PDEs, Optimal Design and Numerics Minimization of the Ground State of the Mixture of Two Conductors Materials ("State of the Art")

Carlos Conca

Universidad de Chile

Department of Engineering Mathematics (DIM) Center for Mathematical Modelling, UMI 2807 CNRS-UChile (CMM) & Institute for BioTechnology & BioEngineering (CeBiB) cconca@dim.uchile.cl.carlos.conca@gmail.com

Joint work with M. Dambrine, D. Quinteros & R. Mahadevan

Setting of our

0

Optimal Design Problem

- Bdd domain $\Omega \subset \mathbb{R}^d$, $0 < \alpha < \beta$, $0 < m < |\Omega|$
- $B \subset \Omega$ measurable; $A = \Omega \setminus B$; |B| = m.

$$\begin{cases} \inf \left\{ \lambda(B) \mid B \in \mathscr{B} \right\} \\ \mathscr{B} = \left\{ B \subset \Omega \text{ measurable}, |B| = m \right\} \end{cases}$$
(1)

$$-\operatorname{div}(\sigma
abla u) = \lambda(B)u$$
 in Ω
 $u = 0$ on $\partial \Omega$

• $\sigma = \alpha \chi_A + \beta \chi_B; \lambda(B)$ the first eigenvalue (ground state)

- Simplicity : u is unique up to a multiplication constant
- Unique by normalisation : u > 0 in Ω ; $\int_{\Omega} u^2 dx = 1$

A useful characterisation of the target

Rayleigh quotient

$$\lambda(B) = \min_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} (\alpha \chi_A + \beta \chi_B) |\nabla u|^2 dx}{\int_{\Omega} |u|^2 dx}$$

Partial Differential Equations, Optimal Design and Numerics Centro de Ciencias de Benasque Pedro Pascual, Aug 23-Sep 04

Questions of interest

Does there exists a minimiser for this problem?

- If yes, how does it looks like? (Characterisation of minimisers)
- On we find some explicit solutions?
- If we don't have satisfactory answers,
 - What can we do?
 - What do numerics and computational simulations can tell / teach us?

Survey of previous results

Classical solutions - Existence

- General domains Open
- ID case

[1] M.G. Krein - AMS Translations Series 1955
 Proof exploits the equivalence between (1) and a similar vibrating membrane problem involving the target

$$\mu(\boldsymbol{B}) = \min_{\boldsymbol{v} \in H_0^1([0,L[)]} \frac{\int_0^L |\nabla \boldsymbol{v}|^2 d\boldsymbol{y}}{\int_0^L \rho(\boldsymbol{y}) |\boldsymbol{v}|^2 d\boldsymbol{y}}.$$

where $y = y(x) = \int_0^x \frac{1}{\sigma(s)} ds$ and $\rho(y) = \sigma(x); \Omega =]0, 1[$

- Precise minimiser consists in taking β in the middle; shown by symmetrisation.
- The equivalence does not hold in higher dimensions.

Survey of previous results ... continued

Classical solutions - Existence of a radially symmetric solution

- Case of a ball
 - [1] A. Alvino, G. Trombetti & P.L. Lions Nonlinear Anal. 1989

Proof based on Schwarz symmetrisation and a tricky adaptation of the proof of existence for $\mu(B)$.

• [2] C², R. Mahadevan, L. Sanz - Appl. Math. Opt. 2009

Proof based on Schwarz symmetrisation, which reduces things to 1D, and the fact that explicit formulae for the homogenisation process are available in 1D; the classical solution sought is retrieved as an extremal point of a non-empty, weak* compact convex set of L^{∞} (ball).

Uniqueness

Open question

Partial Differential Equations, Optimal Design and Numerics

• [3] J. Casado-Díaz - Siam J. Control Opt. 2015

Theorem 1 (Case of a rectangle)

There exists $\varepsilon_0 > 0$ such that $\forall \varepsilon \in (0, \varepsilon_0)$, problem (1) with $m = |\Omega| - \varepsilon$ has no solution.

Proof based on sharp smoothness properties for a suitable relaxation of (1), namely

$$\begin{cases} \min_{\Omega} \int_{\Omega} \left(\frac{\theta}{\alpha} + \frac{1-\theta}{\beta}\right)^{-1} |\nabla u|^2 dx \\ \theta \in L^{\infty}(\Omega; [0, 1]), \int_{\Omega} \theta dx \le m, \ u \in H_0^1(\Omega), \int_{\Omega} |u|^2 dx = 1 \end{cases}$$
(2)

Asymptotic expansion - Low contrast regime

Theorem 2 (Rellich - 1969)

The first eigenvalue λ^{ε} of

$$\begin{aligned} -\operatorname{div}(\sigma^{\varepsilon}\nabla u^{\varepsilon}) = &\lambda^{\varepsilon}u^{\varepsilon} \quad \text{in} \quad \Omega\\ u^{\varepsilon} = &0 \quad \text{on} \quad \partial\Omega, \end{aligned}$$

is an analytic function of ε in a neighbourhood of $\varepsilon = 0$ and the positive eigenfunction u^{ε} satisfying the normalization condition

$$\int_{\Omega} (u^{\varepsilon})^2 dx = 1$$

is analytic with respect to ε .

Partial Differential Equations, Optimal Design and Numerics

... Asymptotic expansion

So, we can introduce the series expansions

$$u^{\varepsilon} = v_0 + \varepsilon v_1 + \dots,$$

$$\lambda^{\varepsilon} = \lambda_0 + \varepsilon \lambda_1 + \dots,$$

in the equations above and gather terms of similar order in ε :

$$\begin{cases} -\operatorname{div}(\alpha \nabla v_0) = \lambda_0 v_0 & \text{in } \Omega \\ v_0 = 0 & \text{on } \partial \Omega \end{cases}$$
(3)
$$\begin{cases} -\operatorname{div}(\alpha \nabla v_1) - \lambda_0 v_1 = \operatorname{div}(\chi_B \nabla v_0) + \lambda_1 v_0 & \text{in } \Omega \\ v_1 = 0 & \text{on } \partial \Omega \end{cases}$$
(4)

Due to the Fredholm alternative, equation (6) has a solution if and only if

$$\int_{\Omega} \operatorname{div}(\chi_{B} \nabla v_{0}) v_{0} + \lambda_{1} \int_{\Omega} v_{0}^{2} = 0.$$

... Asymptotic expansion

As $\int\limits_{\Omega} v_0^2 = 1,$ straightforward calculations using (5) & (6) yields

$$\lambda_1 = \lambda_1(B) = \int_B |\nabla v_0|^2$$

Theorem 3 (C², Laurain & Mahadevan, Siam J. Appl. Math. 2012)

Let us denote by

$$\widetilde{\lambda}^{\varepsilon}(B) = \lambda^{\varepsilon}(B) - \lambda_0 - \varepsilon \lambda_1(B)$$

the remainder in the ansatz for λ^{ε} . For $\varepsilon > 0$ sufficiently small, there exists a constant C independent of ε and B such that

$$|\tilde{\lambda}^{\varepsilon}(B)| \leq C \varepsilon^{\frac{3}{2}} \quad \forall B \in \mathscr{B}.$$

Hence,

$$\inf_{\boldsymbol{B}\in\mathscr{B}}\lambda^{\varepsilon}(\boldsymbol{B})-\lambda_{0}-\varepsilon\inf_{\boldsymbol{B}\in\mathscr{B}}\lambda_{1}(\boldsymbol{B})\right|\leq \boldsymbol{C}\varepsilon^{\frac{3}{2}}$$

Partial Differential Equations, Optimal Design and Numerics

Corollary 4 (An asymptotic approximation for $\lambda_1(\cdot)$)

If $B^{\star}_{\varepsilon} \in \mathscr{B}$ is a minimizer of $\lambda^{\varepsilon}(\cdot)$ then

$$\left|\lambda_1(B_{\varepsilon}^{\star}) - \inf_{B \in \mathscr{B}} \lambda_1(B)
ight| \leq 2C \varepsilon^{rac{1}{2}}$$

Proof

$$\begin{split} \varepsilon \left| \lambda_{1}(\mathcal{B}_{\varepsilon}^{\star}) - \inf_{\mathcal{B} \in \mathscr{B}} \lambda_{1}(\mathcal{B}) \right| \\ &= \left| \left(\lambda^{\varepsilon}(\mathcal{B}_{\varepsilon}^{\star}) - \lambda_{0} - \varepsilon \lambda_{1}(\mathcal{B}_{\varepsilon}^{\star}) \right) - \left(\lambda^{\varepsilon}(\mathcal{B}_{\varepsilon}^{\star}) - \lambda_{0} - \varepsilon \inf_{\mathcal{B} \in \mathscr{B}} \lambda_{1}(\mathcal{B}) \right) \right| \\ &\leq \left| \lambda^{\varepsilon}(\mathcal{B}_{\varepsilon}^{\star}) - \lambda_{0} - \varepsilon \lambda_{1}(\mathcal{B}_{\varepsilon}^{\star}) \right| + \left| \inf_{\mathcal{B} \in \mathscr{B}} \lambda^{\varepsilon}(\mathcal{B}) - \lambda_{0} - \varepsilon \inf_{\mathcal{B} \in \mathscr{B}} \lambda_{1}(\mathcal{B}) \right| \\ &\leq 2C\varepsilon^{\frac{3}{2}}. \end{split}$$

Partial Differential Equations, Optimal Design and Numerics Centro de Ciencias de Benasque Pedro Pascual, Aug 23-Sep 04

Nearly optimal solutions in low contrast regime

Some other consequences and remarks

Corollary 4 gives us to understand that a minimizer for λ^ε(·) is approximately a minimizer for λ₁(·).

(Conversely) A similar argument proves that a minimizer for λ₁(·) is approximately a minimizer for λ^ε(·) : If B* is a minimizer of λ₁(·), then

$$\left|\lambda^{arepsilon}(\pmb{B}^{\star}) - \inf_{\pmb{B}\in\mathscr{B}}\lambda^{arepsilon}(\pmb{B})
ight| \leq 2\pmb{C}arepsilon^{rac{3}{2}}$$

$$\longrightarrow$$
 numerical approximation for $\inf_{B \in \mathscr{B}} \lambda^{\varepsilon}(B)$)

Level sets of $|\nabla v_0|$

- Theorem 3 tells us that, asymptotically, the minimum value of λ^ε(·) can be calculated approximately minimizing λ₁(·).
- This later problem is easier since

Theorem 5 (Characterization of the minimizers of $\lambda_1(\cdot)$)

There exists $c^* \ge 0$ such that whenever B is a measurable subset of Ω satisfying

$$\{x \mid |
abla u_0(x)| < c^*\} \subset B \subset \{x \mid |
abla u_0(x)| \leq c^*\}$$

and |B| = m, then B is an optimal solution for the problem of minimizing $\lambda_1(B)$ over $B \in \mathscr{B}$.

Proof based on an accurate analysis of the level function $f(c) \stackrel{(def)}{=} |\{x \in \Omega \mid |\nabla v_0(x)| \le c\}|$, with $c \in \mathbb{R}$.

A descent algorithm – general α , β & domain

Variational formulation for λ

$$\lambda = \min_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} \sigma |\nabla u|^2}{\int_{\Omega} u^2} = \min_{u \in H_0^1(\Omega), \, ||u||_2 = 1} \int_{\Omega} \sigma |\nabla u|^2.$$

A descent algorithm

- Initial measurable set B_0 , $|B_0| = m$.
- $m(B_0, c) \stackrel{\text{(def)}}{=} |\{x \mid |\nabla u_{B_0}(x)| \leq c\}|$. Non-decreasing $m(B_0, c) \to 0$ as $c \to 0$ whereas, $m(B_0, c) \to |\Omega|$ as $c \to \infty$.

$$c_0 \stackrel{(\mathrm{def})}{=} \inf \{ c \mid m(B_0, c) \geq m \}.$$

- Under suitable conditions $|\{x \mid |\nabla u_{B_0}(x)| \leq c_0\}| = m$.
- Actualization $B_1 = \{x \mid |\nabla u_{B_0}(x)| \leq c_0\}.$

2nd order expansion

Let us recall the series expansions

$$\begin{split} u^{\varepsilon} &= v_0 + \varepsilon v_1 + \varepsilon^2 v_2 \dots, \\ \lambda^{\varepsilon} &= \lambda_0 + \varepsilon \lambda_1 + \varepsilon^2 \lambda_2 \dots, \end{split}$$

Plugging them in the corresponding equations and gathering terms of similar order in ε :

$$\begin{cases} -\operatorname{div}(\alpha \nabla v_0) = \lambda_0 v_0 & \text{in } \Omega \\ v_0 = 0 & \text{on } \partial \Omega \end{cases}$$
(5)
$$\begin{cases} -\operatorname{div}(\alpha \nabla v_1) - \lambda_0 v_1 = \operatorname{div}(\chi_B \nabla v_0) + \lambda_1 v_0 & \text{in } \Omega \\ v_1 = 0 & \text{on } \partial \Omega \end{cases}$$
(6)

Due to the Fredholm alternative, equation (6) has a solution if and only if

$$\int_{\Omega} \operatorname{div}(\chi_{B} \nabla v_{0}) v_{0} + \lambda_{1} \int_{\Omega} v_{0}^{2} = 0.$$

2nd order expansion ... continued

As $\int_{\Omega} v_0^2 = 1$, straightforward calculations using (5) & (6) yields

$$\lambda_2(B) = \int_B \alpha \nabla v_1(B) \cdot \nabla v_0, \qquad \int_{\Omega} v_0 v_1(B) = 0.$$

Proposition 6

There is a constant C > 0 independent of B such that :

$$|\lambda^{\varepsilon}(B) - (\lambda_0 + \varepsilon \lambda_1 + \varepsilon^2 \lambda_2)| \leq C \varepsilon^3 \quad \forall B \in \mathscr{B}.$$

Hence,

$$\left|\inf_{\boldsymbol{B}\in\mathscr{B}}\lambda^{\varepsilon}(\boldsymbol{B})-\inf_{\boldsymbol{B}\in\mathscr{B}}(\lambda_{0}+\varepsilon\lambda_{1}(\boldsymbol{B})+\varepsilon^{2}\lambda_{2}(\boldsymbol{B}))\right|\leq C\varepsilon^{3}$$

A 2nd order minimisation approximate problem

From the expressions for $\lambda_1(B), \lambda_2(B)$, we focus attention on

$$\inf F(\chi) \stackrel{(\text{def})}{=} \int_{\Omega} \chi(\nabla v_0 + \varepsilon \nabla v(\chi)) \cdot \nabla v_0 dx$$

over the class of admissible domains represented by their characteristic functions

$$\mathscr{A} \stackrel{(\mathrm{def})}{=} \{ \chi \; ; \; \chi = \chi_{\mathcal{B}}, \; \mathcal{B} \subseteq \Omega, \; |\mathcal{B}| = m \} \subseteq L^{\infty}(\Omega),$$

and $v = v(\chi) \in H_0^1(\Omega)$ satisfies

$$-\alpha \Delta \mathbf{v} - \lambda_0 \mathbf{v} = \lambda_1(\chi) \mathbf{v}_0 + \operatorname{div}(\alpha \chi \nabla \mathbf{v}_0)$$
(7)

$$\lambda_{1}(\chi) := \int_{\Omega} \alpha \chi |\nabla v_{0}|^{2}$$

$$v \perp v_{0} \text{ in } L^{2}(\Omega)$$
(8)

(10)

We appeal to the usual relaxation procedures; it requires calculate the *lower semicontinuous envelope* of *F*, w.r.t. weak* topology, i.e.,

$$\overline{F}(\theta) \stackrel{\text{(det)}}{=} \inf \{ \liminf F(\chi_n) \mid \chi_n \to \theta, \text{ in } L^{\infty}(\Omega) \text{-weak}^* \}$$
$$\theta \in \overline{\mathscr{A}} = \overline{\mathscr{A}}^{L^{\infty}(\Omega)^*} = \{ \theta \in L^{\infty}(\Omega) \mid 0 \le \theta \le 1, \int_{\Omega} \theta = m \}$$

Relaxation ... continued

Given $\chi_n \rightarrow \theta$, the calculation of the limit in both the objective and the state equation requires of fundamental results in *H*-mesures :

- [6] P. Gérard Comm. Partial Diff. Eqns. 1991
- [7] L. Tartar Proc. Royal Soc. Edinburgh Sect. A 1990

Theorem 7

For any $\theta \in \overline{\mathscr{A}}$, we have

$$\bar{F}(\theta) = \int_{\Omega} \theta \left[\nabla v_0 + \varepsilon \nabla v_\infty(\theta) \right] \cdot \nabla v_0 - \varepsilon \theta (1 - \theta) |\nabla v_0|^2$$

where $v_{\infty}(\theta) \in H_0^1(\Omega)$ is solution of

$$-\alpha \Delta \boldsymbol{\nu} - \lambda_0 \boldsymbol{\nu} = \lambda_1(\theta) \boldsymbol{u}_0 + \operatorname{div}(\alpha \theta \nabla \boldsymbol{\nu}_0)$$
(9)

$$\lambda_{1}(\chi) \stackrel{\text{(def)}}{=} \int_{\Omega} \alpha \theta |\nabla u_{0}|^{2}$$

$$v \perp u_{0} \text{ in } L^{2}(\Omega)$$
(10)

Partial Differential Equations, Optimal Design and Numerics

Optimal design for second order model, various fractions A numerical experience

Figure: Optimal design for second order model for various fractions. The parameter ε takes the value 10⁻¹.

Partial Differential Equations, Optimal Design and Numerics Centro de Ciencias de Benasque Pedro Pascual, Aug 23-Sep 04

Comparison between first and second order model

Figure: Absolute value of the gap between optimal design for first and second order models. The parameter ε takes the value 10^{-1} on the first line, 10^{-3} on the second line.

Partial Differential Equations, Optimal Design and Numerics Centro de Ciencias de Benasque Pedro Pascual, Aug 23-Sep 04

- It is still not clear why Problem (1) in smooth domains with partial symmetry should fail to have classical solutions.
- Existence for general domains