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A non convex problem

Let Q be a bounded domain of RN. We consider the problem

Z(Q) ;== inf {/Q (p(Vu) + g(u))dx : u= ugon 39}, (1)

ueH(Q)

where ¢ : RV — [0, +00), g : R — [0, +00) are functions such that

» ©(z) is convex continuous, ¢(0) = 0;

» g(t) is lower semicontinuous and IM countable such that for
t € R\M, limsup, g(t,) < g(t) whenever t, — t;

> there exist o, 3 > 0 : a|z]? < p(2) + g(t) < B(1+ |z]?).

For simplicity, we assume that ug = 0.
We emphasize that g is not assumed to be convex.



Example

2
o) =2 gl = {3

ift>0
ift<0’

I(Q):inf{/Q ['2“'2+g(u)] dx u:1ona§z}.

~> Free boundary Pb in term of D = {u > 0},

u solves
—Aup=0inD
up = 1on 00
up = Oin Q\D

~> Shape functional
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Pb in 1D case

Let N =1, Q = (0, h), the Pb is stated as

T(A h) = mf{/ dx+)\{u>0}\‘ yoe -1 } )
Taking first integral of Euler's equation, —u” + g’(u) = 0, we have
U (") = [p(u') + g(u)] = 1
. u/2
S u.u — <2+)\1{U>0}> =W

o =£/2 (1 + Mpusgy)-

Solutions are piecewise affine functions of slopes in {O, iﬂ\ﬂ}



Thus, solutions are g = 1 or of the form:

—V2Vx +1
L_Il(X) = 0

V2VAx — (V2vVAh - 1)

. 1
|f0§x§ﬁﬁ

. 1 1
'fmf’“h—m

The problem reaches its minimum: Z(\, h) = min{\h,2v/2v/A}. As
h= 2—\? the problem has at least two solutions, g and .
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Duality framework(Constrained flow optimization)

We set B the class of fields o = (0¥, 0t) € (L®(Q x R))V*1 satis-
fying the following conditions:

(s1) dive =0in Q x R;

(s2) o(x,t) € C(t) a.e. (x,t) € Q2 xR;

(s3) Vt € M,0 < o'(x,t) + g(t) a.e. x € Q. (%)
Here C(t) = {(¢*,q") € R x R|p*(q*) — g(t) < q'}.

Lemma 1 [Bouchitté, Fragala]
For every u € H}(Q2) and for every o € B, one has

- / ot (x,0)dx < / [p(V) + g()]dx
Q Q

(x) (s3) can be dropped if g is continuous, o'(-,t) coincides with
the normal flow across the hyperplane {xpy+1}.



Geometrical interpretation

©*(0*) — g(t) <octae inQxR.

C1y(xt) = 1 ift<u(x) ty
TR0 e s u(x)

_ 1
Yu = w/1+|w2(

normal to the graph G,.

Vu,—1) is the unit

—/ O'.I/VOC/HN:/ o.D1,
Gy, QxR

0

= [ [7"6x 0(0)- V() — o (x,ulo)] e
Q

< /Q (0" (0) + ¢(Vu) — 0*] d

< [ 1oV + g(e1ex

If up = 0 then / o dHY = / o' (x,0)dx.
G Q

K]



Dual Pb holds in dimension N + 1

Let us define

Then Z(Q2) > S(Q2) (Lemma 1).
Theorem

It holds Z(Q2) = S(R).

Sketch of proof.
u~v=1,(x,t) € Ay where

v(x,+00) =0, v(x,—o0) =1,
Dv is a bounded measure .

Ao{v(x,t):Qx]R%[O,l]

v(x,-) is decreasing , }



e 7(2) can be reformulated as: inf{F(v),v € Ap} where

F(v) = Jo.m h(t,Dv),  h(t,p) = —p'(p(~5) + &(1)).
Let us(x) :==inf{r € R: v(x,7) < s} for s € [0, 1].

Lemma 2
If F(v) < 400, for v e .Ao, then for a.e. s € [0, 1], one has

us € H}(Q) and F(v fo (Jole(Vus) + g(us)]dx) ds.

Remark. If v =1, then us = u for a.e. s €[0,1].

Consequence.

If v is solution of inf{F(v),v € Ap} then Vs € [0, 1], us is solution
of Z(Q).

e F(v) can be rewritten as F(v) = sup {fng o.Dv:o e B}.

Z(Q2) = inf su / o.Dv} = sup inf {/ o.Dv} =S5(Q
( ) VEAOO’E%{ QxR JGZ’VGAO QxR ( )



Numerical computation of optimal flow

We treat the case

A ift>0
= [0,2], g(r)z{o nte A=2,

if t <0,

Sc(Q) := sup {—/ of(x, l)dx—e/ lo]? e > O} .
oceB Q Qx[0,1]

» ¢ = 0 the critical dual Pb
» ¢ > 0 viscosity term («» uniqueness of sqution)
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Numerics (Matlab toolbox + 2D Finite element)
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(c) Singular solution

e Singular solution (c) is constructed by symmetrization of gradient
rotated, o = (9:V, —0x V), of value function:

V(x,t) i= inf {fox 2 dx + Al{u > O}y]u(O) —1,u(x) = t}
e Time of computation is very high. Matlab toolbox is not good for
non linear constrained optimization Pb.



Min-max Formulation

Let L(v,0):= [q,p0-Dv.
As we have known

Z(Q2) = inf sup L(v,0) =sup inf L(v,0)=S5(Q
(@ = inf sup L(v.0) = sup inf L(v.0) = S(Q)

We now seek the saddle point of min-max problem

inf supL(v,o
VEAOJEE’ ( )

Recall that (v, &) is solution of the problem min-max if

L(v,0) < L(¥,5) < L(v,5),¥v € Ao, 0 € B

Qi

Remark. Once when v is determined, we will obtain us as optimal
solution of Z(2) (Lemma 2).



Discretization settings

Back to the previous Free boundary Pb.
Let 2 =(0,2), ¥ =Q x (0,1). Note that

/ZJ.Dv:/ZU.D(V—l):/z—(v—l)diva+/az(v—1)(0.n)ds.

v(-,0)=1,v(-,1) =0, }

A:{v(x,t)eBV(Z) i) v(h,)=1

The min-max problem reads

sup inf {/ —(v—1)divo — / of(x, 1)dx}
o VEA Q
h
:sup{—/ ot(x, l)dx:diva:O}.
o 0



Discretization settings:
We consider a two-dimensional Cartesian grid Gh of size ny x ny.
Let hy, h; are steps and (i, /) is location on the grid.

G = {(ihx,jh) : 0 < i< ne,0<j < n}
Ah = {vh € R™"M Viijo =1, Vi,:nt—l =0, vé’J = Vrl:x—lJ = 1}
B" = {a" € (R2)"™ : (o");; € C(jho) |
The discrete minimax Pb

min max <thh, ah>
vhe Ah gheBh



Orthogonal projections

Consider the projection
oh 1 = Projgn(ch + aVvh)
V,I11+1 = vi — B(div Jn—i—l)
72-4-1 = 2Vn+1 — v

where afL2 < 1, div" is adjoint to V", and L is given by

[ Vhvh| 4 4
sup ==+
vhzo vl h b

L=|v"l=

The projection 7" = (7%,5%) of o/ ¢ B" is given by

EX = m(fx

ot =o'+46

qX :O.X

gtt =ot+ A

0 =60+@2+q)0+(1+29)0+q" - 3q"



Scheme MAC + Orthogonal projections

Scheme MAC is adaptive to this method. Here are some results.

e In case of A = 2.
Optimal v exhibits two plateaus corresponding to solution ug and g



e In the case of A = 4.

Optimal v exhibits two plateaus corresponding to solution uj.
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Optimal v has only one plateau corresponding to solution ug.

e In the case of A = 1.



THANK YoOU!
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