A determination of optimal ship forms based on Michell's wave resistance

Morgan PIERRE

Laboratoire de Mathématiques et Applications, UMR CNRS 7348, Université de Poitiers, France

Benasque, August 26th 2015 with J. Dambrine (LMA Poitiers) and G. Rousseaux (Pprime Institute, Poitiers)

<ロト (四) (三) (三) (三) (三)

- 2 Formulation of the optimization problem
- 3 Theoretical results
- 4 Numerical results
- **5** About the case $\epsilon = 0$

Traditionally, the resistance of water to the motion of a ship is represented as

$$R_{water} = R_{wave} + R_{viscous},$$

with

$$R_{viscous} = R_{frictional} + R_{eddy}.$$

< 17 ▶

(AFP / N. Lambert photography)

(Shutterstock.com/ AlexKol photography)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Consider a ship moving with constant velocity U on the surface of an unbounded fluid.

• coordinates *xyz* are fixed to the ship

• the xy-plane is the water surface, z is vertically downward The (half-)immerged hull surface is represented by a continuous nonnegative function

$$y = f(x, z) \ge 0, \quad x \in [-L/2, L/2], \quad z \in [0, T],$$

where L is the length and T is the draft of the ship. We also assume

$$f(\pm L/2, z) = 0 \quad \forall z \text{ and } f(x, T) = 0 \quad \forall x.$$

Example: for a Wigley hull with beam *B*, we have $f(x, z) = (B/2)S(z)(1 - 4x^2/L^2)$ with

 $S(z) = \begin{cases} 1 - (z/T)^2 & \text{(parabolic cross section)} \\ 1 - z/T & \text{(triangular cross section)} \\ 1 & \text{(rectangular cross section).} \end{cases}$

Sac

Michell's formula (1898) reads:

$$R_{Michell} = \frac{4\rho g^2}{\pi U^2} \int_1^\infty (I(\lambda)^2 + J(\lambda)^2) \frac{\lambda^2}{\sqrt{\lambda^2 - 1}} d\lambda, \qquad (1)$$

with

$$I(\lambda) = \int_{-L/2}^{L/2} \int_{0}^{T} \frac{\partial f(x, z)}{\partial x} \exp\left(-\frac{\lambda^{2}gz}{U^{2}}\right) \cos\left(\frac{\lambda gx}{U^{2}}\right) dxdz, \quad (2)$$
$$J(\lambda) = \int_{-L/2}^{L/2} \int_{0}^{T} \frac{\partial f(x, z)}{\partial x} \exp\left(-\frac{\lambda^{2}gz}{U^{2}}\right) \sin\left(\frac{\lambda gx}{U^{2}}\right) dxdz. \quad (3)$$

æ

- U (in $\mathrm{m\cdot s^{-1}}$) is the speed of the ship
- ho (in kg \cdot m⁻³) is the (constant) density of the fluid
- g (in ${\rm m\cdot s^{-2}})$ is the standard gravity.

 $R_{Michell}$ has the dimension of a force. λ has no dimension and $\lambda = 1/\cos\theta$ where θ is the angle at which the wave is propagating.

- The fluid is incompressible, inviscid, the flow is irrotational
- A steady state has been reached
- Linearized theory (flow potential with linearized boundary conditions)
- Thin ship assumptions: $|\partial_x f| \ll 1$, $|\partial_z f| \ll 1$.

Experiments starting in the 1920's (Wigley, Weinblum): reasonable good agreement between theory and experiment (Gotman'02). Typical values for Wigley: $L/B \approx 10$ and T/B = 1.5.

The following figures represent the **wave coefficient** $C_W = 2R_{wave}/(\rho U^2 A)$ (with A the wetted surface of the hull) in terms of the **Froude number** $F = U/\sqrt{gL}$.

▲□ ► < □ ► </p>

Comparison Michell and experimental data (Weinblum'52)

Comparison Michell and experimental data (parabolic Wigley model, Bai'79)

Derivation of Michell's formula (sketch)

In the coordinates *xyz* fixed to the ship, we have $\overline{U} = -U + u$, where *u* is the perturbed velocity flow. We seek a potential flow Φ (i.e. with $u = \nabla \Phi$), even with respect to *y*, which satisfies in $D = \mathbf{R}_x \times (\mathbf{R}_+)_y \times (\mathbf{R}_+)_z$:

$$\Delta \Phi = 0 \text{ in } D \tag{4}$$

$$\partial_{xx}\Phi - (g/U^2)\partial_z\Phi = 0, \quad z = 0$$
 (5)

$$\psi \Phi = -Uf_x, \quad y = 0^+ \tag{6}$$

$$\nabla \Phi \rightarrow 0 \text{ as } x \rightarrow +\infty.$$
 (7)

 Φ can be computed explicitly by means of Green functions and Fourier transform.

ΰ,

Let $\Omega = (-L/2, L/2) \times (0, T)$. Then the wave resistance reads

$$R_{wave} = -2 \int_{\Omega} \delta p f_x(x,z) dx dz,$$

where δp is the difference of pressure due to the ship. (Notice that R_{wave} is the drag force in this linearized model). From Φ , we derive δp so that

$$R_{wave} = -2
ho U \int_{\Omega} \Phi_x(x,0,z) f_x(x,z) dx dz.$$

Computing, we obtain $R_{wave} = R_{Michell}$ as given by (1).

Formulation of the optimization problem

1st idea: finding a ship of minimal wave resistance among admissible functions $f : \Omega \to \mathbf{R}_+$, for a constant speed U and a given volume V of the hull.

 $f \mapsto R_{Michell}(f)$ is a positive semi-definite quadratic functional, but the problem above is ill-posed (Sretensky'35, Krein'52). In particular, it is underdetermined.

Most authors proposed to add conditions and/or to work in finite dimension (Weinblum'56, Kostyukov'68,...) Another approach, that we chose: add a **regularizing** term which represents the viscous resistance (Lian-en'84, Michalski et al'87)

We define

$$v = g/U^2 > 0$$
 and $T_f(v, \lambda) = I(\lambda) - iJ(\lambda),$

where I and J are given by (2)-(3). Then

$$T_f(v,\lambda) = \int_{-L/2}^{L/2} \int_0^T \partial_x f(x,z) e^{-\lambda^2 v z} e^{-i\lambda v x} dx dz, \qquad (8)$$

and $R_{Michell}$ can be written

$$R(v,f) = \frac{4\rho g v}{\pi} \int_{1}^{\infty} |T_f(v,\lambda)|^2 \frac{\lambda^2}{\sqrt{\lambda^2 - 1}} d\lambda.$$
(9)

▲ @ ▶ < ≡ ▶</p>

B> B

For the numerical computation, we let $\Lambda >> 1$ and consider

$$R^{\Lambda}(v,f) = \frac{4\rho g v}{\pi} \int_{1}^{\Lambda} |T_f(v,\lambda)|^2 d\mu(\lambda), \qquad (10)$$

where μ is a nonnegative and finite borelian measure on $[1, \Lambda]$. Typically,

$$d\mu(\lambda)=rac{\lambda^2}{\sqrt{\lambda^2-1}}d\lambda,$$

or a numerical integration of this weight.

For the viscous resistance, we propose

$$R_{viscous} = \frac{1}{2} \rho U^2 C_{vd} A,$$

where C_{vd} is the (constant) viscous drag coefficient, and A is the wetted surface area given by

$$A = 2 \int_{\Omega} \sqrt{1 + |\nabla f(x, z)|^2} \, \mathrm{d}x \mathrm{d}z \,.$$

For instance, the ITTC 1957 model-ship correlation line gives

$$C_{vd} = 0.075/(\log_{10}(Re) - 2)^2,$$

where $\textit{Re} = \textit{UL}/\nu$ is the Reynolds number and ν the kinematic viscosity of water.

For small ∇f (thin ship assumption)

$$R_{viscous} pprox
ho U^2 C_{vd} \left(\int_\Omega dx dz + rac{1}{2} \int_\Omega |
abla f(x,z)|^2 \, \mathrm{d}x \mathrm{d}z
ight) \,.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

By setting

$$\epsilon = \frac{1}{2} \rho U^2 C_{vd}, \qquad (11)$$

Image: A image: A

э

э

and dropping the constant term, we obtain

$$R^*_{viscous} = \epsilon \int_{\Omega} |\nabla f(x,z)|^2 \, \mathrm{d}x \mathrm{d}z \,.$$

The total water resistance functional $N^{\Lambda,\epsilon}(v,\cdot)$ is

$$N^{\Lambda,\epsilon}(v,f) := R^{\Lambda}(v,f) + \epsilon \int_{\Omega} |\nabla f(x,z)|^2 dx dz.$$

The function space is

$$H = \left\{ f \in H^1(\Omega) : f(\pm L/2, \cdot) = 0 \text{ and } f(\cdot, T) = 0 \text{ a.e. } \right\},$$

Let V > 0 be the (half-)volume of an immerged hull. The set of admissible functions is

$$\mathcal{C}_V = \left\{ f \in \mathcal{H} \ : \ \int_\Omega f(x,z) dx dz = V \text{ and } f \geq 0 \text{ a.e. in } \Omega
ight\}.$$

Notice that C_V is a closed convex subset of H. **NB:** the volume is proportional to the *displacement* of the ship.

The optimization problem

Our **optimization problem** $\mathcal{P}^{\Lambda,\epsilon}$ reads: for a given Kelvin wave number v and for a given volume V > 0, find the function f^* which minimizes the total resistance $N^{\Lambda,\epsilon}(v, f)$ among functions $f \in C_V$. Recall that

$$N^{\Lambda,\epsilon}(v,f) := R^{\Lambda}(v,f) + \epsilon \int_{\Omega} |\nabla f(x,z)|^2 dx dz$$

and

$$v = g/U^2$$
.

In short, "minimize the (total) drag for a given displacement".

Well-posedness

The parameters $\rho > 0$, g > 0, V > 0, $\Lambda > 0$, v > 0 and $\epsilon > 0$ are fixed (unless otherwise stated).

Theorem (Dambrine, P. & Rousseaux (to appear))

Problem $\mathcal{P}^{\Lambda,\epsilon}$ has a unique solution $f^{\epsilon,\nu} \in C_V$. Moreover, $f^{\epsilon,\nu}$ is even with respect to x.

- Existence by a minimizing sequence
- Uniqueness by strict convexity
- Symmetry thanks to the symmetry of $R_{Michell}$ through $x \mapsto -x$.

Remark: also valid if $\Lambda = \infty$ with $R_{Michell}$ instead of R^{Λ} .

Continuity of the optimum with respect to v

Theorem (Dambrine, P. & Rousseaux (to appear))

Let $\bar{v} > 0$. Then $f^{\epsilon,v}$ converges strongly in H to $f^{\epsilon,\bar{v}}$ as $v \to \bar{v}$.

idea of proof

• $N^{\Lambda,\epsilon}(v,\cdot)$ Γ -converges to $N^{\Lambda,\epsilon}(\bar{v},\cdot)$ for the weak topology in H, thanks to $\Lambda < \infty$.

• strong convergence thanks to the convergence of the H^1 -norm

Remark: result also valid if $\epsilon > 0$ depends continuously on v.

(日) (同) (三) (三)

Regularity of the solution

Theorem (Dambrine, P. & Rousseaux (to appear))

The solution $f^{\epsilon,v}$ of problem $\mathcal{P}^{\Lambda,\epsilon}$ belongs to $W^{2,p}(\Omega)$ for all $1 \leq p < \infty$. In particular, $f^{\epsilon,v} \in C^1(\overline{\Omega})$.

(日) (同) (三) (三)

Sketch of proof (regularity)

The problem is a perturbation of an obstacle-type problem for the Dirichlet energy

- The Euler-Lagrange equation gives a variational inequality for an obstacle-type problem
- By a standard result, the regularity of the obstacle problem is given by the regularity of unconstrained problem
- The unconstrained problem reads -Δf^{ε,ν} = w with w ∈ L[∞](Ω), and homogeneous Dirichlet BC on 3 sides + no-flux BC on 1 side of the rectangle, hence f^{ε,ν} ∈ W^{2,p}(Ω) for all 1 ≤ p < ∞.

▲□ ► ▲ □ ► ▲

Numerical methods

- Q^1 finite element discretization of the space H
- the integrals

$$J(\lambda) = \int_{-L/2}^{L/2} \int_{0}^{T} \frac{\partial f(x, z)}{\partial x} \exp\left(-\frac{\lambda^{2}gz}{U^{2}}\right) \sin\left(\frac{\lambda gx}{U^{2}}\right) dx dz.$$
(12)

are computed exactly on the basis functions

- the antisymmetric contribution *I*(λ) is dropped (since the minimizer is even with respect to x).
- for the last integral *R_{Michell}*, we use a midpoint formula which preserves nonnegativity of the quadratic form + Tarafder's trick to improve accuracy
- Uzawa algorithm for the resolution

Numerical test

•
$$\rho = 1000 \text{ kg} \cdot \text{m}^{-3}$$
, $g = 9.81 \text{ m} \cdot \text{s}^{-2}$, $L = 2 \text{ m}$, $T = 20 \text{ cm}$, $V = 0.03 \text{ m}^3$.

•
$$N_x = 100$$
 and $N_z = 20$

•
$$\epsilon = rac{1}{2}
ho C_{vd} U^2$$
 with $C_{vd} = 0.01$

•
$$Fr = U/\sqrt{gL}$$

æ

- ∢ ≣ →

< 4 P → 4 E

Scaling

Let
$$T = \alpha \overline{T} / L = \alpha \overline{L} / f = \alpha \overline{f} / x = \alpha \overline{x} / z = \alpha \overline{z}$$

The wave resistance reads

$$R(\mathbf{v},f)=\alpha^{3}\bar{R}(\alpha\mathbf{v},\bar{f}),$$

where $v = g/U^2$. It is natural to set $\bar{v} = \alpha v$, i.e. $U = \sqrt{\alpha} \bar{U}$, and with this choice,

$$Fr = U/\sqrt{gL} = \overline{F}r = \overline{U}/\sqrt{g\overline{L}}.$$

The viscous drag reads

$$\frac{1}{2}\rho U^2 C_{vd} \int_{\Omega} |\nabla f(x,z)|^2 dx dz = \alpha^3 \frac{1}{2} \rho \bar{U}^2 C_{vd} \int_{\bar{\Omega}} |\nabla \bar{f}(\bar{x},\bar{z})|^2 d\bar{x} d\bar{z}.$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへの

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへの

The bulbous bow of "Harmony of the Seas" (AFP / G. Gobet photo) Speed : 20 knots / Length : 362m / Fr=0.17 (/T=9.1m / B=47m) ITTC 1957 gives $C_{vd} = 0.0013$

Comparison with a Wigley hull

< (□)

э

About the case $\epsilon = 0$

In this section, we assume

$$R^{\Lambda}(v,f) = rac{4
ho gv}{\pi} \int_{1}^{\Lambda} |T_f(v,\lambda)|^2 rac{\lambda^2}{\sqrt{\lambda^2-1}} d\lambda,$$

with $1<\Lambda\leq\infty$ (i.e. "true" Michell wave resistance, or truncated Michell wave resistance).

Proposition (Krein'52)

Let v > 0. For all $f \in C_V$, $R^{\Lambda}(v, f) > 0$. More precisely,

$$\inf_{f\in C_V} R^{\Lambda}(v,f) > 0.$$

 \Rightarrow There is no ship with wave resistance equal to 0.

However, this is possible if $\lfloor L = \infty \rfloor$ (endless caravan of ships). Indeed, choose

$$f(x,z) = g(x)h(z), \quad g(x) = \frac{\sin^2(ax)}{ax^2}$$

and *h* arbitrary. Then for v < a, $T_f(v, \lambda) = 0$ for all $\lambda \ge 1$ and so $R^{\Lambda}(v, f) = 0$. Moreover, if $L < \infty$, for any $h \in C_c^{\infty}(\Omega)$, by setting $f = \partial_x^2 h + v \partial_z h$, we have by integration by parts:

$$T_f(v,\lambda) = i\lambda v \int_{-L/2}^{L/2} \int_0^T f(x,z) e^{-\lambda^2 v z} e^{-i\lambda v x} dx dz = 0,$$

and so

$$R^{\Lambda}(v,f)=0.$$

(but in this case, f changes sign !)

Figure: Eigenvalues of $M_w \approx R^{\Lambda}$ for a 100 × 30 grid

Letting $\epsilon \to 0$

Proposition (Dambrine, P. & Rousseaux (to appear))

The minimum value $N^{\Lambda,\epsilon}(v, f^{\epsilon,v})$ tends to

$$m^{\Lambda,v} := \inf_{f \in C_V} R^{\Lambda}(v,f)$$

as ϵ tends to 0.

Remark: Up to a subsequence, $f^{\epsilon,\nu}$ tends to a finite nonnegative measure with support in $\overline{\Omega}$, weakly- \star in $(C(\overline{\Omega}))'$.

A (1) > A (2) > A

ε=0.01

Figure: Color maps of the optimized hull function f(x, z) for smaller and smaller values of ϵ .

The one dimensional case

For simplicity, we restrict the study to the functions f(x, z) = f(x) with infinite draft T. Moreover, $f(\pm L/2) = 0$ and by symmetry, f is even. Then (for $\Lambda = \infty$),

$$R_{Michell} = rac{4
ho gv}{\pi} \int_{1}^{\infty} S_f(v,\lambda)^2 rac{1}{\sqrt{\lambda^2-1}} d\lambda$$

with

$$S_f(v,\lambda) = \int_{-L/2}^{L/2} f(x) \cos(\lambda v x) dx.$$
(13)

We minimize R_{Michell} in

$$C_V := \{ f \in H^1_0(-L/2, L/2) : f \text{ even}, \int_{-L/2}^{L/2} f = V, f \ge 0 \text{ a.e.} \}.$$

Proposition (1d case)

Any minimizing sequence (f_n) converges to the same finite nonnegative measure μ^{ν} on [-L/2, L/2]. Moreover, μ^{ν} belongs to $H^{-1/2}(-L/2, L/2)$.

Uniqueness: S_f is the Fourier transform of f, so by analycity, $R_{Michell}$ is a **norm** on $L^2(-L/2, L/2)$, which has a natural l.s.c. extension to a norm on (C([-L/2, L/2])'.

Estimate: use Fatou's lemma and the standard definition of $H^{-1/2}(\mathbf{R})$ by Fourier transform. Indeed,

$$H^{-1/2}({f R}):=\{g\in {\cal S}'({f R}) \ : \ \int_{f R}(1+\lambda^2)^{-1/2}|\hat g(\lambda)|^2d\lambda<\infty\}.$$

イロト イポト イヨト イヨト 二日

Solution for $\epsilon = 1$, $\epsilon = 0.05$ and $\epsilon = 0.01$ (*Fr* = 0.4)

(日) (월) (월) (월)

1d Resolution without positivity condition (Krein'52)

If we suppress the positivity condition, then the minimization problem is quadratic with linear constraint. The Euler-Lagrange equation reads: find $f: I \rightarrow \mathbf{R}$ s.t.

$$\int_{I} K_{\nu}(x-\xi) f(\xi) d\xi = cst, \quad \forall x \in I,$$
(14)

where I = (-L/2, L/2) and

$$\mathcal{K}_{v}(x-\xi) = \int_{1}^{\infty} rac{\cos(\lambda v(x-\xi))}{\sqrt{\lambda^{2}-1}} d\lambda.$$

This is a *Fredholm integral equation of the first kind*. Well-known category of ill-posed problems !

We have

$$K_{\nu}(x)=c_{\nu}\ln(1/|x|)+g(x),$$

where g is continuously differentiable on \overline{I} and twice continuously differentiable on $\overline{I} \setminus \{0\}$.

Keeping only the first term of K_{ν} in (14), the solution is given by

$$f(x)=\frac{C}{\sqrt{(L/2)^2-x^2}},$$

where C is a constant. Singularity at $x = \pm L/2$. In particular, $f \notin H^1(I)$.

A numerical experiment (1d)

Discretization of the Euler-Lagrange equation (14) by P^1 finite element in $H^1(-L/2, L/2)$, and its ϵ -regularized version (Tykhonov regularization).

$$Fr = 0.4 \ (L = 3 \ / \ V = 0.1)$$

N = number of degrees of freedom

 $\kappa=$ condition number of the (augmented) linear system

Condition number vs degrees of freedom (1d)

Conclusion and perspectives

Other formulas

Michell assumes an unbounded domain, i.e. depth $H = \infty$ and width $W = \infty$. There are also integral formulas for:

- $H = \infty$ and $W < \infty$ (Sretensky'36)
- $H < \infty$ and $W = \infty$ (Sretensky'37)
- $H < \infty$ and $W < \infty$ (Sretensky'37 and Keldish-Sedov'37)
- Multilayers (dead-water effects)

Wave resistance of a Wigley hull for 3 different domains

- Fixed speed $U \Rightarrow$ range of speeds
- fixed domain of parameters \Rightarrow varying domain (shape optimization)

• . . .

< □ > <

Thank you for your attention !

æ

(日) (同) (三) (三)