A DUALITY PRINCIPLE FOR NON CONVEX VARIATIONAL PROBLEMS, NUMERICAL EXAMPLES

PHAN Tran Duc Minh
IMATH, University of Toulon (FRANCE)
joint work with:

Guy BOUCHITTÉ (IMATH, University of Toulon) Ilaria FRAGALÀ (Politecnico di Milano)

> Benasque September 1, 2015

A non convex problem

Let Ω be a bounded domain of \mathbb{R}^N . We consider the problem

$$\mathcal{I}(\Omega) := \inf_{u \in H^1(\Omega)} \left\{ \int_{\Omega} \left(\varphi(\nabla u) + g(u) \right) dx : u = u_0 \text{ on } \partial \Omega \right\}, \quad (1)$$

where $\varphi:\mathbb{R}^N \to [0,+\infty)$, $g:\mathbb{R} \to [0,+\infty)$ are functions such that

- $\varphi(z)$ is convex continuous, $\varphi(0) = 0$;
- ▶ g(t) is lower semicontinuous and $\exists M$ countable such that for $t \in \mathbb{R} \backslash M$, $\limsup_n g(t_n) \leq g(t)$ whenever $t_n \to t$;
- ▶ there exist $\alpha, \beta > 0$: $\alpha |z|^2 \le \varphi(z) + g(t) \le \beta(1 + |z|^2)$.

For simplicity, we assume that $u_0 = 0$.

We emphasize that g is not assumed to be convex.

Example

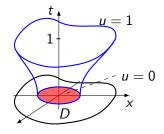
$$arphi(z) = rac{|z|^2}{2}, \quad g(t) = egin{cases} \lambda & ext{if } t > 0 \\ 0 & ext{if } t \leq 0 \end{cases},$$
 $\mathcal{I}(\Omega) = \inf \left\{ \int_{\Omega} \left[rac{|
abla u|^2}{2} + g(u) \right] dx : u = 1 ext{ on } \partial\Omega
ight\}.$

 \sim Free boundary Pb in term of $D = \{u > 0\}$, u solves

$$\begin{cases} -\Delta u_D = 0 \text{ in } D \\ u_D = 1 \text{ on } \partial \Omega \\ u_D = 0 \text{ in } \Omega \backslash D. \end{cases}$$

→ Shape functional

$$J: D \to \lambda |D| + \frac{1}{2} \int_{\Omega} |\nabla u_D|^2.$$



Pb in 1D case

Let N = 1, $\Omega = (0, h)$, the Pb is stated as

$$\mathcal{I}(\lambda, h) = \inf \left\{ \int_0^h \frac{u'^2}{2} dx + \lambda |\{u > 0\}| \middle| \begin{array}{c} u(0) = 1 \\ u(h) = 1 \end{array} \right\}. \tag{2}$$

Taking first integral of Euler's equation, -u'' + g'(u) = 0, we have

$$u'\varphi'(u') - [\varphi(u') + g(u)] = \mu$$

$$\Leftrightarrow u'.u' - \left(\frac{u'^2}{2} + \lambda 1_{\{u>0\}}\right) = \mu$$

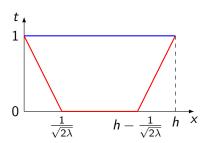
$$\Leftrightarrow u' = \pm \sqrt{2\left(\mu + \lambda 1_{\{u>0\}}\right)}.$$

Solutions are piecewise affine functions of slopes in $\Big\{0,\pm\sqrt{2}\sqrt{\lambda}\Big\}.$

Thus, solutions are $\bar{u}_0 \equiv 1$ or of the form:

$$\bar{u}_1(x) = \begin{cases} -\sqrt{2}\sqrt{\lambda}x + 1 & \text{if } 0 \leq x \leq \frac{1}{\sqrt{2}\sqrt{\lambda}} \\ 0 & \text{if } \frac{1}{\sqrt{2}\sqrt{\lambda}} < x < h - \frac{1}{\sqrt{2}\sqrt{\lambda}} \\ \sqrt{2}\sqrt{\lambda}x - (\sqrt{2}\sqrt{\lambda}h - 1) & \text{if } h - \frac{1}{\sqrt{2}\sqrt{\lambda}} \leq x \leq h. \end{cases}$$

The problem reaches its minimum: $\mathcal{I}(\lambda,h) = \min\{\lambda h, 2\sqrt{2}\sqrt{\lambda}\}$. As $h = \frac{2\sqrt{2}}{\sqrt{\lambda}}$, the problem has at least two solutions, \bar{u}_0 and \bar{u}_1 .



Duality framework(Constrained flow optimization)

We set \mathcal{B} the class of fields $\sigma = (\sigma^x, \sigma^t) \in (L^{\infty}(\Omega \times \mathbb{R}))^{N+1}$ satisfying the following conditions:

(s1) div
$$\sigma = 0$$
 in $\Omega \times \mathbb{R}$;

(s2)
$$\sigma(x,t) \in C(t)$$
 a.e. $(x,t) \in \Omega \times \mathbb{R}$;

(s3)
$$\forall t \in M, 0 \le \sigma^t(x, t) + g(t) \text{ a.e. } x \in \Omega.$$
 (*)

Here
$$C(t) = \{(q^{\mathsf{x}}, q^t) \in \mathbb{R}^{N} \times \mathbb{R} \big| \varphi^*(q^{\mathsf{x}}) - g(t) \leq q^t \}.$$

Lemma 1 [Bouchitté, Fragalà]

For every $u \in H_0^1(\Omega)$ and for every $\sigma \in \mathcal{B}$, one has

$$-\int_{\Omega}\sigma^{t}(x,0)dx\leq\int_{\Omega}[\varphi(\nabla u)+g(u)]dx$$

(*) (s3) can be dropped if g is continuous, $\sigma^t(\cdot, t)$ coincides with the normal flow across the hyperplane $\{x_{N+1}\}$.

Geometrical interpretation

$$\varphi^*(\sigma^X) - g(t) \leq \sigma^t \text{ a.e. in } \Omega \times \mathbb{R}.$$

$$v = 1_u(x,t) = \begin{cases} 1 & \text{if } t \leq u(x) \\ 0 & \text{if } t > u(x) \end{cases}$$

$$\nu_u = \frac{1}{\sqrt{1+|\nabla u|^2}}(\nabla u, -1) \text{ is the unit normal to the graph } G_u.$$

$$-\int_{G_{\nu_0}} \sigma.\nu_{\nu_0} dH^N = \int_{\Omega \times \mathbb{R}} \sigma.D1_u$$

$$= \int_{\Omega} \left[\sigma^X(x, u(x)).\nabla u(x) - \sigma^t(x, u(x)) \right] dx$$

$$\leq \int_{\Omega} \left[\varphi^*(\sigma^X) + \varphi(\nabla u) - \sigma^t \right] dx$$

$$\leq \int_{\Omega} \left[\varphi(\nabla u) + g(u) \right] dx$$
If $u_0 = 0$ then
$$\int_{G_{\nu_0}} \sigma.\nu_{\nu_0} dH^N = \int_{\Omega} \sigma^t(x, 0) dx.$$

Dual Pb holds in dimension N+1

Let us define

$$S(\Omega) := \sup_{\sigma \in \mathcal{B}} \left\{ -\int_{\Omega} \sigma^{t}(x,0) dx \right\}. \tag{3}$$

Then $\mathcal{I}(\Omega) \geq \mathcal{S}(\Omega)$ (Lemma 1).

Theorem

It holds $\mathcal{I}(\Omega) = \mathcal{S}(\Omega)$.

Sketch of proof.

$$u \rightsquigarrow v = 1_u(x,t) \in \mathcal{A}_0$$
 where

$$\mathcal{A}_0 = \left\{ \begin{aligned} v(x,t) : \Omega \times \mathbb{R} \to [0,1] \middle| & v(x,\cdot) \text{ is decreasing }, \\ v(x,+\infty) = 0, v(x,-\infty) = 1, \\ \textit{Dv is a bounded measure }. \end{aligned} \right\}$$

• $\mathcal{I}(\Omega)$ can be reformulated as: $\inf\{F(v), v \in \mathcal{A}_0\}$ where $F(v) = \int_{\Omega \times \mathbb{R}} h(t, Dv), \quad h(t, p) := -p^t(\varphi(-\frac{p^x}{p^t}) + g(t)).$ Let $u_s(x) := \inf\{\tau \in \mathbb{R} : v(x, \tau) \leq s\}$ for $s \in [0, 1].$

Lemma 2

If $F(v)<+\infty$, for $v\in\mathcal{A}_0$, then for a.e. $s\in[0,1]$, one has $u_s\in H^1_0(\Omega)$ and $F(v)=\int_0^1\left(\int_\Omega[\varphi(\nabla u_s)+g(u_s)]dx\right)ds$.

Remark. If $v = 1_u$ then $u_s = u$ for a.e. $s \in [0, 1]$. Consequence.

If v is solution of $\inf\{F(v), v \in A_0\}$ then $\forall s \in [0,1]$, u_s is solution of $\mathcal{I}(\Omega)$.

• F(v) can be rewritten as $F(v) = \sup \left\{ \int_{\Omega \times \mathbb{R}} \sigma. Dv : \sigma \in \mathcal{B} \right\}$.

$$\mathcal{I}(\Omega) = \inf_{v \in \mathcal{A}_0} \sup_{\sigma \in \mathcal{B}} \left\{ \int_{\Omega \times \mathbb{R}} \sigma.Dv \right\} = \sup_{\sigma \in \mathcal{B}} \inf_{v \in \mathcal{A}_0} \left\{ \int_{\Omega \times \mathbb{R}} \sigma.Dv \right\} = \mathcal{S}(\Omega)$$

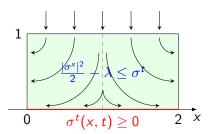
Numerical computation of optimal flow

We treat the case

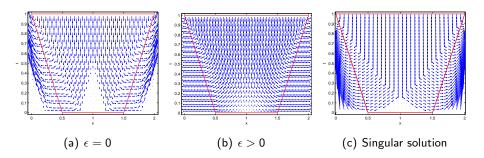
$$\Omega = [0,2], \qquad g(t) = \begin{cases} \lambda & \text{if } t > 0 \\ 0 & \text{if } t \leq 0, \end{cases} \qquad \lambda = 2,$$

$$\mathcal{S}_{\epsilon}(\Omega) := \sup_{\sigma \in \mathcal{B}} \left\{ -\int_{\Omega} \sigma^t(x,1) dx - \epsilon \int_{\Omega \times [0,1]} |\sigma|^2 : \epsilon \geq 0 \right\}.$$

- $ightharpoonup \epsilon = 0$ the critical dual Pb
- $\epsilon > 0$ viscosity term (\leadsto uniqueness of solution)



Numerics (Matlab toolbox + 2D Finite element)



• Singular solution (c) is constructed by symmetrization of gradient rotated, $\sigma = (\partial_t V, -\partial_x V)$, of value function:

$$V(x,t) := \inf \left\{ \int_0^x \frac{u'^2}{2} dx + \lambda |\{u > 0\}| \middle| u(0) = 1, u(x) = t \right\}.$$

• Time of computation is very high. Matlab toolbox is not good for non linear constrained optimization Pb.

Min-max Formulation

Let $L(v, \sigma) := \int_{\Omega \times \mathbb{R}} \sigma.Dv$. As we have known

$$\mathcal{I}(\Omega) = \inf_{v \in \mathcal{A}_0} \sup_{\sigma \in \mathcal{B}} L(v, \sigma) = \sup_{\sigma \in \mathcal{B}} \inf_{v \in \mathcal{A}_0} L(v, \sigma) = \mathcal{S}(\Omega)$$

We now seek the saddle point of min-max problem

$$\inf_{v \in \mathcal{A}_0} \sup_{\sigma \in \mathcal{B}} L(v, \sigma)$$

Recall that $(\bar{v}, \bar{\sigma})$ is solution of the problem min-max if

$$L(\bar{v}, \sigma) \leq L(\bar{v}, \bar{\sigma}) \leq L(v, \bar{\sigma}), \forall v \in A_0, \sigma \in \mathcal{B}$$

Remark. Once when \bar{v} is determined, we will obtain u_s as optimal solution of $\mathcal{I}(\Omega)$ (Lemma 2).

Discretization settings

Back to the previous Free boundary Pb. Let $\Omega = (0, 2)$, $\Sigma = \Omega \times (0, 1)$. Note that

$$\int_{\Sigma} \sigma.Dv = \int_{\Sigma} \sigma.D(v-1) = \int_{\Sigma} -(v-1)\operatorname{div} \sigma + \int_{\partial\Sigma} (v-1)(\sigma.n)ds.$$

$$A = \left\{ v(x,t) \in BV(\Sigma) \middle| \begin{array}{c} v(\cdot,0) = 1, v(\cdot,1) = 0, \\ v(0,\cdot) = v(h,\cdot) = 1 \end{array} \right\}.$$

The min-max problem reads

$$\sup_{\sigma} \inf_{v \in A} \left\{ \int_{\Sigma} -(v-1) \operatorname{div} \sigma - \int_{\Omega} \sigma^{t}(x,1) dx \right\}$$

$$= \sup_{\sigma} \left\{ -\int_{0}^{h} \sigma^{t}(x,1) dx : \operatorname{div} \sigma = 0 \right\}.$$

Discretization settings:

We consider a two-dimensional Cartesian grid G^h of size $n_x \times n_t$. Let h_x , h_t are steps and (i,j) is location on the grid.

$$G^{h} = \{(ih_{x}, jh_{t}) : 0 \le i < n_{x}, 0 \le j < n_{t}\}$$

$$A^{h} = \left\{v^{h} \in \mathbb{R}^{n_{x}n_{t}} : v_{i,0}^{h} = 1, v_{i,n_{t}-1}^{h} = 0, v_{0,j}^{h} = v_{n_{x}-1,j}^{h} = 1\right\}$$

$$B^{h} = \left\{\sigma^{h} \in (\mathbb{R}^{2})^{n_{x}n_{t}} : (\sigma^{h})_{i,j} \in C(jh_{t})\right\}$$

The discrete minimax Pb

$$\min_{v^h \in A^h} \max_{\sigma^h \in B^h} \left\langle \nabla^h v^h, \sigma^h \right\rangle$$

Orthogonal projections

Consider the projection

$$\begin{cases} \sigma_{n+1}^h = \operatorname{Proj}_{\mathcal{B}^h}(\sigma_n^h + \alpha \nabla^h \overline{v}_n^h) \\ v_{n+1}^h = v_n^h - \beta(\operatorname{div}^h \sigma_{n+1}^h) \\ \overline{v}_{n+1}^h = 2v_{n+1}^h - v_n^h \end{cases}$$

where $\alpha \beta L^2 < 1$, div^h is adjoint to ∇^h , and L is given by

$$L = \|\nabla^h\| = \sup_{\|v^h\| \neq 0} \frac{\|\nabla^h v^h\|}{\|v^h\|} = \sqrt{\frac{4}{h_x^2} + \frac{4}{h_t^2}}$$

The projection $\overline{\sigma}^h=(\overline{\sigma}^x,\overline{\sigma}^t)$ of $\sigma^h\notin B^h$ is given by

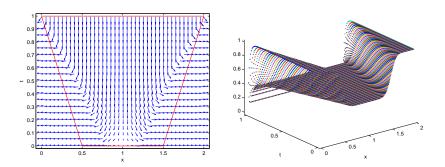
$$\begin{cases} \overline{\sigma}^{\mathsf{x}} &= \frac{1}{1+\theta} \sigma^{\mathsf{x}} \\ \overline{\sigma}^{t} &= \sigma^{t} + \theta \end{cases}$$

$$\begin{cases} q^{\mathsf{x}} &= \sigma^{\mathsf{x}} \\ qt^{t} &= \sigma^{t} + \lambda \end{cases}$$

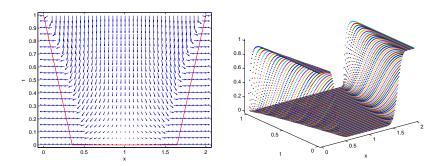
$$0 &= \theta^{3} + (2+q^{t})\theta^{2} + (1+2q^{t})\theta + q^{t} - \frac{1}{2}|q^{\mathsf{x}}|^{2}$$

Scheme MAC + Orthogonal projections

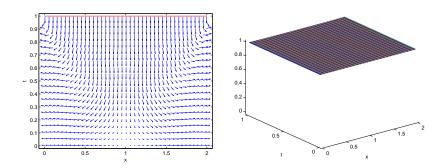
Scheme MAC is adaptive to this method. Here are some results.



• In case of $\lambda = 2$. Optimal v exhibits two plateaus corresponding to solution u_0 and u_1



• In the case of $\lambda=4$. Optimal v exhibits two plateaus corresponding to solution u_1 .



• In the case of $\lambda=1$. Optimal v has only one plateau corresponding to solution u_0 .

THANK YOU!