}(x)\xi = 1\}$. Then $\langle \operatorname{Op}_h(2a\gamma + \{g,a\})u_h|u_h\rangle \to 0$ would be in contradiction with $||u_h|| = 1$.

We set $a(x,\xi) = e^{c(x,\xi)}$ with

$$c(x,\xi) = \frac{2}{T} \int_0^T (T-t) \gamma(\varphi_t(x,\xi)) dt = \frac{2}{T} \int_0^T \int_0^t \gamma(\varphi_s(x,\xi)) ds dt.$$

The Hamiltonian flow satisfies $\{g, a\}(x, \xi) = \partial_{\tau} a(\varphi_{\tau}(x, \xi))|_{\tau=0}$ and since

$$c(\varphi_{\tau}(x,\xi)) = \frac{2}{T} \int_{0}^{T} (T-t)\gamma(\varphi_{t+\tau}(x,\xi)) dt$$
$$= \frac{2}{T} \int_{\tau}^{T+\tau} (T-t+\tau)\gamma(\varphi_{t}(x,\xi)) dt$$

we get $2a\gamma + \{g, a\} = 2e^{c(x,\xi)} \langle \gamma \rangle_T(x,\xi)$.

Proof: low frequencies

3 Open problems

Appendix: sketch of the proofs
 Proof: high frequencies
 Proof: low frequencies

(日) (四) (문) (문) (문)

We set $\mu \in \mathbb{R}$. We have to show that $A - i\mu Id$ is invertible, which is equivalent to

$$P = (\Delta_{\mathcal{K}} - Id) - i\mu\gamma(x) + \mu^2 Id$$

invertible in $\mathcal{L}(L^2)$. We again argue by contradiction and assume the existence of (u_n) such that $||u_n||_{L^2} = 1$ and

$$(\Delta_{\mathcal{K}} - Id)u_n - i\mu\gamma(x)u_n + \mu^2 u_n = o_{L^2}(1) .$$

If $\mu = 0$, then ok (since we consider Klein-Gordon equation and not the wave one). If $\mu \neq 0$, mutiplying by \overline{u}_n and integrating, we find

$$\int_{\mathbb{R}^d} \gamma(x) |u_n(x)|^2 dx \longrightarrow 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hörmander-Carleman strategy:

For φ to be fixed later, we set

$$Q_h = -h^2 e^{\varphi/h} \Delta_K e^{-\varphi/h} = \operatorname{Op}_h(q_R) + \operatorname{Op}_h(q_I)$$

with

$$q_{R}(x,\xi) = \xi^{\mathsf{T}} K(x)\xi - \nabla \varphi^{\mathsf{T}} K(x)\nabla \varphi$$
$$q_{I}(x,\xi) = 2\nabla \varphi^{\mathsf{T}} K(x)\xi$$

A direct computation shows that

$$\|Q_h u\|^2 \ge h \langle \operatorname{Op}_h(\mu(q_R^2 + q_I^2) + \{q_R, q_I\}) u | u \rangle + \mathcal{O}(h^2 \|u\|_{L^2}^2)$$

with μ such that $h\mu \leq 1$. On the other hand, by conjugating P by $e^{\varphi/h}$, we find that $||Q_h u_n||$ goes to 0 when n goes to infinity.

$$h\langle \operatorname{Op}_h(\mu(q_R^2+q_I^2)+\{q_R,q_I\})u_n|u_n\rangle \xrightarrow[n \longrightarrow 0]{} 0$$

To obtain a contradiction for small fixed h, it is sufficient to show that

$$\mu(q_R^2 + q_I^2) + \{q_R, q_I\} \ge \alpha > 0 \quad \text{on } \mathbb{R}^d \times \mathbb{R}^d$$

As $q_R = \xi^{\mathsf{T}} \mathcal{K}(x) \xi - \nabla \varphi^{\mathsf{T}} \mathcal{K}(x) \nabla \varphi$, it holds for $\xi \not\simeq \nabla \varphi(x)$. To deal with the case $\xi = \mathcal{O}(\varphi(x))$, we set $\varphi = e^{\lambda \psi}$ with λ very large and ψ bounded such that $|\nabla \psi(x)| \ge \tilde{\alpha} > 0$ and we show $\{q_R, q_I\} \ge \alpha > 0$ (Hörmander sub-ellipticity). In other words, we choose a weight with very steep gradient so that the terms $\nabla \varphi^{\mathsf{T}} \mathcal{K}(x) \nabla \varphi$ will be predominant on the other terms.

.

In short:

We conjugate the equation

$$(\Delta_{\mathcal{K}} - Id)u_n - i\mu\gamma(x)u_n + \mu^2 u_n = o_{L^2}(1)$$
.

by a weight $e^{e^{\lambda \psi(x)}/h}$ with very steep gradient. In the first order, we get an elliptic operator, which concludes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Problem:

Find ψ bounded with $|\nabla \psi(x)| \ge \tilde{\alpha} > 0$!

ψ bounde and $|\nabla \psi(x)| \ge \tilde{\alpha} > 0 \Rightarrow absurd!$

Fortunately, we know that $\int \gamma(x)|u_n|^2 dx \to 0$ and we can choose ψ with no constraints on the support of γ (in fact, rather where $\gamma \geq \beta$ for some positive β).

The assumptions yield the existence of a value $\beta > 0$, a radius $\rho > 0$ and a length *L* such that, for all *x* in \mathbb{R}^d , there exists at distance at most *L*, a ball a radius ρ where $\gamma(x) \ge \beta > 0$. \Rightarrow there exists a network of balls where the damping is effective.

Up to a diffeomorphism, we assume that the ball are centered on $k \in \mathbb{Z}^d$ and we set

$$\psi(x) = \sum_{i=1}^d \cos(\pi x_i) \; .$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Corollary

If in addition $f(x, u)u \ge 0$ for all $(x, u) \in \mathbb{R}^{d+1}$, then the semilinear damped wave equations is stabilised in the sense where, for all $E_0 \ge 0$, there exist K > 0 and $\lambda > 0$ such that, for all solutions u with $E(u(0)) \le E_0$, $E(u(t)) \le Me^{-\lambda t}E(u(0))$ for any $t \ge 0$.

< □ > < @ > < 注 > < 注 > ... 注