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Eigenvalue problem 
 

We want to mix two materials (electric, thermal,…)  given by their diffusion 
constants !, ! with 0 < !<! in order to minimize the first eigenvalue of the operator 
 

! ∈ !!! Ω ⟼ −div !!! + !(1− !!) ∇!  
 
with Ω ⊂ ℝ! , ! ≥ 2, under the restriction ! ≤ !, with 0 < ! < Ω , i.e., we 
consider  
 

Λ! !!!!!!min
! !!

min
!∈!!! !

!!! + !(1− !!) ∇! !!"!

! !!"!
. 

 
Remark: If ! = Ω , the solution is the trivial one ! = Ω. 
 



In order to give some physical interpretation of the problem, we recall: 

If !!is the solution of 

!!! − div !!! + ! 1− !! ∇! = 0!!in!ℝ!×Ω!
! = 0!!on#R+×!Ω

!|!!! = !!
 

Then  
!(!) !! ! ≤ !! !! ! !!!!! ,!!!!!∀! ≥ 0. 

 
Thus our problem can be used to obtain the optimal distribution of two materials in 
heat conduction in order to obtain the most insulated one 

 



Compliance problem 
 

Ω ⊂ ℝ! ,! ≥ 2,!!bounded,(open, 
! > ! > 0,!!0 < ! < Ω , ! ∈ !!! Ω   

 

max
! !!

!!! + !(1− !!) ∇!! !!"
!

 

 
−div !!! + !(1− !!) ∇!! = !!in!Ω!

!! = 0!on!!Ω.  

 
Remark: If  ! ≥ Ω , the solution is the trivial one ! = Ω. 
 

 
 
 



Remark: This problem has been specially studied if  ! = 2, ! = 1  

(F. Murat - L. Tartar 1985, J. Goodman - R.V. Kohn - L. Reyna 1986) 

 

Assuming Ω! simply connected,  it consists in mixing two isotropic elastic 
materials in the cross-section of a beam in order to minimize the torsion. 

 

It also applies to the optimal arrangement of two viscous fluids moving 
parallel to the axis of a pipe (Poiseuille flow) in order to maximize the flux 

 

 
 
 



Using 

!!! + ! 1− !! ∇!! !!"
!

 

= − !!! + ! 1− !! ∇!! !!"
!

− 2 ≺ !,!! ≻  

= − min
!∈!!! !

!!! + ! 1− !! ∇! !!"
!

− 2 ≺ !,! ≻ . 
 
The problem can be stated as 

min
!∈!!! !
! !!

!!! + ! 1− !! ∇! !!"
!

− 2 ≺ !,! ≻  

 
 
F. Murat (1972): This type of problems has not solution in general. Thus, it it 
is usual to work with a relaxation. 
 



F. Murat, L. Tartar (1985). A relaxation is given by replacing  
!!! + !(1− !!) by the armonic mean value of ! and ! with proportions  
! and 1−!, with ! ∈ !! Ω; 0,1 , i.e. 

min
!∈!!! !

!∈!! !; !,! , !! !"!!

!" ∇! !

!" + ! 1− ! !"
!

− 2 ≺ !,! ≻  

= ! min
!∈!!! !

!∈!! !; !,! , !! !"!!

∇! !

1+ !" !"!
− 2 ≺ !,! ≻  

 

or!!!!!
max

!∈!! !; !,! , !! !"!!

∇!! !

1+ !" !"!

−div ∇!!
1+ !" = !!in!Ω,!!!!!! = 0!on!!Ω

 

 

! = ! − !
! ,!!! = 1

! ! 



Another formulation (F. Murat, L. Tartar (1985)).  
Recall: If 𝑢𝜃  is the solution of  

−div
∇𝑢𝜃
1 + 𝑐𝜃

= 𝑓  in  Ω, 𝑢𝜃 = 0  on  𝜕Ω.   

Then, 𝜎𝜃 =
∇𝑢𝜃
1+𝑐𝜃

  is the solution of min
𝜎∈𝐿2(Ω)𝑁

−div𝜎=𝑓  in  Ω

∫ (1 + 𝑐𝜃)|𝜎|2𝑑𝑥Ω . 

 

Thus                       min
𝜃∈𝐿∞ (Ω;[0,1]),∫ 𝜃Ω 𝑑𝑥≤𝜅

     min
𝑢∈𝐻01(Ω)

LM
|∇𝑢|2

1 + 𝑐𝜃
𝑑𝑥

Ω
− 2 ≺ 𝑓, 𝑢 ≻P 

 

= − max
𝜃∈𝐿∞ (Ω;[0,1]),∫ 𝜃Ω 𝑑𝑥≤𝜅

min
𝜎∈𝐿2(Ω)𝑁

−div𝜎=𝑓  in  Ω

M (1 + 𝑐𝜃)|𝜎|2𝑑𝑥
Ω

 

= − min
𝜎∈𝐿2(Ω)𝑁

−div𝜎=𝑓  in  Ω

max
𝜃∈𝐿∞ (Ω;[0,1]),∫ 𝜃Ω 𝑑𝑥≤𝜅

M (1 + 𝑐𝜃)|𝜎|2𝑑𝑥
Ω

 

 
 



Remark:  

The!functional!!!⟼ max
!∈!∞ Ω; !,! , !Ω !"!!

1+ !" ! !!"
Ω

 

is strictly convex. So the problem 

min
!∈!! Ω !

!div!!!!in!Ω

max
!∈!∞ Ω; !,! , !Ω !"!!

1+ !" ! !!"
Ω

 

 
has a unique solution !, i.e. although the solution !,!  of 

min
!∈!!! Ω

!∈!∞ Ω; !,! , !Ω !"!!

∇! !

1+ !" !"Ω
− 2 ≺ !,! ≻  

 
can be not unique, ! = ∇!

!!!! is unique. 
 
 
 



Taking the minimum in ! in  

min
!∈!!! !

min
!∈!! !; !,! , !! !"!!

∇! !

1+ !" !"!
− 2 ≺ !,! ≻ , 

 
we deduce the existence of  ! > 0 such that ! is a solution of 
 

min
!∈!!! !

!( ∇! )!"
!

− 2 ≺ !,! ≻  

 
with ! ∈!!,!(0,∞) given by 
 

2! ! =
!! if!0 ≤ ! ≤ !

2!" − !! if!! ≤ ! ≤ (1+ !)!
!!
1+ ! + !

! if! 1+ ! ! ≤ !.
 

 
Besides!! = 1!if! ! < !,!!! = 0!if! ! > !.!Thus! !,! !is#unique#in! ! ≠ !  



𝑟 = 𝐹(𝑠)	  



We  have then proved that 𝑢 is a solution of the nonlinear problem 
 

"−div'
𝐹′(|∇𝑢|)
|∇𝑢|

∇𝑢. = 2𝑓  in  Ω

𝑢 = 0  on   ∂Ω.

� 

 
The main difficulty is that the problem has not good ellipticity properties to 
get 𝑢 twice derivable. 
 
 We will prove that  

𝜎 =
∇𝑢

1 + 𝑐𝜃
=
𝐹′(|∇𝑢|)
2|∇𝑢|

∇𝑢 

 
is derivable. 
 



We  have then proved that 𝑢 is a solution of the nonlinear problem 
 

"−div'
𝐹′(|∇𝑢|)
|∇𝑢|

∇𝑢. = 2𝑓  in  Ω

𝑢 = 0  on   ∂Ω.

� 

 
The main difficulty is that the problem has not good ellipticity properties to 
get 𝑢 twice derivable. 
 
 We will prove that  

𝜎 =
∇𝑢

1 + 𝑐𝜃
=
𝐹′(|∇𝑢|)
2|∇𝑢|

∇𝑢 

 
is derivable. 
 



Theorem (JCD):  Assume Ω ∈ !!,! 
 

! ∈!!!,! Ω ,!!!2 ≤ ! < ∞!⟹ ! ∈ !! Ω ! 
 

! ∈ !! Ω ,!!!! < !!⟹ ! ∈ !! Ω ! 
 

! ∈!!,! Ω ∩ !! Ω !⟹ ! ∈ !! Ω ! ,!!!! ! = 0!on!!Ω
!!!!! − !!!!! ∈ !! Ω ,!!!!1 ≤ !, ! ≤ !The main  

 
! denotes the orthogonal projection on the tangent space. 
 
Kowhl, Stara, Wittum, 1991: Local estimates for !!in !!"#!,! Ω  
 
 



Proposition: ! 
If ! ∈!!,! Ω ∩ !! Ω , and there exists an unrelaxed solution (! = !!), then  
curl(!) = 0. 
 
If Ω is simply connected,!Ω ∈ !!,!, then ! = ∇!, with ! the unique solution of  

−∆! = !!!in!Ω
! = 0!on!!Ω  

Moreover, if ω is smooth, then !ω must be composed by surface levels of  the 
corresponding function ! and  !"!" = constant on these surface levels. 
 
 
Proof. It is essentially a consequence of 

!!!!! − !!!!! ∈ !! Ω ,!!!!1 ≤ !, ! ≤ ! 
 
Remark: The above conclusions appear in  F. Murat, L. Tartar 1985, but assuming 
the solution smooth. 
 
 



Theorem (F. Murat, L. Tartar): !Ω ⊂ ℝ! smooth, simply connected. We assume 
that the problem 

max
! !!

!!! + !(1− !!) ∇!! !!"
!

 

 
−div !!! + !(1− !!) ∇!! = 1!in!Ω!

!! = 0!on!!Ω!  

has a solution and that the interfaces are smooth. Then Ω is a circle. 
 
 
Theorem (JCD): The previous results allow us to eliminate the assumption that 
the interfaces are smooth. The result holds in ℝ! ,! ≥ 2, assuming Ω smooth, 
simply connected, with connected boundary. 
 
 
 
 



Sketch of the proof: If there exists a solution (!,!), then 
!!! + !(1− !!) ∇! = ∇! 

with ! solution of 
−∆!=1!in!Ω!
! = 0!on!!Ω. 

 
Moreover, ∃! > 0 such that 

∇! < ! ⊂ ! ⊂ ∇! ≤ ! . 
Using  

−∆ ∇! !=− 2 !!! !!in!Ω 
we can use Hopf’s Lemma to find !! ∈ Ω, with  

∇! (!!) = !, ∇ ∇! (!!) ≠ 0. 
Then ∇! = !  is an analytic manifold in a neighborhood of  !!. 
  
By the optimality conditions, it agrees with ! = ! , for some ! > 0.  
 
Thanks to the analyticity, ∃ a connected component Ε!of ! = ! , where 
∇! = ! . We prove it is an analytic variety manifold without boundary. 

 



By Jordan-Brower’s Theorem ! = !", ! ⊂ Ω, ! an open set with analytic 
boundary.  
 
Then, !!satisfies 

−∆!=1!!in!C!
! = !,!!!! !"!" = ±!!!on!!C. 

 
Here we follow Murat-Tartar’s proof: 
By Serrin’s Theorem C is a ball and ! is radial in C. By analyticity,  ! is in fact 
radial in Ω. 
 
Then, Ω is a ball. 



Return to the eigenvalue problem 
 

Λ! !!!!!!min
! !!

min
!∈!!! !

!!! + !(1− !!) ∇! !!"!

! !!"!
 

 
Remark: For ! ∈ !! Ω !, elliptic, 

!! ! = min
!∈!!! !

!∇! ∙ ∇!!!"!

! !!"!
 

 

can$be$characterized$as!!!!!!!!!!!!! 1
!! !

= max
!!"# !∇! !!
!∈!!! !
! !! ! !!

!∇! ∙ ∇!!!"
!

 

= − !! min
!∈!!! !
! !! ! !!

!∇! ∙ ∇!!!"
!

− 2 !"!!"
!

. 



 
Thus, we have the relaxed formulation 
 

(Λ𝑚)           min
‖𝑓‖𝐿2(𝛺)≤1

     min
𝑢∈𝐻01(𝛺)

∫ 𝜃𝑑𝑥 ≤𝜅𝛺

9:
|𝛻𝑢|2

1 + 𝑐𝜃
  𝑑𝑥

𝛺
− 2: 𝑓𝑢  𝑑𝑥

𝛺
@                   𝑐 =

𝛽 − 𝛼
𝛼

 

 
 
The regularity results for the compliance  problem can then be applied. 
 
Theorem: Assume Ω ∈ 𝐶1,1,  then 

𝜎 =
∇𝑢

1 + 𝑐𝜃
∈ 𝐻1(𝛺)𝑁 ∩ 𝐿∞(𝛺)𝑁,        𝜕𝑖𝜃𝜎𝑗 − 𝜕𝑗 𝜃𝜎𝑖 ∈ 𝐿2(Ω),        1 ≤ 𝑖, 𝑗 ≤ 𝑁.   

 
 



Theorem: Assume there exists an unrelaxed  solution 𝜒𝜔  for (Λm). Then,  
𝜎 = )𝛼𝜒𝜔 + 𝛽(1 − 𝜒𝜔)/𝛻𝑢 ∈ 𝑊2,𝑝(Ω),        ∀𝑝 ∈ [1,∞),      curl𝜎 = 0 

Moreover, if there exist two open sets 𝑂 ⋐ 𝑈 ⊂ Ω, 𝑂 ∈ 𝐶2, such that 𝜒𝜔 = 𝑟  in 𝑂, 𝜒𝜔 =
1 − 𝑟  in 𝑈\O. Then, 𝑂 is a sphere. 
 
Proof.                                   

It  is  a  consequence  of   S
−∆𝑢 = 𝜆1𝑢      in  𝑂

𝑢 = constant  on  𝜕𝑂,       𝜕𝑢
𝜕𝜈
= constant  on  𝜕𝑂.

� 

 
and Serrin’s theorem. 
 
 

It would be only possible if the  
interior blue zones were circles  



Counterexample: Ω = #− 𝜋
4
, 𝜋
4
( × #− 𝜋

2
, 𝜋
2
(
𝑁−1

,   𝛼 = 1, 𝛽 = 2.  For 𝜀 > 0 small enough the 
solutions 𝜃 of 

min8
∫

|∇𝑢|2
1 + 𝜃 𝑑𝑥Ω

∫ |𝑢|2𝑑𝑥Ω

:  𝑢 ∈ 𝐻01(Ω), 𝜃 ∈ 𝐿∞(Ω, [0,1]),I 𝜃𝑑𝑥
Ω

≤ |Ω| − 𝜀K 

 
is not a characteristic 
 
Proof. If L𝜒𝜔𝜀 , 𝑢𝜀O were a solution  then 𝑢𝜀 ≈ cos(2𝑥1)∏ cosL𝑥𝑗 O𝑁

𝑗=2 . 
∃  a  smooth  connected  component  𝑂𝜀   of    Ω\𝜔𝜀,,           

 

𝑂𝜀 ≈ `
𝑥12

8
+b

𝑥𝑖2

2

𝑁

𝑖=2
= 1 − 𝑐𝜀e,            𝑐𝜀 ↘ 0 

 



Remark: The properties of Ω we use  are that Ω is simply connected and that the positive 
eigenfunction corresponding to the first eigenvalue of  
 

−∆u = λu! in!!Ω
u = 0!on! ∂Ω  

 
attains his maximum in a unique point !! and !!!(!!) is regular and non-scalar. 
Using symmetry arguments this can be proved for example if  Ω is an ellipsis, which is not a 
circle. 
 
Theorem: (A. Alvino, P.L. Lions, G. Trombetti, 1987). If  Ω is a ball in ℝ! there exists a 
solution  for the (unrelaxed) eigenvalue problem. Moreover it is radial. 

The exact form of the solution for a ball is a problem which has been considered by several 
authors  

C. Conca, A. Laurain, R. Mahadevan, A. Mohammadi, L. Sanz, M. Yousefnezhad.,… 

It seems to be an open problem. 



Theorem (JCD): Assume Ω ∈ !!,!, simply connected, with connected boundary. If the 
eigenvalue problem has an optimal solution then Ω is a ball. 
 

Sketch of the proof: Assume !,!  a solution. We know  

!!! + !(1− !!) ∇! = ∇! 
with ! solution of 

−∆!=!"!!in!Ω!
! = 0!on!!Ω.  

 
Moreover, ∃! > 0 such that 

∇! < ! ⊂ ! ⊂ ∇! ≤ ! . 
 
Using that locally ! = ! ! ,!we show that ∀!! ∈ Ω,!!such%that!! 

!!!!!!! 
! !!, ! ∩ ! , ! !!, ! ∩ Ω\! > 0,!!!∀! > 0 

 
∃ ! open  of class !!,!,  ∀! > 1 with  ! ⊂ Ω, such that on!!",! is constant, !! ∈ Ω,
∇! =!, and ∃! Lipschitz with ! = !(!) in a neighborhood of !". 



The arguments are something different of the previous ones. We do not have 
analyticity and ∆ ∇! ! has not a determined sign.  
 
We take ! minimal in the sense ∄ another set contained in ! in these conditions. 
Then, ! satisfies 
 

−∆!=λ!(!)!!in!C!
! = !,!!!! !"!" = ±!!!on!!C. 

 
for some ! Lipschitz.. Moreover, ! = !(!)!!in a neighborhood of !. 
By Serrin’s Theorem C = !(!!, !) and ! is radial in C.  
 
Now, we define ! by 

! = sup ! > 0:!!is#radial#in!! !0, ! ,!!!! !0, ! ⊂ Ω,

! = ! ! !neighborhood!of!! !0, ! . 
By  a unique continuation argument, we show Ω = !! !!,! . 



Numerical experiments. 
 
Problem Ω = #− 𝜋

2
, 𝜋
2
( × #− 𝜋

4
, 𝜋
4
( , |Ω| ≈ 4,935, 𝛼 = 1, 𝛽 = 2 

 

min
∫

|∇𝑢|2
1 + 𝜃 𝑑𝑥Ω

∫ |𝑢|2𝑑𝑥Ω

 

 

𝑢 ∈ 𝐻01(Ω),B 𝜃𝑑𝑥
Ω

≤ 𝜅 

 
 



! = 1,! = 2, ! = 4.685 



! = 1,! = 2, ! = 4.435 



! = 1,! = 2, ! = 3.935 



! = 1,! = 2, ! = 3.435 



! = 1,! = 2, ! = 2.935 



! = 1,! = 2, ! = 2.435 



! = 1,! = 2, ! = 1.935 



! = 1,! = 2, ! = 1.435 



! = 1,! = 2, ! = 0.935 



! = 1,! = 2, ! = 0.435 



! = 1,! = 2, ! = 0.46 



Problem Ω = − !
! ,

!
! × − !

! ,
!
! , Ω ≈ 4,935, ! = 1,! = 20 

 

min
∇! !

1+ 19! !"!

! !!"!
 

 

! ∈ !!! Ω , !"#
!

≤ ! 

 
 



! = 1,! = 20, ! = 3.935 



! = 1,! = 20, ! = 2.935 



! = 1,! = 20, ! = 1.935 



! = 1,! = 20, ! = 0.935 



! = 1,! = 20, ! = 0.435 



Remark. Similar results can be obtained for the probems (! > 1) 
 

max
! !!

!!! + !(1− !!) ∇!! !!"
!

 

 
−div !!! + !(1− !!) ∇!! !!!∇!! = !!in!Ω!

!! = 0!on!!Ω!  

 
and 

min
! !!

!!! + !(1− !!) ∇!! !!"
!

 

 
−div !!! + !(1− !!) ∇!! !!!∇!! = !!in!Ω!

!! = 0!on!!Ω,  

 
 
 



which admit the relaxed formulations 

min
!∈!! !; !,! , !! !"!!

!! min
!∈!!! !

∇! !

1+ !" !!! !"!
− ! ≺ !,! ≻  

 

with          ! = !
!

!
!!! − 1,!!!!!! = !

! ! 

 
and 
 

max
!∈!! !; !,!

!! !"!!

min
!∈!!! !

1− !" ∇! !!"
!

− ! ≺ !,! ≻  

 
with          ! = !!!

! ,!!!!!! = !
! ! 

 


