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Special cases of the equation

Prototype for the equations under consideration
(ET := E × (0,T ),E ⊂ Rn, n ≥ 2, p > 2n

n+2 , m > 1):

∂tu − div
(
|u|m−1|Du|p−2Du

)
= f in ET

Special cases:

p = 2: ∂tu −∆um = f (porous medium equation)

m = 1: ∂tu −∆pu = f (p-Laplace equation)

p = 2, m = 1: ∂tu −∆u = f (heat equation)

Classification:
0 < m < 1 m > 1

1 < p < 2 doubly singular singular-degenerate

p > 2 degenerate-singular doubly degenerate
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Cauchy-Dirichlet problem

Model equation (p > 2n
n+2 , m > 1):

∂tu − div
(
|u|m−1|Du|p−2Du

)
= f in ET ,

where f ≥ 0, f ∈ Lγ(ET ); γ as small as possible?

General Cauchy-Dirichlet problem in operator notation:

(CP)

{
∂tu − div

(
A(x , t, u,Du)

)
= f in ET ,

u = 0 on ∂parET ,

where the vector-field A satisfies the following conditions:

A : ET × R× Rn → Rn meas. in (x , t) & cont. in (u, ξ)
A(x , t, u, ξ) · ξ ≥ C0|u|m−1|ξ|p for a. e. (x , t) ∀u, ξ; C0 > 0
|A(x , t, u, ξ)| ≤ C1|u|m−1|ξ|p−1 for a. e. (x , t) ∀u, ξ; C1 > 0
certain monotonicity and Lipschitz conditions for A
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Some previous results for DNPE

Hölder regularity for bounded weak solutions
(Ivanov, Porzio/Vespri)

Harnack type inequalites for bounded weak solutions
(Kinnunen/Kuusi, Vespri)

Results regarding the asymptotic behavior of weak solutions
(Manfredi/Vespri, Savaré/Vespri, Tedeev/Vespri)

Local boundedness of the gradient for locally bounded, strictly
positive weak solutions (Siljander)

Uniqueness of bounded weak sol. “having some appr. scheme”
(Ivanov)

Existence of bounded weak solutions with f ∈ Lγ(ET ), γ =∞
(Ivanov)
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Definition of a weak solution

Definition

A non-negative function u : ET → R satisfying u = 0 on ∂parET ,
u ∈ C 0

(
[0,T ]; L2(E )

)
and uα+1 ∈ Lp

(
(0,T );W 1,p(E )

)
is termed

a weak solution of (CP) if and only if the identity∫∫
ET

[
− u∂tϕ+ A(x , t, u,Du) · Dϕ

]
dz =

∫∫
ET

f ϕ dz

holds true for any testing function ϕ ∈ C 1
0 (ET ).

α := m−1
p is one of two common exponents in the definition

of a solution in the context of the porous medium equation
(alternative: β := m−1

p−1 ). The usage of α in our definition
admits a smaller value for γ!
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Existence of a weak solution: The statement

Theorem

Let f ∈ Lγ(ET ,R≥0) for γ := 1 + n
n(p+m−2)+2p and assume that

the previous structure conditions for A hold. Then, there exists at
least one weak solution of (CP).

Our exponent is natural in the sense that it coincides for
p = 2 with an earlier result for the porous medium equation
by Bögelein, Duzaar, Gianazza: γ = 1 + n

nm+4 .

For m = 1 (i. e. the case of the p-Laplacian equation), it
coincides with the Hölder conjugate of p n+2

n .
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Basic ideas of the proof

1) Regularization of (CP)

Let (fk)k∈N ⊂ L∞(ET ) be such that fk ↗ f in Lγ(ET ) and define

the truncation operators S
(N)
j (u) := min{max{u, 1j },N} for

j ,N ∈ N. Consider the following regularized Cauchy-Dirichlet
problems

(RCP)

{
∂tu

(N)
j ,k − div

(
A(x , t,S

(N)
j (u

(N)
j ,k ),Du

(N)
j ,k )

)
= fk in ET ,

u
(N)
j ,k = 1

j on ∂parET .

Then, thanks to the truncation, the usual existence theorem for
p-Laplacian equations from Lions (or Ladyženskaja/Solonnikov/
Ural’ceva) is applicable and admits a solution

u
(N)
j ,k ∈ C 0

(
[0,T ]; L2(E )

)
∩ Lp

(
(0,T );W 1,p(E )

)
.
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Basic ideas of the proof

2) Properties of u
(N)
j ,k : Part I

supET
u
(N)
j ,k ≤ C ∗, where C ∗ →∞ as k →∞ (via the Moser

iteration method).

infET
u
(N)
j ,k ≥

1
j (via a comparison principle).

Hence, by choosing N > C ∗, we can rewrite (RCP) in the following
way:

(RCP)

{
∂tuj ,k − div

(
A(x , t, uj ,k ,Duj ,k)

)
= fk in ET ,

uj ,k = 1
j on ∂parET .
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Basic ideas of the proof

2) Properties of uj ,k : Part II (remember: α = m−1
p )

uj ,k is in particular a weak solution since
|Duα+1

j ,k | = cuαj ,k |Duj ,k | ≤ c|Duj ,k | ∈ Lp(ET ).

Energy estimate:

sup
t∈(0,T )

∫
E×{t}

u2j ,k dx +

∫∫
ET

|Duα+1
j ,k |

p dz ≤ c ,

uniformly in j , k . (Here, the Gagliardo-Nirenberg inequality
determines the value of γ!)
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Basic ideas of the proof

3) The limiting process

Due to the uniform energy estimate, there exist a (non-relabeled)
subsequence (uj ,k)j ,k∈N and functions u ∈ L2(ET ) and
v ∈ Lp(ET ,Rn) such that

uj ,k ⇀ u weakly in L2(ET ) as (j , k)→∞,

Duα+1
j ,k ⇀ v weakly in Lp(ET ,Rn) as (j , k)→∞.

It has to be elucidated that v is indeed the weak derivative of uα+1.
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Basic ideas of the proof

4) Passage to the limit in the equation

Since uj ,k is a weak solution of (RCP), we know

−
∫∫

ET

uj ,k∂tϕ dz +

∫∫
ET

A(x , t, uj ,k ,Duj ,k) · Dϕ dz =

∫∫
ET

fkϕ dz ,

where the first and third integrals converge due to the convergence
properties of uj ,k and fk . The convergence of the diffusion term
follows from the convergence

Duα+1
j ,k → Duα+1 a. e. as j , k →∞,

whose proof is quite intricate.
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Next aim: Existence of solutions for measure data problem

Previous Cauchy-Dirichlet problem:

(CP)

{
∂tu − div

(
A(x , t, u,Du)

)
= f in ET ,

u = 0 on ∂parET

with f ≥ 0, f ∈ Lγ(ET ).

Target: replace f by a non-negative Radon measure
µ ∈M+(ET ) and prove the existence of a very weak solution
for the Cauchy-Dirichlet problem

(MDP)

{
∂tu − div

(
A(x , t, u,Du)

)
= µ in ET ,

u = 0 on ∂parET .
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Thank you for your attention!
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