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Model problem

Linear elliptic problems

Find weak solution y of
��y + y = f in ⌦

which fulfills the boundary conditions

y = 0 on � or @ny = g on �,

respectively.

Setting

⌦ is a polygonal domain with boundary �.

Data f and g are as we need (smooth enough).
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Problems in polygonal domains – corner singularities

The regularity of the solution y of

��y + y = f in ⌦,

y = 0 on � or @ny = g on �,

respectively, is limited by the largest in-
terior angle ! in the domain, even if f
and g are regular enough, e.g.,

y 2 H2(⌦) for ! < ⇡

y 2 W 2,1(⌦) for ! < ⇡/2

Ω

ω

supp (ξ)

One can write y = yr + ys , where yr depends on the regularity of the right hand
side and ys contains terms like

⇠(r)r� sin(��) or ⇠(r)r� cos(��),

respectively, with � = ⇡/! and ⇠(r) is a smooth cut-o↵ function.
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Finite element discretization on quasi-uniform meshes

Let Th be a family of admissible
triangulations with

hT := diamT ⇠ h 8T 2 Th,

where h denotes the mesh parameter.
Furthermore, let

Vh = {vh 2 C ¯(⌦) : vh|T 2 P
1

8T 2 Th}.

Finite element discretizations

Find yh 2 Vh,0 := Vh \ H1

0

(⌦) such that

(ryh,rvh)L2

(⌦)

+ (yh, vh)L2

(⌦)

= (f , vh)L2

(⌦)

8vh 2 Vh,0.

Find yh 2 Vh such that

(ryh,rvh)L2

(⌦)

+ (yh, vh)L2

(⌦)

= (f , vh)L2

(⌦)

+ (g , vh)L2

(�)

8vh 2 Vh.
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The idea of mesh grading

The poor approximation property of the finite element method is due to the
singular terms ys in the solution, i.e.,

ys = ⇠(r)r� sin(��) or ys = ⇠(r)r� cos(��),

respectively, where � = ⇡/! and ⇠(r) is a smooth cut-o↵ function.

Basic idea according to Oganesyan and Rukhovets

Use a local transformation of coordinates via

r = %1/µ,

which transforms a neighborhood ⌦C of the critical corner to ⌦0
C .

Essential properties

@%%ys ⇠ @%%r
� = @%%%

�/µ

) ys 2 H2(⌦0
C ) , 2 (�/µ� 2) + 1 > �1 , µ < �
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Finite element error estimates on graded meshes (1)

In computations the transformation of coordinates is not practicable.

Computational realization – graded meshes

We set the element size hT := diamT according to

hT ⇠

8
><

>:

h1/µ for rT = 0

hr1�µ
T for R � rT > 0

h for rT > R

,

where h is the global mesh parameter and µ 2 (0, 1]
the grading parameter.

µ = 0.5

FE-error estimate in L2(⌦) and H1(⌦) for both problems

The finite element error can be estimated by

ky � yhkL2

(⌦)

+ hky � yhkH1

(⌦)

 ch2

on meshes introduced above with grading parameter µ < �. [Pfe↵erer 2014]

! < ⇡ , � > 1 ) Mesh grading in non-convex domains only.



Finite element error estimates on graded meshes (2)

To get error estimates in L1(⌦) of order close to two, we require y 2 W 2,1(⌦).

Basic idea according to Oganesyan and Rukhovets

Use again the local transformation r = %1/µ:

@%%ys ⇠ @%%r
� = @%%%

�/µ

) ys 2 W 2,1(⌦0
C ) , �/µ� 2 > 0 , µ < �/2

FE-error estimate in L1(⌦) for Dirichlet problem

The finite element error can be estimated by

ky � yhkL1
(⌦)

 ch2�✏ [Schatz/Wahlbin 1978]

ky � yhkL1
(⌦)

 ch2| ln h|3/2 [Sirch 2010]

on graded meshes with grading parameter µ < �/2.

! < ⇡/2 , �/2 > 1 ) Mesh grading for domains with ! � ⇡/2.



Finite element error estimates on graded meshes (3)

FE-error estimate in L1(⌦) for Neumann problem

The finite element error can be estimated by

ky � yhkL1
(⌦)

 ch2| ln h|3/2 [almost finished]

on graded meshes with grading parameter µ < �/2.

Main di�culty

Friedrichs’ inequality does not hold for Neumann problem

FE-error estimate in L1(⌦) for Dirichlet pr. with new proof technique

The finite element error can be estimated by

ky � yhkL1
(⌦)

 ch2| ln h|

on graded meshes with grading parameter µ < �/2.



Summary

Table: Summary of mesh grading results for di↵erent norms

Norm Grading parameter Approximation rate Critical angle
ky � yhkH1

(⌦)

µ < � h ⇡
ky � yhkL2

(⌦)

µ < � h2 ⇡
ky � yhkL1

(⌦)

µ < �/2 h2| ln h|3/2 ⇡/2
ky � yhkL2

(�)

µ < 1/4 + �/2 h2| ln h|3/2 2⇡/3

Figure: Mesh grading conditions for di↵erent norms depending on !
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Optimal control problems with Neumann boundary control

Model problem

min
1

2
ky � ydk2L2

(⌦)

+
⌫

2
kuk2L2

(�)

s.t. ��y + y = 0 in ⌦

@ny = u on �

a  u(x)  b for a.a. x 2 �

Discrete problem

min
1

2
kyh � ydk2L2

(⌦)

+
⌫

2
kuhk2L2

(�)

s.t.

Z

⌦

(ryh ·rvh + yhvh) =

Z

�

uhvh 8vh 2 Vh

uh 2 Uad
h

Variational discretization: Uad
h = Uad := {u 2 L2(�) : a  u  b a.e. on �}

Postprocessing approach: Uad
h = Uad \ {uh 2 L1(�) : uh|E 2 P

0

8E 2 Eh}

Both problems admit a unique solution (ū, ȳ) and (ūh, ȳh).

Optimality condition

ū = ⇧
[a,b](�p̄|�/⌫),

��p̄ + p̄ = ȳ � yd in ⌦

@np̄ = 0 on �

Optimality condition

VD: ūh = ⇧
[a,b](�p̄h|�/⌫),

PA: ūph = ⇧
[a,b](�p̄h|�/⌫),Z

⌦

(rp̄h ·rvh + p̄hvh) =

Z

⌦

(ȳh � yd)vh 8vh 2 Vh

S. Rogovs Neumann optimal control problems



Error estimates for Neumann boundary control problems

Error estimates for the variational discretization in L2

The error estimates

kū � ūhkL2

(�)

+ kȳ � ȳhkL2

(⌦)

+ kp̄ � p̄hkL2

(⌦)

 ch2| ln h|3/2

are valid on graded meshes with grading parameter µ < 1/4 + �/2.

Let ūph = ⇧
[a,b](�p̄h|�/⌫) and K the union of all elements E 2 Eh, where the

optimal control ū has kinks with the control constraints.

Error estimates for the postprocessing approach in L2

The error estimates

kū � ūphkL2

(�)

+ kȳ � ȳhkL2

(⌦)

+ kp̄ � p̄hkL2

(⌦)

 ch2| ln h|3/2

are valid on graded meshes with grading parameter µ < 1/4 + �/2 if |K |  ch.

Essential ingredients for error estimates

Finite element error estimates in L2(⌦) and L2(�).
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Error estimates for Neumann boundary control problems

Error estimates for the variational discretization in L1

The error estimates

kū � ūhkL1
(�)

+ kȳ � ȳhkL1
(⌦)

+ kp̄ � p̄hkL1
(⌦)

 ch2| ln h|3/2

are valid on graded meshes with grading parameter µ < �/2.

Let ūph = ⇧
[a,b](�p̄h/⌫) and K the union of all elements E 2 Eh, where the

optimal control ū has kinks with the control constraints.

Error estimates for the postprocessing approach in L1

The error estimates

kū � ūphkL1
(�)

+ kȳ � ȳhkL1
(⌦)

+ kp̄ � p̄hkL1
(⌦)

 ch2| ln h|3/2

are valid on graded meshes with grading parameter µ < �/2 if |K |  ch.

Essential ingredients for error estimates

Finite element error estimates in L1(⌦).
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Generation of graded meshes

Transformation of nodes
Refine uniformly a coarse start mesh
until hT ⇠ h 8T 2 Th with desired
mesh size h. Afterwards, transform the
nodes X (i) according to

X (i)
new = X (i)

✓
r(X (i))

R

◆
1/µ�1

for all X (i) 2 ⌦ \ SR .

h = 1.4142 h = 1.4142
µ = 1.0

Local refinement
Initialize refinement algorithm with
coarse start mesh. Afterwards, mark
every element T 2 Th for refinement
which satisfies

hT > h or hT > h
⇣ rT ,C

R

⌘
1�µ

until desired mesh size h is reached.

h = 1.4142 h = 1.4142
µ = 1.0



Generation of graded meshes

Transformation of nodes
Refine uniformly a coarse start mesh
until hT ⇠ h 8T 2 Th with desired
mesh size h. Afterwards, transform the
nodes X (i) according to

X (i)
new = X (i)

✓
r(X (i))

R

◆
1/µ�1

for all X (i) 2 ⌦ \ SR .

h = 0.7071 h = 0.7071
µ = 1.0

Local refinement
Initialize refinement algorithm with
coarse start mesh. Afterwards, mark
every element T 2 Th for refinement
which satisfies

hT > h or hT > h
⇣ rT ,C

R

⌘
1�µ

until desired mesh size h is reached.

h = 0.5000 h = 0.5000
µ = 1.0



Generation of graded meshes

Transformation of nodes
Refine uniformly a coarse start mesh
until hT ⇠ h 8T 2 Th with desired
mesh size h. Afterwards, transform the
nodes X (i) according to

X (i)
new = X (i)

✓
r(X (i))

R

◆
1/µ�1

for all X (i) 2 ⌦ \ SR .

h = 0.3536 h = 0.3536
µ = 1.0

Local refinement
Initialize refinement algorithm with
coarse start mesh. Afterwards, mark
every element T 2 Th for refinement
which satisfies

hT > h or hT > h
⇣ rT ,C

R

⌘
1�µ

until desired mesh size h is reached.

h = 0.2500 h = 0.2500
µ = 1.0



Generation of graded meshes

Transformation of nodes
Refine uniformly a coarse start mesh
until hT ⇠ h 8T 2 Th with desired
mesh size h. Afterwards, transform the
nodes X (i) according to

X (i)
new = X (i)

✓
r(X (i))

R

◆
1/µ�1

for all X (i) 2 ⌦ \ SR .

h = 0.1768 h = 0.1768
µ = 1.0

Local refinement
Initialize refinement algorithm with
coarse start mesh. Afterwards, mark
every element T 2 Th for refinement
which satisfies

hT > h or hT > h
⇣ rT ,C

R

⌘
1�µ

until desired mesh size h is reached.

h = 0.2500 h = 0.1250
µ = 1.0



Generation of graded meshes

Transformation of nodes
Refine uniformly a coarse start mesh
until hT ⇠ h 8T 2 Th with desired
mesh size h. Afterwards, transform the
nodes X (i) according to

X (i)
new = X (i)

✓
r(X (i))

R

◆
1/µ�1

for all X (i) 2 ⌦ \ SR .

h = 0.1768 h = 0.0884
µ = 1.0

Local refinement
Initialize refinement algorithm with
coarse start mesh. Afterwards, mark
every element T 2 Th for refinement
which satisfies

hT > h or hT > h
⇣ rT ,C

R

⌘
1�µ

until desired mesh size h is reached.

h = 0.2500 h = 0.1250
µ = 1.0



Generation of graded meshes

Transformation of nodes
Refine uniformly a coarse start mesh
until hT ⇠ h 8T 2 Th with desired
mesh size h. Afterwards, transform the
nodes X (i) according to

X (i)
new = X (i)

✓
r(X (i))

R

◆
1/µ�1

for all X (i) 2 ⌦ \ SR .

h = 0.1768 h = 0.0884
µ = 0.9

Local refinement
Initialize refinement algorithm with
coarse start mesh. Afterwards, mark
every element T 2 Th for refinement
which satisfies

hT > h or hT > h
⇣ rT ,C

R

⌘
1�µ

until desired mesh size h is reached.

h = 0.2500 h = 0.1250
µ = 0.9



Generation of graded meshes

Transformation of nodes
Refine uniformly a coarse start mesh
until hT ⇠ h 8T 2 Th with desired
mesh size h. Afterwards, transform the
nodes X (i) according to

X (i)
new = X (i)

✓
r(X (i))

R

◆
1/µ�1

for all X (i) 2 ⌦ \ SR .

h = 0.1768 h = 0.0884
µ = 0.8

Local refinement
Initialize refinement algorithm with
coarse start mesh. Afterwards, mark
every element T 2 Th for refinement
which satisfies

hT > h or hT > h
⇣ rT ,C

R

⌘
1�µ

until desired mesh size h is reached.

h = 0.2500 h = 0.1250
µ = 0.8



Generation of graded meshes

Transformation of nodes
Refine uniformly a coarse start mesh
until hT ⇠ h 8T 2 Th with desired
mesh size h. Afterwards, transform the
nodes X (i) according to

X (i)
new = X (i)

✓
r(X (i))

R

◆
1/µ�1

for all X (i) 2 ⌦ \ SR .

h = 0.1768 h = 0.0884
µ = 0.7

Local refinement
Initialize refinement algorithm with
coarse start mesh. Afterwards, mark
every element T 2 Th for refinement
which satisfies

hT > h or hT > h
⇣ rT ,C

R

⌘
1�µ

until desired mesh size h is reached.

h = 0.2500 h = 0.1250
µ = 0.7



Generation of graded meshes

Transformation of nodes
Refine uniformly a coarse start mesh
until hT ⇠ h 8T 2 Th with desired
mesh size h. Afterwards, transform the
nodes X (i) according to

X (i)
new = X (i)

✓
r(X (i))

R

◆
1/µ�1

for all X (i) 2 ⌦ \ SR .

h = 0.1768 h = 0.0884
µ = 0.6

Local refinement
Initialize refinement algorithm with
coarse start mesh. Afterwards, mark
every element T 2 Th for refinement
which satisfies

hT > h or hT > h
⇣ rT ,C

R

⌘
1�µ

until desired mesh size h is reached.

h = 0.2500 h = 0.1250
µ = 0.6



Generation of graded meshes

Transformation of nodes
Refine uniformly a coarse start mesh
until hT ⇠ h 8T 2 Th with desired
mesh size h. Afterwards, transform the
nodes X (i) according to

X (i)
new = X (i)

✓
r(X (i))

R

◆
1/µ�1

for all X (i) 2 ⌦ \ SR .

h = 0.1768 h = 0.0884
µ = 0.5

Local refinement
Initialize refinement algorithm with
coarse start mesh. Afterwards, mark
every element T 2 Th for refinement
which satisfies

hT > h or hT > h
⇣ rT ,C

R

⌘
1�µ

until desired mesh size h is reached.

h = 0.2500 h = 0.1250
µ = 0.5



Generation of graded meshes

Transformation of nodes
Refine uniformly a coarse start mesh
until hT ⇠ h 8T 2 Th with desired
mesh size h. Afterwards, transform the
nodes X (i) according to

X (i)
new = X (i)

✓
r(X (i))

R

◆
1/µ�1

for all X (i) 2 ⌦ \ SR .

h = 0.1768 h = 0.0884
µ = 0.4

Local refinement
Initialize refinement algorithm with
coarse start mesh. Afterwards, mark
every element T 2 Th for refinement
which satisfies

hT > h or hT > h
⇣ rT ,C

R

⌘
1�µ

until desired mesh size h is reached.

h = 0.2500 h = 0.1250
µ = 0.4



Generation of graded meshes

Transformation of nodes
Refine uniformly a coarse start mesh
until hT ⇠ h 8T 2 Th with desired
mesh size h. Afterwards, transform the
nodes X (i) according to

X (i)
new = X (i)

✓
r(X (i))

R

◆
1/µ�1

for all X (i) 2 ⌦ \ SR .

h = 0.1768 h = 0.0884
µ = 0.3

Local refinement
Initialize refinement algorithm with
coarse start mesh. Afterwards, mark
every element T 2 Th for refinement
which satisfies

hT > h or hT > h
⇣ rT ,C

R

⌘
1�µ

until desired mesh size h is reached.

h = 0.2500 h = 0.1250
µ = 0.3



Generation of graded meshes

Transformation of nodes
Refine uniformly a coarse start mesh
until hT ⇠ h 8T 2 Th with desired
mesh size h. Afterwards, transform the
nodes X (i) according to

X (i)
new = X (i)

✓
r(X (i))

R

◆
1/µ�1

for all X (i) 2 ⌦ \ SR .

h = 0.1768 h = 0.0884
µ = 0.2

Local refinement
Initialize refinement algorithm with
coarse start mesh. Afterwards, mark
every element T 2 Th for refinement
which satisfies

hT > h or hT > h
⇣ rT ,C

R

⌘
1�µ

until desired mesh size h is reached.

h = 0.2500 h = 0.1250
µ = 0.2



Generation of graded meshes

Transformation of nodes
Refine uniformly a coarse start mesh
until hT ⇠ h 8T 2 Th with desired
mesh size h. Afterwards, transform the
nodes X (i) according to

X (i)
new = X (i)

✓
r(X (i))

R

◆
1/µ�1

for all X (i) 2 ⌦ \ SR .

h = 0.1768 h = 0.0884
µ = 0.1

Local refinement
Initialize refinement algorithm with
coarse start mesh. Afterwards, mark
every element T 2 Th for refinement
which satisfies

hT > h or hT > h
⇣ rT ,C

R

⌘
1�µ

until desired mesh size h is reached.

h = 0.2500 h = 0.1250
µ = 0.1
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Summary

Introduction to corner singularities

Introduction to mesh grading

FE-error estimate with graded meshes in di↵erent norms
I ky � yhkL2(⌦)

+ hky � yhkH1

(⌦)

 ch2

for µ < �
I ky � yhkL1(⌦)

 ch2| ln h|3/2 for µ < �/2
I ky � yhkL2(�)  ch2| ln h|3/2 for µ < 1/4 + �/2

Optimal control problems with Neumann boundary control
I

Variational approach

kū � ūhkLq(�) + kȳ � ȳhkLq(⌦)

+ kp̄ � p̄hkLq(⌦)

 ch2| ln h|3/2, q = 2,1
I

Postprocessing approach

kū � ūp
hkLq(�) + kȳ � ȳhkLq(⌦)

+ kp̄ � p̄hkLq(⌦)

 ch2| ln h|3/2, q = 2,1
Generation of graded meshes

S. Rogovs Summary
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