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Damped Klein-Gordon equation

Rd endowed with K (x) ∈ C2
b(Rd) with bounded geometry:

∀(x , ξ) ∈ R2d , Ksup|ξ|2 ≥ ξᵀ.K (x).ξ ≥ Kinf |ξ|2 .

∆K = div(K (x)∇·) Laplacian operator associated to the
metric

H1(Rd) endowed with the scalar product

〈u|v〉H1 =

∫
Rd

(∇u(x))ᵀ.K (x).(∇v(x)) + u(x)v(x) dx .

Damping γ ≥ 0 in L∞(Rd) with support ω.

We consider the damped Klein-Gordon equation :{
∂2
ttu + γ(x)∂tu = ∆Ku − u (x , t) ∈ Rd × R∗+

(u(·, 0), ∂tu(·, 0)) = U0 = (u0, u1) ∈ H1(Rd)× L2(Rd)



Damped Klein-Gordon equation

We set

U = (u, ∂tu) X = H1(Rd)×L2(Rd) A =

(
0 Id

∆K − Id −γ

)
.

The solutions of the damped Klein-Gordon equation are the
trajectories of the semigroup U(t) = eAtU0.

The energy E (U(t)) = 1
2‖e

AtU0‖2
X is a Lyapunov function

∂tE (U(t)) = −
∫
Rd

γ(x)|ut(x)|2 dx .

If γ does not vanish in large areas, E (U(t)) decays to zero for any
solution U(t).

Uniform stabilisation?

∃M, λ > 0 , ‖eAt‖L(X ) ≤ Me−λt ?



Stabilisation and Hamiltonian flow

With the Laplacian operator ∆K = div(K (x)∇·), we associate the
symbol g(x , ξ) = ξᵀ.K (x).ξ and the Hamiltonian flow
ϕt(x0, ξ0) = (x(t), ξ(t)) defined on R2d by

ϕ0(x0, ξ0) = (x0, ξ0)

∂tϕt(x , ξ) = (∂ξg(x(t), ξ(t)),−∂xg(x(t), ξ(t)) .

We introduce the mean value of the damping on geodesics

〈γ〉T (x , ξ) =
1

T

∫ T

0
γ(ϕt(x , ξ))dt

where γ(x , ξ) := γ(x). We also consider the sphere

Σ = {(x , ξ) ∈ R2d , ξᵀK (x)ξ = 1} .



Stabilisation and Hamiltonian flow

On Ω compact manifold (possibly with boundary), C. Bardos, G.
Lebeau, J. Rauch and M. Taylor have shown that the stabilisation
‖eAt‖L(X ) ≤ Me−λt is (almost) equivalent to the existence of T
such that

min
(x ,ξ)∈Σ

〈γ〉T (x , ξ) > 0 .

This is the famous geometric control condition.



Stabilisation and Hamiltonian flow

If Ω is not bounded:

decay of the local energy [Lax, Morawetz, Phillips, 1963],
[Morawetz, Ralston, Strauss, 1978], [N. Burq, 1998], [Aloui,
Khenissi, 2002]. . .

decay of the global energy (including semilinear cases) if
γ(x) ≥ α > 0 outside a compact set [Zuazua, 1990-1992],
[Feireisl, 1995], [Dehman, Lebeau, Zuazua, 2003], [R.J., C.
Laurent, 2013].



Main result

Stabilisation if the damping may vanish?



Main result

Theorem – N. Burq & R.J. (2014-2015)

Assume that there exists γ̃ ∈ C0(Rd ,R) uniformly continuous such
that γ ≥ γ̃ ≥ 0 and that there exist T > 0 and α > 0 satisfying
〈γ̃〉T (x , ξ) ≥ α > 0 for all (x , ξ) ∈ Σ.

Then the semigroup generated by the damped Klein-Gordon
equation satisfies

∃M, λ > 0 , ∀t ≥ 0 , |||eAt |||L(X ) ≤ Me−λt .



The damped wave equation

Theorem – R. Chill & A. Haraux (2003)

Let u be solution of{
∂2
ttu + ∂tu = ∆Ku (x , t) ∈ Rd × R∗+

(u(·, 0), ∂tu(·, 0)) = (u0, u1) ∈ H1(Rd)× L2(Rd)

and v be solution of{
∂tv = ∆Kv (x , t) ∈ Rd × R∗+
v(·, 0) = u0 + u1

Then, ‖u(t)− v(t)‖H1 ≤ C
‖u0‖H1 +‖u1‖L2

t .

In particular, there are solutions of the damped wave equation
decaying with polynomial rate 1/td/4 for d ≤ 3.



The damped wave equation

Work in progress: R.J. & J. Royer

Let γ be as in the main theorem. Assume that γ is Zd−periodic
and denote by 〈γ〉 is mean value on [0, 1]d .

Let u be solution of{
∂2
ttu + γ(x)∂tu = ∆Ku (x , t) ∈ Rd × R∗+

(u(·, 0), ∂tu(·, 0)) = (u0, u1) ∈ H1(Rd)× L2(Rd)

and v be solution of{
〈γ〉∂tv = ∆Kv (x , t) ∈ Rd × R∗+
v(·, 0) = u0 + u1

Then, ‖u(t)− v(t)‖H1 ≤ C
‖u0‖H1 +‖u1‖L2

t .

(works also for 1
g(x) ∆K by diffeomorphism)



Main tools

1 Main tools

2 Examples of applications

3 Open problems

4 Appendix: sketch of the proofs
Proof: high frequencies
Proof: low frequencies



Main tools

Theorem – Gearhart-Prüss-Huang (1985)

Let eAt be a C0−semigroup on a Hilbert space X . Assume that
there exists M > 0 such that |||eAt ||| ≤ M for all t ≥ 0.
Then eAt is exponentially stable if and only if iR ⊂ ρ(A) and

sup
µ∈R
|||(A− iµId)−1|||L(X ) < +∞ . (1)

We argue by contradiction: assume that there exists (µn) such
that |||(A− iµnId)−1||| → +∞. Two cases :

High frequencies (µn)→ +∞
Low frequencies (µn)→ µ ∈ R

N.B.: we may assume that γ ∈ C∞b .



Main tools

We use the usual arguments with pseudo-differential operators:

High frequencies: micro-local analysis,

Low frequencies: Carleman-like estimates.

One has to be careful and to check that all arguments can be
extended in the unbounded case. Examples:

default measure is useless, since it yields a convergence only
on compact sets. We have to go back to the arguments
beyond.

the construction of the Carleman weight must satisfy uniform
estimates: positivity on a compact set is no more sufficient.



Main tools

To deal with low frequencies, that is to construct a suitable
Carleman weight, we only need the following assumption.

Network Control Condition:
There exist L, r , a > 0 and a sequence (xn) ⊂ Rd such that
γ(x) > a on ∪nB(xn, r) and ∀x ∈ Rd , d(x ,∪{xn}) ≤ L.
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Examples of applications

Theorem – N. Burq & R.J. (2014-2015)

Assume that γ belongs to L∞(Rd) and satisfies (NCC) only. Then
the semigroup generated by the damped Klein-Gordon equation
satisfies:
for any k > 0 and U0 ∈ Hk+1 × Hk

∀t ≥ 0 , ‖eAtU0‖H1×L2 ≤
Ck

ln(2 + t)k
‖U0‖Hk+1×Hk .

Proof: use the same Carleman-type estimate as the one proved for
low frequencies, but keep track of the exponential dependence of
the constants with respect to the frequency.



Examples of applications

Consider now solutions with unbounded energy but with
bounded uniformly local energy: fix some ρ > 0 and consider

‖u‖L2
ul (Rd ) = sup

x∈Rd

(∫
B(x ,ρ)

|u|2
)1/2

and the same for higher Sobolev norms.

Corollary

Assume that there exists γ̃ ∈ C0(Rd ,R) uniformly continuous such
that γ ≥ γ̃ ≥ 0 and that there exist T > 0 and α > 0 satisfying
〈γ̃〉T (x , ξ) ≥ α > 0 for all (x , ξ) ∈ Σ.

Then the semigroup generated by the damped Klein-Gordon
equation on the uniformly local Sobolev spaces satisfies

∃M, λ > 0 , ∀t ≥ 0 , |||eAt |||L(H1
ul×L

2
ul )
≤ Me−λt .



Examples of applications

Using H.U.M. method of Lions

Corollary

Let ω be a non-empty subset of Rd . Assume that all the
assumptions of our main result hold for γ = 1ω. Then, there exists
T > 0 such that, for all (u0, u1) ∈ H1(Rd)× L2(Rd) and all
(ũ0, ũ1) ∈ H1(Rd)× L2(Rd), there exists a control
v ∈ L1((0,T ), L2(ω)) such that the solution u of{
∂2
ttu − div(K (x)∇u) + u = 1ωv(x , t) (t, x) ∈ (0,T )× Rd ,

(u, ∂tu)(·, 0) = (u0, u1)

satisfies (u, ∂u)(·,T ) = (ũ0, ũ1).



Examples of applications
Non-linear equation{
∂2
ttu + γ(x)∂tu = div(K (x)∇u)− u − f (x , u) (t, x) ∈ R+ × Rd ,

(u, ∂tu)(·, 0) = (u0, u1) ∈ H1(Rd)× L2(Rd)

where f has compact support with respect to x .

Reaction term

Energy source



Examples of applications

Assume there exists 1 ≤ p < (d + 2)/(d − 2) such that

|f (x , u)| ≤ C (1 + |u|)p , |f ′(x , u)| ≤ C (1 + |u|)p−1

and lim inf
|u|→+∞

max
x∈supp(f )

f (x , u)u ≥ 0 .

Corollary

Assume the hypothesis of our main result. If f ∈ C∞(R× R,R) is
as above, with compact support in x and analytic with respect to
u, then the dynamical system generated by the semilinear damped
wave equation admits a compact global attractor A and the energy

E (u) := E (u, ∂tu) =
1

2

∫
Rd

(|∂tu|2 + |∇uᵀ.K (x).∇u|+ |u|2)+

∫
Rd

V (x , u)

is a Lyapunov function.

If moreover f (x , u) ≥ 0, then stabilisation holds.



Examples of applications



Examples of applications

One of key arguments:{
∂2
ttv = ∆Kv − v − f ′u(x , u)v

v ≡ 0 on supp(γ)
=⇒ v ≡ 0 .

[Zuazua, 1992], [Feireisl, 1995] and [Dehman, Lebeau,
Zuazua, 2003] : flat geometry, γ(x) ≥ α > 0 and
f (x , u)u ≥ 0 outside a compact set (unique continuation
property of Ruiz).

[R.J., Laurent, 2012] : curved geometry, f analytic and
γ(x) ≥ α > 0 and f (x , u)u ≥ 0 outside a compact set
(regularisation result of [Hale, Raugel, 2003] and unique
continuation property with semi-analytic coefficients of
[Robbiano, Zuily, 1998])

[N. Burq, R.J., 2014] : natural geometry for γ but f analytic
and compactly supported in x .



Examples of applications

Corollary – R.J. & C. Laurent (2013)

Let ω a non-empty open subset of R. We assume that there exist
L > 0 and ε > 0 such that ω contains a interval of size ε in each
interval [x , x + L], x ∈ R. Let f ∈ C1(R× R,R) compactly
supported in x and satisfying

lim inf
|s|→+∞

max
x∈supp(f )

f (x , s)s ≥ 0 .

Then, for all E0 ≥ 0, there exists T > 0 such that, for all (u0, u1)
and (ũ0, ũ1) ∈ H1(R)× L2(R) with energy E ≤ E0, there exists a
control v ∈ L1((0,T ), L2(ω)) such that the solution of{

∂2
ttu − div(K (x)∇u) + u + f (x , u) = 1ωv(x , t)

(u, ∂tu)(·, 0) = (u0, u1)

satisfies (u, ∂u)(·,T ) = (ũ0, ũ1).
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Open problems

Linear stabilisation:

Regularity assumption ”γ̃ uniformly continuous” for the
damping really necessary?

Non-linear stabilisation:

Non-linear case with f not compactly supported (but still
satisfying f (x , u)u ≥ 0 outside a compact set).

Non-linear case with f non-analytic.

Other asymptotic behaviors:

Asymptotic behavior of the solutions of the non-linear damped
wave equation compared to the ones of the parabolic PDE?

Non-linear behavior when the linear semigroup follows other
types of decay (polynomial decay etc.)



Thanks

Thank you for your attention

Aneto, Benasque 2013
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Sketch of proofs

Theorem – Gearhart-Prüss-Huang (1985)

Let eAt be a C0−semigroup on a Hilbert space X . Assume that
there exists M > 0 such that |||eAt ||| ≤ M for all t ≥ 0.
Then eAt is exponentially stable if and only if iR ⊂ ρ(A) and

sup
µ∈R
|||(A− iµId)−1|||L(X ) < +∞ . (2)

We argue by contradiction: assume that there exists (µn) such
that |||(A− iµnId)−1||| → +∞. Two cases :

High frequencies (µn)→ +∞
Low frequencies (µn)→ µ ∈ R

N.B.: we may assume that γ ∈ C∞b .



Sketch of proofs

We use the usual arguments with pseudo-differential operators,
micro-local analysis (high frequencies) and Carleman-like estimates
(low frequencies). One has to be careful and to check that all
arguments can be extended in the unbounded case. Examples :

default measure is of no use, since it yields a convergence only
on compact sets. We have to go back to the arguments
beyond.

the construction of the Carleman weight must satisfy uniform
estimates: positivity on a compact set is no more sufficient.



Sketch of proofs

Notations:

We use pseudo-differential operators.
For a symbol a(x , ξ), we use Weyl’s quantification

Oph(a)u =
1

(2π)n

∫
R2d

e i(x−y).ξ a

(
x + y

2
, hξ

)
u(y) dy dξ .

Examples:

1 u 7→ f (x)u has for symbol f (x)

2 h∇ has for symbol iξ

3 h2∆K = Oph(−ξᵀ.K (x).ξ) +OL2→L2(h2)
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Proof: high frequencies

We use microlocal analysis and the assumption 〈γ̃〉T (x , ξ) ≥ α > 0
for all (x , ξ) ∈ Σ.

We set h = 1/µ, it is sufficient to show

Proposition

The operator Ph = h2(∆K − Id)− ihγ(x) + Id has a L2−resolvant

satisfying ‖(Ph)−1f ‖L2 ≤
C

h
‖f ‖L2 .

We argue by contradiction: let (uh) be a sequence such that
‖uh‖L2 = 1 and Phuh = oL2(h).



Proof: high frequencies

(uh) a sequence with ‖uh‖L2 = 1 and
Phuh = h2(∆K − Id)uh − ihγ(x)uh + uh = oL2(h)

1 uh is concentrating on {(x , ξ) , ξᵀK (x)ξ = 1/h2}.
Indeed, at the first order Oph(−ξᵀK (x)ξ + 1)uh = o(1).

2 If a(x , ξ) is a symbol of order 0 and if g(x , ξ) = ξᵀ.K (x).ξ,
then

[Oph(a),Ph] = −ihOph
(
{ξᵀK (x)ξ, a(x , ξ)}

)
+OL2→L2(h2)

〈[Oph(a),Ph]uh|uh〉L2 = 2ih〈Oph(aγ)uh|uh〉L2 + o(h)

and we obtain

〈Oph(2aγ + {g , a})uh|uh〉L2 −−−−−→
h−→0

0 .



Proof: high frequencies

Goal: find a(x , ξ) a symbol of order 0 such that
2aγ + {g , a} ≥ α > 0 on Σ = {(x , ξ) , ξᵀK (x)ξ = 1}.
Then 〈Oph(2aγ + {g , a})uh|uh〉 → 0 would be in contradiction
with ‖uh‖ = 1.

We set a(x , ξ) = ec(x ,ξ) with

c(x , ξ) =
2

T

∫ T

0
(T−t)γ(ϕt(x , ξ)) dt =

2

T

∫ T

0

∫ t

0
γ(ϕs(x , ξ)) ds dt .

The Hamiltonian flow satisfies {g , a}(x , ξ) = ∂τa(ϕτ (x , ξ))|τ=0

and since

c(ϕτ (x , ξ)) =
2

T

∫ T

0
(T − t)γ(ϕt+τ (x , ξ)) dt

=
2

T

∫ T+τ

τ
(T − t + τ)γ(ϕt(x , ξ)) dt

we get 2aγ + {g , a} = 2ec(x ,ξ)〈γ〉T (x , ξ).



Proof: low frequencies
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Proof: low frequencies

We set µ ∈ R. We have to show that A− iµId is invertible, which
is equivalent to

P = (∆K − Id)− iµγ(x) + µ2Id

invertible in L(L2). We again argue by contradiction and assume
the existence of (un) such that ‖un‖L2 = 1 and

(∆K − Id)un − iµγ(x)un + µ2un = oL2(1) .

If µ = 0, then ok (since we consider Klein-Gordon equation and not
the wave one). If µ 6= 0, mutiplying by un and integrating, we find∫

Rd

γ(x)|un(x)|2 dx −→ 0 .



Proof: low frequencies

Hörmander-Carleman strategy:
For ϕ to be fixed later, we set

Qh = −h2eϕ/h∆Ke
−ϕ/h = Oph(qR) + Oph(qI )

with

qR(x , ξ) = ξᵀK (x)ξ −∇ϕᵀK (x)∇ϕ
qI (x , ξ) = 2∇ϕᵀK (x)ξ

A direct computation shows that

‖Qhu‖2 ≥ h〈Oph(µ(q2
R + q2

I ) + {qR , qI})u|u〉+O(h2‖u‖2
L2)

with µ such that hµ ≤ 1. On the other hand, by conjugating P by
eϕ/h, we find that ‖Qhun‖ goes to 0 when n goes to infinity.



Proof: low frequencies

h〈Oph(µ(q2
R + q2

I ) + {qR , qI})un|un〉 −−−−−→
n −→ 0

0 .

To obtain a contradiction for small fixed h, it is sufficient to show
that

µ(q2
R + q2

I ) + {qR , qI} ≥ α > 0 on Rd × Rd .

As qR = ξᵀK (x)ξ −∇ϕᵀK (x)∇ϕ, it holds for ξ 6' ∇ϕ(x). To deal
with the case ξ = O(ϕ(x)), we set ϕ = eλψ with λ very large and
ψ bounded such that |∇ψ(x)| ≥ α̃ > 0 and we show
{qR , qI} ≥ α > 0 (Hörmander sub-ellipticity). In other words, we
choose a weight with very steep gradient so that the terms
∇ϕᵀK (x)∇ϕ will be predominant on the other terms.



Proof: low frequencies

In short:

We conjugate the equation

(∆K − Id)un − iµγ(x)un + µ2un = oL2(1) .

by a weight ee
λψ(x)/h with very steep gradient. In the first order, we

get an elliptic operator, which concludes.

Problem:

Find ψ bounded with |∇ψ(x)| ≥ α̃ > 0 !



Proof: low frequencies

ψ bounde and |∇ψ(x)| ≥ α̃ > 0 ⇒ absurd!

Fortunately, we know that
∫
γ(x)|un|2 dx → 0 and we can choose

ψ with no constraints on the support of γ (in fact, rather where

γ ≥ β for some positive β).

The assumptions yield the existence of a value β > 0, a radius
ρ > 0 and a length L such that, for all x in Rd , there exists at
distance at most L, a ball a radius ρ where γ(x) ≥ β > 0.
⇒ there exists a network of balls where the damping is
effective.

Up to a diffeomorphism, we assume that the ball are centered on
k ∈ Zd and we set

ψ(x) =
d∑

i=1

cos(πxi ) .



Examples of applications

Corollary

If in addition f (x , u)u ≥ 0 for all (x , u) ∈ Rd+1, then the semilinear
damped wave equations is stabilised in the sense where, for all
E0 ≥ 0, there exist K > 0 and λ > 0 such that, for all solutions u
with E (u(0)) ≤ E0, E (u(t)) ≤ Me−λtE (u(0)) for any t ≥ 0.


