Low congested regions and networks and optimal reinforcement for a membrane

Serena Guarino Lo Bianco

University of Pisa

Benasque, 25 August 2015

Traffic with congestion

Congestion effects have been extensively studied since '50 by Wardrop (discrete case) and Beckmann (continuous model).

Data:

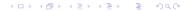
- a bounded Lipschitz region $\Omega \subset \mathbb{R}^d$;
- two probability measures f^+ and f^- .

The model, in a stationary regime, reduces to:

$$\min \left\{ \int_{\Omega} H(\sigma) \, dx : -\operatorname{div} \sigma = f \text{ in } \Omega, \ \sigma \cdot n = 0 \text{ on } \partial \Omega \right\},$$

where:

- σ is the traffic flux;
- $H: \mathbb{R}^d \to [0, +\infty]$ is the congestion function, i.e. a convex nonnegative function with $\lim_{|s| \to +\infty} H(s)/|s| = +\infty$.



A continuous model

In the model:

$$\min \left\{ \int_{\Omega} H(\sigma) \, dx : -\operatorname{div} \sigma = f \text{ in } \Omega, \ \sigma \cdot n = 0 \text{ on } \partial \Omega \right\},$$

- the boundary condition $\sigma \cdot n = 0$ on $\partial \Omega$ models the zero normal flux on the boundary.
- the PDE $-\operatorname{div} \sigma = f^+ f^-$ captures the equilibrium between the traffic flux and the difference f.

Recently, Carlier, Jimenez, Santambrogio have presented a model equivalent to Beckmann's problem.

Membrane model

We consider an elastic membrane under the action of an exterior load f and fixed at its boundary; this amounts to solve the variational problem

$$\min \left\{ \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 - fu \right) dx : u \in H_0^1(\Omega) \right\}$$

or equivalently the elliptic PDE

$$-\Delta u = f \text{ in } \Omega, \qquad u \in H_0^1(\Omega).$$

Duality

The two previous models are connected by the following:

Lemma

X,Y Banach, $A:X\to Y$ linear, $F:Y\to \overline{\mathbb{R}}$ convex. Then for every $f\in X'$

$$\inf_{\sigma \in Y'} \Big\{ F^*(\sigma) : A^*\sigma = f \Big\} = -\inf_{u \in X} \Big\{ F(Au) - \langle f, u \rangle \Big\}.$$

Taking $Au = \nabla u$ the transport problem with congestion H can be written in its dual form

A new model

In Ω we consider

- two congestion functions $H_1 \leq H_2$;
- a penalization cost *m*.

For every region C we consider the cost function

$$F(C) = \min \left\{ \int_{\Omega \setminus C} H_2(\sigma) \, dx + \int_C H_1(\sigma) \, dx : \sigma \in \Gamma_f \right\}$$

where

$$\Gamma_f = \{ \sigma \in L^1(\Omega; \mathbb{R}^d) : -\operatorname{div} \sigma = f \text{ in } \Omega, \ \sigma \cdot n = 0 \text{ on } \partial \Omega \}.$$

Goal: find a low congested region $C \subset \Omega$ solving

$$\min\big\{F(C)+m(C)\ :\ C\subset\Omega\big\}.$$

Perimeter penalization

We consider the case m(C) = kPer(C), k > 0

Theorem

Assume that the cost F(C) is finite for at least a subset C of $\overline{\Omega}$ with finite perimeter. Then there exists at least an optimal set C_{opt} .

Regularity:

- since $H_2 \ge H_1$, implies that ∂C has nonnegative mean curvature;
- when d=2 and Ω is convex, the optimal regions $\mathcal C$ are convex.

Volume penalization

We consider the case m(C) = k |C|, k > 0

Passing from sets C to density function $0 \le \theta(x) \le 1$ we obtain the relaxed formulation

$$\min_{\sigma,\theta} \left\{ \int_{\Omega} \theta H_1(\sigma) \, dx + \int_{\Omega} (1-\theta) H_2(\sigma) \, dx + k \int_{\Omega} \theta \, dx \; : \; \sigma \in \Gamma_f \right\}.$$

After the elimination of the variable θ we end up with a non convex integrand.

A new relaxation is necessary, so we have

$$\min \left\{ \int_{\Omega} \left(H_2(\sigma) \wedge \left(H_1(\sigma) + k \right) \right)^{**} dx \ : \ \sigma \in \Gamma_f \right\}.$$

Volume penalization

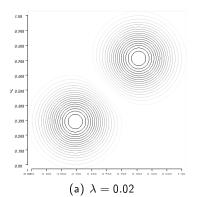
Recall: the functions H_1 and H_2 are superlinear.

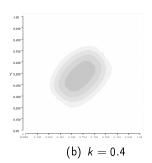
We denote by $\bar{\sigma}$ the optimal solution of the problem we have that:

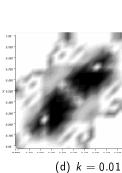
$$\frac{\Omega}{\left(H_2 \wedge \left(H_1 + k\right)\right)^{**}(\overline{\sigma})} = H_2(\overline{\sigma}) \Rightarrow \theta = 0;$$

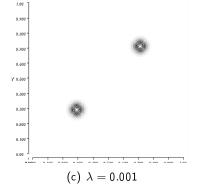
$$\left(H_2 \wedge \left(H_1 + k\right)\right)^{**}(\overline{\sigma}) = H_1(\overline{\sigma}) + k \Rightarrow \theta = 1;$$

$$\left(H_2 \wedge \left(H_1 + k\right)\right)^{**}(\overline{\sigma}) < \left(H_2 \wedge \left(H_1 + k\right)\right)(\overline{\sigma}) \Rightarrow 0 < \theta < 1.$$









One dimensional sets

We consider the case $C \in \mathcal{A}_L$,

$$\mathcal{A}_L = \left\{ S \subset \Omega, \ S \ \text{closed connected}, \ \mathcal{H}^1(S) \leq L \right\}$$

where \mathcal{H}^1 is the one-dimensional Hausdorff measure. For every $S \in \mathcal{A}_L$ we define the energy functional

$$\mathcal{E}_f(S) = \inf \left\{ \int_{\Omega} \frac{1}{2} |\nabla u|^2 \, dx + \int_{S} \frac{1}{2} |\nabla u|^2 \, d\mathcal{H}^1 - \int_{\Omega} u \, df : u \in C_c^{\infty}(\Omega) \right\}$$

so that the optimization problem we deal with is

$$\max\big\{\mathcal{E}_f(S)\ :\ S\in\mathcal{A}_L\big\}.$$

One dimensional sets

Since limits of one-dimensional sets are in general measures, it is convenient to define the energy functional \mathcal{E}_f even for a measure μ , by setting

$$\mathcal{E}_f(\mu) = \inf \Big\{ \int_{\Omega} \frac{1}{2} |\nabla u|^2 \ dx + \int_{\Omega} \frac{1}{2} |\nabla u|^2 \ d\mu - \int_{\Omega} u \ df \ : \ u \in \mathit{C}^{\infty}_c(\Omega) \Big\}.$$

- Theorem: Assume that $\mathcal{E}_f(\mu)$ is finite for at least a $\mu \in \mathcal{M}_L^+(\Omega)$. Then the maximization problem $\max \left\{ \mathcal{E}_f(\mu) : \mu \in \mathcal{M}_L^+(\Omega) \right\}$ admits at least a solution.
- Theorem: Let μ be a solution of the maximization problem. Then there exists a one-dimensional closed connected set S such that the absolutely continuous part of μ with respect to $\mathcal{H}^1 \lfloor S$ is also a solution. In other words the solution μ is of the form $\mu = a(x)\mathcal{H}^1 \lfloor S$, with $S \in \mathcal{A}_L$ and $a(x) \geq 1$.

One dimensional sets

Open question

It is possible to find an example in which we have the case a(x) > 1?

If we consider $f^+ = \delta_A$, $f^- = \delta_B$ and L >> |A - B|, what is the optimal μ ? On which set is it concentrated?