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Traffic with congestion

Congestion effects have been extensively studied since 50 by
Wardrop (discrete case) and Beckmann (continuous model).

Data:
@ a bounded Lipschitz region Q C RY;

@ two probability measures f* and .

The model, in a stationary regime, reduces to:
min{/ H(o)dx : —dive=finQ, c-n=0on GQ},
Q

where:
@ o is the traffic flux;

o H:RY — [0, +0o0] is the congestion function, i.e. a convex
nonnegative function with limjg_ o H(s)/|s| = +oo0.
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A continuous model

In the model:

min{/ H(o)dx : —dive=finQ, c-n=0on 69},
Q

@ the boundary condition o - n = 0 on 9Q models the zero
normal flux on the boundary.

o the PDE —divo = f™ — f~ captures the equilibrium between
the traffic flux and the difference f.

Recently, Carlier, Jimenez, Santambrogio have presented a model
equivalent to Beckmann's problem.
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Membrane model

We consider an elastic membrane under the action of an exterior
load f and fixed at its boundary; this amounts to solve the
variational problem

min{/9<;|Vu]2—fu> dx : uEH&(Q)}

or equivalently the elliptic PDE

—“Au=FfinQ,  ueHQ).
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Duality

The two previous models are connected by the following:

X,Y Banach, A: X — Y linear, F : Y — R convex. Then for
every f € X’

inf {F*(a) L Ato = f} = —in

f
oeY’ ueX

{F(Au) —{f, u>}.

Taking Au = Vu the transport problem with congestion H can be
written in its dual form
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A new model

In Q we consider
@ two congestion functions H; < Ho;
@ a penalization cost m.

For every region C we consider the cost function

F(C) = min {/Q\CHQ(J)dx—i—/CHl(U)dX : aer,c}

where

Mr={oce LYRY) : —dive=FfinQ, c-n=0o0n oK}
Goal: find a low congested region C C Q solving
min {F(C) + m(C) : CCQ}.
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Perimeter penalization

We consider the case m(C) = kPer(C), k > 0

Assume that the cost F(C) is finite for at least a subset C of Q
with finite perimeter. Then there exists at least an optimal set Cop.

Regularity:

@ since Hy > Hy, implies that C has nonnegative mean
curvature;

@ when d =2 and Q is convex, the optimal regions C are
convex.
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Volume penalization

We consider the case m(C) =k [C|, k >0

Passing from sets C to density function 0 < (x) < 1 we obtain the
relaxed formulation

min {/QeHl(a)dx+/Q(1e)Hz(o)dx+k/Qedx : aerf}.

After the elimination of the variable 8 we end up with a non convex
integrand.

A new relaxation is necessary, so we have
min{ [ (Ha(o) 1 (bh(e) + ) "o < oe i
Q
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Volume penalization

Recall: the functions Hy and H, are superlinear.

We denote by & the optimal solution of the problem we have that:

(H2 A (Hi + k))**(a) =H,(7) =0 =0;

CIGE k)>**(6) —H@) k= 0=1;

(HQ A (Hy+ k)>**(6) < (Hz A (Hy + k))(ﬁ) =0<6<1.
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(a) A =0.02
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(b) k=0.4
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(c) A = 0.001
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One dimensional sets

We consider the case C € A,

A ={5CQ, S closed connected, H'(S) < L}

where ! is the one-dimensional Hausdorff measure. For every
S € A; we define the energy functional

£¢(S) = inf {/ Lvup dx+/ Lvup dHl—/ udf : ue ch(Q)}
Q2 52 Q
so that the optimization problem we deal with is

max{Ef(S) : SEAL}.
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One dimensional sets

Since limits of one-dimensional sets are in general measures, it is
convenient to define the energy functional & even for a measure p,
by setting

1 1
Sf(u):inf{/ﬂ2|Vu|2dx+/92|Vu|2d,u—/Qudf ue ch(Q)}.

@ Theorem: Assume that Er(p) is finite for at least a
p € MF(Q). Then the maximization problem
max {&r(1) : p € M (Q)} admits at least a solution.

@ Theorem: Let y be a solution of the maximization problem.
Then there exists a one-dimensional closed connected set S
such that the absolutely continuous part of u with respect to
H'|S is also a solution. In other words the solution y is of the
form = a(x)H!|S, with S € A, and a(x) > 1.
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One dimensional sets

Open question
It is possible to find an example in which we have the case
a(x) > 17

If we consider f =64, f~ =dgand L >>|A—B
optimal ©? On which set is it concentrated?

, what is the
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