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Verena Bögelein, Universität Salzburg (Austria)

Christoph Scheven, Universität Duisburg-Essen (Germany)



The total variation flow

Ω ⊂ Rn bounded domain, T > 0, ΩT ∶= Ω × (0,T)

∂u
∂t

− div ( Du
∣Du∣

) = 0 in ΩT (1)

Boundary condition on the parabolic boundary:

u = uo on ∂parΩT

where

∂parΩT = (Ω × {0}) ∩ (∂Ω × (0,T))

and

uo∶Ω→ R



Existence results (non-complete list)
Since 2000 available for different notions of solutions (strong,
weak, entropy, ...)

Mazon, Andreau, Casselles, Ballester, Diaz, Moll, Bellettini &
Novaga, Bonforte & Figalli

Dealing with the initial value problem, i.e.

u(x,0) = uo(x) on Ω and u = 0 on ∂Ω × (0,T).

Different notions in order to prove existence for initial data

uo ∈ L2(Ω) or L1(Ω)

In any case all notions of weak solutions rely on the Anzellotti
pairing (a somewhat heavy tool from the theory of functions of
bounded variation)

Recently: Bögelein & D. & Marcellini: Flows related to
functionals from image reconstruction (cf. TV − L2)



Heuristics: An idea of Lichnevsky & Teman

Multiply by v − u where v∶ΩT → R coincides with u on the lateral
boundary ∂Ω × (0,T) and integrate over ΩT .

0 =∬
ΩT

ut(v − u)dxdt +∬
ΩT

Du
∣Du∣

⋅ (Dv −Du)dxdt =∶ I + II

We have:

I =∬
ΩT

vt(v − u)dxdt + 1
2∥v(0) − uo∥2

L2 − 1
2∥(v − u)(T)∥2

L2

By convexity of ξ ↦ ∣ξ∣:

II ≥∬
ΩT

(∣Dv∣ − ∣Du∣)dxdt



Variational formulation

Definition: A map u∶ΩT → R is called variational solution to the
total variation flow if

∬
ΩT

∣Du∣dxdt ≤∬
ΩT

∣Dv∣dxdt +∬
ΩT

vt(v − u)dxdt (2)

+ 1
2∥v(0) − uo∥2

L2 − 1
2∥(v − u)(T)∥2

L2

holds true for any v∶ΩT → R with v = u on ∂Ω × (0,T). Formally,
(2) and (1) are equivalent. ◻

Note: (2) can easily be formulated in the context of functions of
bounded variation.



Function spaces

The natural space: functions with bounded variation

BV(Ω) ∶= {u ∈ L1(Ω) ∶ ∥Du∥(Ω) <∞} ,

where the total variation is defined by

∥Du∥(Ω) ∶= sup{∫
Ω

u div G dx ∶ G ∈ C1
o(Ω,Rn), ∥G∥L∞ ≤ 1} .

Maps with values in BV(Ω)

v∶ (0,T)→ BV(Ω)

Problem: BV(Ω) is not separable.



Facts for BV(Ω)

▸ BV(Ω) is the dual of a separable Banach space Xo, i.e.

BV(Ω) = X∗

o

▸ Elements of Xo can be written as

g − div G with g ∈ C0
0(Ω) and G ∈ C0

0(Ω,R
n).



Time dependent function spaces

▸ v∶ (0,T)→ BV(Ω) is weak∗ measurable, iff

(0,T) ∋ t ↦ ⟨v(t), ϕ⟩ is measurable for any ϕ ∈ Xo

Here ⟨ ⋅ , ⋅ ⟩ denotes the natural pairing on BV(Ω) ×Xo.
▸ Natural spaces for the total variation flow:

Lp
w∗(0,T; BV(Ω)) with 1 ≤ p ≤∞,

i.e. weak∗ measurable mappings v∶ (0,T)→ BV(Ω) with

∫
T

0
∥v(t)∥p

BV(Ω)
dt <∞.



Boundary values for BV(Ω)

▸ Trace operator TΩ∶BV(Ω)→ L1(∂Ω) is not continuous with
respect to weak⋆ convergence; for example take Ωj ⋐ Ω
with

χΩj ↑ χΩ.

▸ Idea: Consider a larger reference domain Ω∗ with Ω ⋐ Ω∗.
▸ Given uo ∈ BV(Ω∗) the Dirichlet boundary condition u = u0

on ∂Ω is defined by requiring for u ∈ BV(Ω∗) that

u = uo a.e. on Ω∗ ∖Ω

▸ The affine space of all these functions is denoted by

BVuo(Ω) = uo +BV0(Ω).



Data

▸ Initial datum:
uo ∈ L2(Ω∗) ∩BV(Ω∗)

▸ Obstacle function:

ψ ∈ L2(Ω∗

T) ∩ L1
w∗(0,T; BVuo(Ω)), ψ(0)exists

▸ Compatibility:

uo ≥ ψ(0) a.e. on Ω∗

▸ Extension of uo:

There exists g ∈ L1
w∗(0,T; BVuo(Ω)) with ∂tg ∈ L2(Ω∗

T)

g(0) = uo a.e. on Ω and g ≥ ψ a.e.on Ω∗

T



Variational solutions

Definition: A map

u ∈ L∞(0,T; L2(Ω∗)) ∩ L1
w∗(0,T; BVuo(Ω))

with u ≥ ψ a.e. on ΩT is called variational solution to the
obstacle problem for the total variation flow if

∫
τ

0
∥Du∥(Ω∗)dt ≤ ∫

τ

0
∥Dv∥(Ω∗)dt +∬

Ωτ

∂tv(v − u)dxdt

− 1
2∥(v − u)(τ)∥2

L2 + 1
2∥v(0) − uo∥2

L2

holds true for a.e. τ ∈ [0,T] and any v ∈ L1
w∗(0,T; BVuo(Ω)) with

∂tv ∈ L2(Ω∗

T) and v(0) ∈ L2(Ω∗), v ≥ ψ a.e. in ΩT .



Remarks

▸ Why L∞−L2 instead of C0−L2? Solutions will be in general
not in this better functions space. The question whether or
not solutions are in C0−L2 is connected to uniqueness.

▸ Why τ ∈ [0,T] a.e. ? This is also connected to the missing
C0−L2 regularity. If this held true (and if ψ was more
regular), one could formulate the variational inequality on
ΩT and conclude (by a localization argument) that the
variational inequality holds for all τ ∈ [0,T].



Further remarks

▸ Why the extension property? This condition ensures
that the class of admissible testing functions is non-empty.

▸ Testing the variational inequality with g leads to
energy-estimates for solutions.

▸ As a consequence one also obtains that u attains the initial
datum in the usual L2-sense, i.e.

lim
τ↓0

1
τ ∫

τ

0
∥u(t) − uo∥2

L2 dt = 0.



Existence of variational solutions

Theorem (Bögelein, Duzaar, Scheven).

Let Ω ⋐ Ω∗ be a bounded Lipschitz domain and uo, ψ, g as
before. Then there exists a variational solution to the obstacle
problem for the total variation flow in the sense of the Definition
from before, which attains the initial datum uo in the usual
L2(Ω∗)-sense.



History (existence)

A non-complete list:

▸ Stationary case p = 1:
De Giorgi, De Giorgi-Colombini-Piccinini,
Carriero-Dal Maso-Leaci-Pascali

▸ Parabolic p-Laplacian:
Lions, Brezis, Alt-Luckhaus, Kinnunen, Lindqvist,
Bögelein-D-Mingione, Scheven

▸ porous medium equation:
Alt-Luckhaus, Bögelein-Lukkari-Scheven



Related problems

Our method of proof is stable enough to treat

▸ initial data in L2(Ω∗),
▸ the Cauchy-Dirichlet problem for the total variation flow

with time dependent boundary values, i.e.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

− div ( Du
∣Du∣

) = 0 in ΩT ,

u(0) = uo on Ω,

u = φ on ∂Ω × (0,T).

The initial datum uo∶Ω→ R and the lateral boundary values
φ∶∂Ω × (0,T)→ R are given.



Idea of proof

Building block: An existence result for regular obstacles:

⎧⎪⎪⎨⎪⎪⎩

ψ ∈ W1,1(Ω∗

T), ∂tψ ∈ L2(Ω∗

T), ∂tDψ ∈ L1(Ω∗

T),

ψ = uo on (Ω∗ ∖Ω) × (0,T).

Time discretization method: Subdivide (0,T]:

(0,T] =
`

⋃
j=1

((j − 1)h, jh] h ∶= T
`
.

Let
ψj ∶= ψ(jh), gj ∶= g(jh) j ∈ {0,1, . . . , `}.



Minimizing movements I

▸ Start with uo.
▸ Suppose that uj−1 ∈ L2(Ω∗) ∩BVuo(Ω), j ≥ 1 has already be

constructed.
▸ Minimize

F[v] ∶= ∥Dv∥(Ω∗) + 1
2h ∫Ω∗

∣v − uj−1∣
2

dx

in the class of functions

v ∈ L2(Ω∗) ∩BVuo(Ω), v ≥ ψj a.e. on Ω∗.

Note: gj is admissible.
▸ Denote the minimizer by uj.



Minimizing movements II

▸ Define u(h)∶ (−h,T]→ R by

u(h)(x, t) = uj(x) for t ∈ ((j − 1)h, jh], x ∈ Ω∗, j ∈ {0,1, . . . , `}.

▸ Goal: Prove energy estimates for u(h) independent of h
which ensure (after passing to a subsequence) the
convergence

u(h) ⇁ u weakly∗ in L∞w∗(0,T; BV(Ω∗)).

▸ This is the step where the regularity assumptions on ψ
enter.



Energy estimates I

Compare the energy of uj with the energy of uj−1 − ψj−1 + ψj:

∥Duj∥(Ω∗) + 1
2h ∫Ω∗

∣uj − uj−1∣
2

dx

≤ ∥Duj−1∥(Ω∗) + ∫
Ω∗

∣Dψj −Dψj−1∣dx + 1
2h ∫Ω∗

∣ψj − ψj−1∣
2
dx

≤ ∥Duj−1∥(Ω∗) +∬
Ω∗×((j−1)h,jh]

∣∂tDψ∣ + 1
2 ∣∂tψ∣

2
dxdt



Energy estimates II

For m ∈ N with mh ≤ T sum up the previous inequalities from
j = 1 to j = m:

∥Dum∥(Ω∗) + 1
2h

m

∑
j=1
∫
Ω∗

∣uj − uj−1∣
2

dx ≤ E(mh)

where

E(τ) = ∥Duo∥(Ω∗) +∬
Ω∗τ

∣∂tDψ∣ + 1
2 ∣∂tψ∣

2
dxdt

Note:

1
2h

m

∑
j=1
∫
Ω∗

∣uj − uj−1∣
2

dx ≤ 1
2 ∬Ω∗mh

∣ u(h)(t) − u(h)(t − h)
h

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=[∆−hu(h)](t)

∣
2
dxdt



Energy estimates III

sup
t∈[0,T]

∥Du(h)(t)∥(Ω∗) +∬
Ω∗T

∣[∆−hu(h)](t)∣2 dxdt ≤ 3 E(T)

After passing to a subsequence, this gives convergence

▸ u(h) ⇁ u weak ∗ in L∞w∗(0,T; BV(Ω∗)).

▸ ∆−hu(h) ⇁ ∂tu weakly in L2(Ω∗

T).

for some u ∈ L∞w∗(0,T; BVuo(Ω∗)) with ∂tu ∈ L2(Ω∗

T).



Minimality of u(h)

The minimality of uj, j ∈ {1, . . . , `}, implies a minimality property
of u(h). More precisely: u(h) minimizes the functional

F(h)[v] ∶= ∫
T

0
∥Dv(t)∥(Ω∗)dt + 1

2h ∬Ω∗T
∣v(t) − u(h)(t − h)∣2 dxdt

in the class of mappings

v ∈ L2(Ω∗

T) ∩ L1
w∗(0,T; BVuo(Ω∗)) v ≥ ψ(h) a.e. on Ω∗

T .1

1ψ(h) is defined similarly to u(h).



Exploiting Minimality I

Re-writing the minimality condition F(h)[u(h)] ≤ F(h)[v] gives:

∫
T

0
∥Du(h)(t)∥(Ω∗)dt

≤ ∫
T

0
∥Dv(t)∥(Ω∗)dt

+ 1
h ∬Ω∗T

[ 1
2 ∣v − u(h)∣2 − (v − u(h))(u(h) − u(h)(⋅ − h))]dxdt

Now choose the comparison function in the form

u(h) + s(v − u(h)), s ∈ (0,1],

Re-arranging terms and dividing by s > 0 leads to



Exploiting Minimality II

∫
T

0
∥Du(h)(t)∥(Ω∗)dt

≤ ∫
T

0
∥Dv(t)∥(Ω∗)dt

+ 1
h ∬Ω∗T

[ s
2 ∣v − u(h)∣2 − (v − u(h))(u(h) − u(h)(⋅ − h))]dxdt

Here send s ↓ 0:

∫
T

0
∥Du(h)(t)∥(Ω∗)dt

≤ ∫
T

0
∥Dv(t)∥(Ω∗)dt −∬

Ω∗T
(v − u(h))u(h) − u(h)(⋅ − h)

h
dxdt



Passing to the limit

Perform a partial integration in the second term of the right
hand side:

∫
T

0
∥Du(h)(t)∥(Ω∗)dt

≤ ∫
T

0
∥Dv(t)∥(Ω∗)dt +∬

Ω∗T
(v − u(h))v − v(⋅ − h)

h
dxdt

− 1
2h ∬Ω∗×[T−h,T]

∣v − u(h)∣2dxdt +∬
Ω∗×[−h,0]

∣v − uo∣
2
dxdt

Here, v has been extended by v(t) = v(0) for t < 0.

In the preceding inequality we can finally pass to the limit h ↓ 0
to conclude that the variational inequality holds true.



Proof for irregular obstacles

The main result follows by a two-step approximation scheme.

▸ Firstly, a mollification with respect to time allows the
reduction to obstacle functions with ∂tψ ∈ L2(Ω∗).

▸ Secondly (much more involved) a mollification with respect
to space allows the reduction to regular obstacles. Here
the regularity assumption that Ω is a bounded Lipschitz
domain enters. It is used to construct a mollification Mε[ψ]
of ψ such that it coincides with Mε[uo] in Ω∗ ∖Ω and that

∫
T

0
∥DMε[ψ]∥(Ω)dt Ð→ ∫

T

0
∥Dψ∥(Ω)dt as ε ↓ 0.

Here we use techniques developed by Carriero &
Dal Maso & Leaci & Pascali.



Thin obstacles

Theorem (Bögelein, Duzaar, Scheven).

Let Ω ⋐ Ω∗ be a bounded Lipschitz domain, uo ∈ L2 ∩W1,1(Ω∗).
For the obstacle ψ∶Ω∗

T → R suppose that

ψ − uo is upper semicontinuous on ΩT , spt(ψ − uo) ⋐ ΩT .

Then there exists u ∈ L∞(0,T; L2(Ω∗)) ∩ L1
w∗(0,T; BVuo(Ω))

solving the relaxed obstacle problem, i.e.

∫
τ

0
∥Du∥(Ω∗)dt + ∫

τ

0
[∫

Ω
(ψ − u+)

+
dσ]dt

≤ ∫
τ

0
∥Dv∥(Ω∗)dt +∬

Ωτ

∂tv(v − u)dxdt

− 1
2∥(v − u)(τ)∥2

L2 + 1
2∥v(0) − uo∥2

L2



Thin obstacles

holds true

▸ for a.e. τ ∈ [0,T]

▸ every v ∈ L1
w∗(0,T; BVuo(Ω)) with ∂tv ∈ L2(Ω∗

T),
v(0) ∈ L2(Ω∗) and v ≥ ψ on ΩT , satisfying that

v − uo is lower semicontinuous on ΩT .



The upper approximate limit

u+∶Ω∗ → R denotes the upper approximate limit of u ∈ BV(Ω∗):

u+(xo) ∶= inf{λ ∈ R ∶ lim sup
%↓0

∣{u > λ} ∩ B%(xo)∣
∣B%(xo)∣

= 0}.

We have

▸ u+(xo) = Lebesgue value of u at xo in points where u is
approximatively continuous;

▸ u+(xo) = larger jump value in approximate jump points.



De Giorgi measure

▸ For ε > 0 let

σε(E) = inf{∥χE∥(Rn) + 1
ε ∣B∣ ∶ B open, E ⊂ B}

▸ and then
σ(E) ∶= lim

ε↓0
σε(E) = sup

ε>0
σε(E).

▸ σ Borel measure (not σ-finite)
▸ σ(E) = 2Hn−1(E) whenever E is a Borel set contained in a

countable union of regular (n−1)-dimensional surfaces. In
general σ(E) /= 2Hn(E)

▸ One always has the bounds:

C1(n)Hn−1(E) ≤ σ(E) ≤ C2(n)Hn−1(E).



Remark

The solution may violate the obstacle constraint u ≥ ψ. This is
penalized in the variational inequality by the integral on the
left-hand side containing the De Giorgi measure. As a
consequence of the variational solution and σ ≈Hn−1 the
exceptional set {u+ < ψ} is small in the sense that there holds

H − dim(E ∩Rn−1 × {t}) ≤ n − 1 for a.e. t ∈ [0,T].



Thank you for your attention!


