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Setting of our

Optimal Design Problem

Bdd domain Ω ⊂ Rd , 0 < α < β, 0 < m < |Ω|
B ⊂ Ω measurable; A = Ω \ B; |B| = m.{

inf {λ(B) | B ∈ B}
B = {B ⊂ Ω measurable, |B| = m} (1)

−div(σ∇u) = λ(B)u in Ω

u = 0 on ∂Ω

σ = αχ
A

+ βχ
B

; λ(B) the first eigenvalue (ground state)

Simplicity : u is unique up to a multiplication constant
Unique by normalisation : u > 0 in Ω;

∫
Ω

u2dx = 1
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Setting of the problem (II)

A useful characterisation of the target

Rayleigh quotient

λ(B) = min
u∈H1

0 (Ω)

∫
Ω

(αχ
A

+ βχ
B

)|∇u|2dx∫
Ω
|u|2dx
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Questions of interest

1 Does there exists a minimiser for this problem?

2 If yes, how does it looks like?
(Characterisation of minimisers)

3 Can we find some explicit solutions?

4 If we don’t have satisfactory answers,

What can we do?
What do numerics and computational simulations can tell /
teach us?
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Survey of previous results

Classical solutions - Existence

General domains - Open

1D case

[1] M.G. Kreı̌n - AMS Translations Series 1955
Proof exploits the equivalence between (1) and a similar vibrating

membrane problem involving the target

µ(B) = min
v∈H1

0 (]0,L[)

∫ L

0
|∇v |2dy∫ L

0
ρ(y)|v |2dy

.

where y = y(x) =
∫ x

0
1
σ(s) ds and ρ(y) = σ(x); Ω =]0,1[

Precise minimiser consists in taking β in the middle; shown
by symmetrisation.
The equivalence does not hold in higher dimensions.
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Survey of previous results ... continued

Classical solutions - Existence of a radially symmetric solution
Case of a ball

[1] A. Alvino, G. Trombetti & P.L. Lions - Nonlinear Anal.
1989

Proof based on Schwarz symmetrisation and a tricky adaptation of
the proof of existence for µ(B).

[2] C2, R. Mahadevan, L. Sanz - Appl. Math. Opt. 2009

Proof based on Schwarz symmetrisation, which reduces things to
1D, and the fact that explicit formulae for the
homogenisation process are available in 1D; the classical
solution sought is retrieved as an extremal point of a
non-empty, weak∗ compact convex set of L∞(ball).

Uniqueness
Open question
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... Survey of previous results
Classical solutions - Non-Existence

[3] J. Casado-Díaz - Siam J. Control Opt. 2015

Theorem 1 (Case of a rectangle)

There exists ε0 > 0 such that ∀ε ∈ (0, ε0), problem (1) with
m = |Ω| − ε has no solution.

Proof based on sharp smoothness properties for a suitable relaxation
of (1), namely

min
∫
Ω

(
θ

α
+

1− θ
β

)−1

|∇u|2dx

θ ∈ L∞(Ω; [0,1]),
∫
Ω

θdx ≤ m, u ∈ H1
0 (Ω),

∫
Ω

|u|2dx = 1
(2)
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Asymptotic expansion - Low contrast regime

Define ε = β−α, write β = α+ ε, ε > 0 small (low contrast)
σε = α + εχ

B

Theorem 2 (Rellich - 1969)
The first eigenvalue λε of

−div(σε∇uε) =λεuε in Ω

uε =0 on ∂Ω,

is an analytic function of ε in a neighbourhood of ε = 0 and the
positive eigenfunction uε satisfying the normalization condition∫

Ω

(uε)2dx = 1

is analytic with respect to ε.
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... Asymptotic expansion

So, we can introduce the series expansions

uε = v0 + εv1 + . . . ,

λε = λ0 + ελ1 + . . . ,

in the equations above and gather terms of similar order in ε :{
−div(α∇v0) = λ0v0 in Ω

v0 = 0 on ∂Ω
(3)

{
−div(α∇v1)− λ0v1 = div(χ

B
∇v0) + λ1v0 in Ω

v1 = 0 on ∂Ω
(4)

Due to the Fredholm alternative, equation (6) has a solution if
and only if ∫

Ω

div(χ
B
∇v0)v0 + λ1

∫
Ω

v2
0 = 0.
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... Asymptotic expansion
As
∫
Ω

v2
0 = 1, straightforward calculations using (5) & (6) yields

λ1 = λ1(B) =

∫
B
|∇v0|2

Theorem 3 (C2, Laurain & Mahadevan, Siam J. Appl. Math. 2012)

Let us denote by

λ̃ε(B) = λε(B)− λ0 − ελ1(B)

the remainder in the ansatz for λε. For ε > 0 sufficiently small, there
exists a constant C independent of ε and B such that

|λ̃ε(B)| ≤ Cε
3
2 ∀B ∈ B.

Hence, ∣∣∣∣ inf
B∈B

λε(B)− λ0 − ε inf
B∈B

λ1(B)

∣∣∣∣ ≤ Cε
3
2
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Corollary 4 (An asymptotic approximation for λ1(·))

If B?ε ∈ B is a minimizer of λε(·) then∣∣∣∣λ1(B?ε )− inf
B∈B

λ1(B)

∣∣∣∣ ≤ 2Cε
1
2

Proof

ε

∣∣∣∣λ1(B?ε )− inf
B∈B

λ1(B)

∣∣∣∣
=

∣∣∣∣(λε(B?ε )− λ0 − ελ1(B?ε ))− (λε(B?ε )− λ0 − ε inf
B∈B

λ1(B))

∣∣∣∣
≤ |λε(B?ε )− λ0 − ελ1(B?ε )|+

∣∣∣∣ inf
B∈B

λε(B)− λ0 − ε inf
B∈B

λ1(B)

∣∣∣∣
≤ 2Cε

3
2 .
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Nearly optimal solutions in low contrast regime

Some other consequences and remarks
1 Corollary 4 gives us to understand that a minimizer for
λε(·) is approximately a minimizer for λ1(·).

2 (Conversely) A similar argument proves that a minimizer
for λ1(·) is approximately a minimizer for λε(·) : If B∗ is a
minimizer of λ1(·), then∣∣∣∣λε(B?)− inf

B∈B
λε(B)

∣∣∣∣ ≤ 2Cε
3
2

(−→ numerical approximation for inf
B∈B

λε(B))
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Level sets of |∇v0|

Theorem 3 tells us that, asymptotically, the minimum value
of λε(·) can be calculated approximately minimizing λ1(·).
This later problem is easier since

Theorem 5 (Characterization of the minimizers of λ1(·))
There exists c∗ ≥ 0 such that whenever B is a measurable
subset of Ω satisfying

{x | |∇v0(x)| < c∗} ⊂ B ⊂ {x | |∇v0(x)| ≤ c∗}

and |B| = m, then B is an optimal solution for the problem of
minimizing λ1(B) over B ∈ B.

Proof based on an accurate analysis of the level function

f (c)
(def)
= |{x ∈ Ω | |∇v0(x)| ≤ c}|, with c ∈ R.
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A descent algorithm – general α, β & domain

Variational formulation for λ

λ = min
u∈H1

0 (Ω)

Z
Ω

σ|∇u|2Z
Ω

u2
= min

u∈H1
0 (Ω), ||u||2=1

Z
Ω

σ|∇u|2.

A descent algorithm

Initial measurable set B0, |B0| = m.

m(B0, c)
(def)
= |{x | |∇uB0 (x)| ≤ c}|. Non-decreasing m(B0, c)→ 0 as

c → 0 whereas, m(B0, c)→ |Ω| as c →∞.

c0
(def)
= inf {c | m(B0, c) ≥ m}.

Under suitable conditions |{x | |∇uB0 (x)| ≤ c0}| = m.

Actualization B1 = {x | |∇uB0 (x)| ≤ c0}.
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2nd order expansion

Let us recall the series expansions

uε = v0 + εv1 + ε2v2 . . . ,

λε = λ0 + ελ1 + ε2λ2 . . . ,

Plugging them in the corresponding equations and gathering
terms of similar order in ε :{

−div(α∇v0) = λ0v0 in Ω
v0 = 0 on ∂Ω

(5){
−div(α∇v1)− λ0v1 = div(χ

B
∇v0) + λ1v0 in Ω

v1 = 0 on ∂Ω
(6)

Due to the Fredholm alternative, equation (6) has a solution if
and only if ∫

Ω

div(χ
B
∇v0)v0 + λ1

∫
Ω

v2
0 = 0.
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2nd order expansion ... continued

As
∫
Ω

v2
0 = 1, straightforward calculations using (5) & (6) yields

λ2(B) =

∫
B
α∇v1(B) · ∇v0,

∫
Ω

v0v1(B) = 0.

Proposition 6

There is a constant C > 0 independent of B such that :

|λε(B)− (λ0 + ελ1 + ε2λ2)| ≤ Cε3 ∀B ∈ B.

Hence, ∣∣∣∣ inf
B∈B

λε(B)− inf
B∈B

(λ0 + ελ1(B) + ε2λ2(B))

∣∣∣∣ ≤ Cε3
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A 2nd order minimisation approximate problem

From the expressions for λ1(B), λ2(B), we focus attention on

inf F (χ)
(def)
=

∫
Ω

χ(∇v0 + ε∇v(χ)) · ∇v0dx

over the class of admissible domains represented by their
characteristic functions

A
(def)
= {χ ; χ = χB, B ⊆ Ω, |B| = m} ⊆ L∞(Ω),

and v = v(χ) ∈ H1
0 (Ω) satisfies

−α∆v − λ0v = λ1(χ)v0 + div(αχ∇v0) (7)

λ1(χ) :=

∫
Ω

αχ|∇v0|2 (8)

v ⊥ v0 in L2(Ω)
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Relaxation
[5] G. Allaire & S. Gutierrez - Math. Model. Numer. Anal. 2007

We appeal to the usual relaxation procedures; it requires calculate
the lower semicontinuous envelope of F , w.r.t. weak∗ topology, i.e.,

F̄ (θ)
(def)
= inf {lim inf F (χn) | χn ⇀ θ, in L∞(Ω)-weak∗}

θ ∈ A = A
L∞(Ω)∗

= {θ ∈ L∞(Ω) | 0 ≤ θ ≤ 1,
∫

Ω

θ = m}
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Relaxation ... continued
Given χn ⇀ θ, the calculation of the limit in both the objective and the
state equation requires of fundamental results in H-mesures :

[6] P. Gérard - Comm. Partial Diff. Eqns. 1991

[7] L. Tartar - Proc. Royal Soc. Edinburgh Sect. A 1990

Theorem 7

For any θ ∈ A , we have

F̄ (θ) =

∫
Ω

θ [∇v0 + ε∇v∞(θ)] · ∇v0 − εθ(1− θ)|∇v0|2

where v∞(θ) ∈ H1
0 (Ω) is solution of

−α∆v − λ0v = λ1(θ)u0 + div(αθ∇v0) (9)

λ1(χ)
(def)
=

∫
Ω

αθ|∇u0|2 (10)

v ⊥ u0 in L2(Ω)
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Optimal design for second order model, various fractions
A numerical experience

(a) m/|Ω| = 0.125 (b) m/|Ω| = 0.25 (c) m/|Ω| = 0.38 (d) m/|Ω| = 0.465

(e) m/|Ω| = 0.55 (f) m/|Ω| = 0.665 (g) m/|Ω| = 0.78885 (h) m/|Ω| = 0.9

Figure: Optimal design for second order model for various fractions. The parameter ε takes the value 10−1.
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Comparison between first and second order model
A numerical experience

(a) m/|Ω| = 0.38 (b) m/|Ω| = 0.665 (c) m/|Ω| = 0.788 (d) m/|Ω| = 0.9

(e) m/|Ω| = 0.38 (f) m/|Ω| = 0.665 (g) m/|Ω| = 0.788 (h) m/|Ω| = 0.9

Figure: Absolute value of the gap between optimal design for first and second order models. The parameter ε

takes the value 10−1 on the first line, 10−3 on the second line.
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Path Forward

It is still not clear why Problem (1) in smooth domains with
partial symmetry should fail to have classical solutions.

Existence for general domains
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