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Introduction

Motivations

Swimming is seen as a control
problem.
Given two points in space, can
the swimmer go from one point
to the other?

The motion of the swimmer is due

to fluid-structure interactions.
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Introduction

The fluid

Reynolds number: Re =
ρUL

µ

Re
Re << 1 Re >> 1

Stokes Navier − Stokes Euler

L (cm) U (cm.s−1) T (s) Re

Bacteria 10−5 10−3 10−4 10−5

Spermatozoon 10−3 10−2 10−2 10−3

Fish 50 100 0.5 5.104

Pigeon 25 103 5.10−1 105
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Introduction

The deformations I

All the deformations are not interesting in order to swim.

Theorem (Scallop theorem, Purcell, 1977)

Given a time periodic deformation described by one physical geometric parameter,
the net motion of the swimmer over one period is null.

No net motion
⇒

in Stokes fluid

Taylor’s experiences

J. Lohéac (IRCCyN) Control of 3D micro-swimmers 26/08/2015 4 / 30



Introduction

The deformations II

Purcell’s swimmer
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Helical deformation

Net motion
⇒

in Stokes fluid

Taylor’s experiences
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Introduction

State of art

Swimmer description and modelling:

G. Taylor’s experiences, 1951
Low Reynolds swimmers modelling, E. M. Purcell, 1977, and S. Childress, 1981
Foundations of Low Reynolds swimming, A. Shapere and F. Wilczek, 1989

Controllability results:

In perfect fluid, T. Chambrion and A. Munnier, 2010
In Stokes fluid, for a n-sphere swimmer, F. Alouges, A. DeSimone and
A. Lefebvre, 2009
In Stokes fluid, for a ciliated organism, J. San Martin, T. Takahashi and
M. Tucsnak, 2007
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Modelling

Domains

Let B†(t) be the domain occupied by the swimmer, Σ†(t) its boundary and

F †(t) = R3 \ B†(t) the fluid domain.

B†(t)

Σ†(t)

n†(t)

F †(t)
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Modelling

The fluid

Stokes equations:
−∆u† +∇p† = 0 in F †(t)

div u† = 0 in F †(t)

Velocity continuity:
u† = vs on Σ†(t) ,

with vs is the swimmer velocity.

Set σ(u†, p†) =
(
∇u† + (∇u†)T

)
− p†I3 ∈ R3×3, the Cauchy-stress tensor, the

force exerted by the fluid on a part dΓ of Σ†(t) is σn† dΓ.
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J. Lohéac (IRCCyN) Control of 3D micro-swimmers 26/08/2015 10 / 30



Modelling

The swimmer
Deformations

The swimmer is located by:

its mass center h ∈ R3 and

its orientation R ∈ O+(3).

x†

y

0 0

X (., t)

x

h(t)

B0 B(t) B†(t)

0

X†(., t)

R(t)Id + h(t)

J. Lohéac (IRCCyN) Control of 3D micro-swimmers 26/08/2015 11 / 30



Modelling

The swimmer
Velocity of deformation

The velocity of a point x† = X †(y , t) = RX (y , t) + h of B†(t) is:

vS = ḣ + Rω × (x† − h) + R w(x†, t) ,

with:

w the non-rigid deformation velocity of the swimmer,

w(x†, t) = Ẋ
(
X (., t)−1

(
RT (x† − h(t))

)
, t
)
.

ω the angular velocity of the swimmer in a referential attached to him,

Ṙ = Rω̂ ,

where, ω̂, a 3× 3-skew symmetric matrix, is such that ω̂x = ω × x .
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Modelling

The swimmer
Deformations constraints

The deformation X (t) shall be:

a C 1-diffeomorphism of R3

and shall keep constant:

the mass

−→ ρ(·, t) =
1∣∣det(JacX (·, t)

)∣∣
the mass center position

0 =

∫
B(t)

ρ(x , t)x dx

the angular momentum

0 =

∫
B(t)

ρ(x , t)x × Ẋ
(

X (., t)−1(x), t
)
dx
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Modelling

The swimmer
Equations of motion

Newton’s principle leads to:

mḧ =

∫
Σ†(t)

σ(u†, p†)n† dΓ

d Jω

dt
=

∫
Σ†(t)

(x − h)× σ(u†, p†)n† dΓ

(PFD)
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Modelling

The coupled problem I


0 = ∇p† −∆u† , in F †(t)
0 = div u† , in F †(t)

lim
|x|→∞

u†(x) = 0

u† = ḣ + Rω × (x − h) + Rw , on Σ†(t)
0 =

∫
Σ†(t)

σ(u†, p†)n† dΓ

0 =

∫
Σ†(t)

(x − h)× σ(u†, p†)n† dΓ
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Modelling

The coupled problem II

Let us make the change of variables u(x) = R>u†(Rx + h), p(x) = p†(Rx + h),
0 = ∇p −∆u , in F (t)
0 = div u , in F (t)

lim
|x|→∞

u(x) = 0

(S)

u = R>ḣ + ω × x + w , on Σ(t) (BC)
0 =

∫
Σ(t)

σ(u, p)n dΓ

0 =

∫
Σ(t)

x × σ(u, p)n dΓ
(CM)
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Low Reynolds specificities

Drag and Momentum

Given (u, p) and (v, q) two solutions of the homogeneous Stokes problem.
By Green formula, ∫

Σ

σ(u, p)n · v dΓ = 2

∫
F

D(u) : D(v)dx ,

with D(u) = 1
2

(
∇u + (∇u)>

)
.

Let us then define (ui , pi ) ∈W 1
0 (F )3 × L2(F ), the solutions of the homogeneous

Stokes problem with boundary condition:

ui =

{
ei if i ∈ {1, 2, 3} ,
x × ei−3 if i ∈ {4, 5, 6}

on Σ .

Then, 
∫

Σ

σ(u, p)ndΓ∫
Σ

x × σ(u, p)ndΓ

 = 2

(∫
F

D(u) : D(ui )dx

)
i=1,...,6

.
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Low Reynolds specificities

An ODE system I

Assume now that X is given by:

X (t, x) = D0(x) +
n∑

i=1

si (t)Di (x) .

Then the geometry of the problem can be only described by the parameter
s = (s1, · · · , sn) and the set of deformations D =

(
D0, (D1, . . . ,Dn)

)
. Thus,

X (t, ·) can be recast as XD(s) = D0 +
∑n

i=1 siDi .

The boundary condition (BC) is then:

u = R>ḣ + ω × x +
n∑

i=1

ṡiDi ◦ XD(s)−1 , on ΣD(s) .

Let us write (vi , qi ) the solution of the homogeneous Stokes problem with the
boundary condition vi = Di ◦ XD(s)−1 on ΣD(s).
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Low Reynolds specificities

An ODE system II

Let us define the matrices:

MD(s) = 2

(∫
FD(s)

D(ui ) : D(uj)dx

)
i,j=1,...,6

∈ M6(R)

and ND(s) = 2

(∫
FD(s)

D(ui ) : D(vj)dx

)
i=1,...,6
j=1,...,n

∈ M6,n(R) .

Using the linearity of the homogeneous Stokes problem with respect to the
boundary condition, (CM) is:

MD(s)

(
R>ḣ
ω

)
= ND(s)ṡ .
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Low Reynolds specificities

An ODE system III

And hence, the full coupled system (S)-(BC)-(CM) can be written as:

ḣ = R` (1a)

Ṙ = Rω̂ (1b)

ṡ = λ (1c)(
`
ω

)
= MD(s)−1ND(s)λ (1d)

This fits the form of geometric control problems, with control variable λ ∈ Rn and
state variable (h,R, s) ∈ R3 × O+(3)× Rn,

(ḣ, Ṙ, ṡ) =
n∑

i=1

fi (R, s)λi .
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Controllability

A controllability result, Chow Theorem

On a manifold M, we consider the dynamical system:

ż =
n∑

i=1

fi (z)ui , (2)

We associate to this system the Lie algebra Lie{f1, . . . , fn} which is the smallest
algebra stable for the Lie bracket:

[f , g ] : M → TM
z 7→ Dzg · f (z)−Dz f · g(z) .

Theorem (Chow)

If for every z0 ∈M we have dimLiez0{f1, . . . , fm} = dimTz0M,
then the system is controllable.

Corollary

For any trajectory z̄ : [0,T ]→M and any ε > 0, there exists a control u such
that the solution z of (2) with z(0) = z̄(0) satisfies:

sup
t∈[0,T ]

|z(t)− z̄(t)| 6 ε .
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Controllability

Self-propelling conditions

For XD(s) = D0 +
∑

siDi , the conditions:∫
B

D dx = 0 and

∫
B

D × D ′ dx = 0 (D,D ′ ∈ {D0, . . . ,Dn}) ,

ensure the self-propelling conditions.

We define C(n) the set of D =
(
D0, (D1, . . . ,Dn)

)
∈ D1

0(R3)× C 1
0 (R3)n satisfying

those conditions.
And for D ∈ C(n), given, we set S(D) the connected component of{

s ∈ Rn , D0 +
n∑

i=1

siDi ∈ D1
0(R3)

}
containing 0.

Finally, we define:

S(n) = {(D, s) , D ∈ C(n) , s ∈ S(D)} .

Lemma

S(n) is a connected and analytic sub-manifold of C 1
0 (R3)× C 1

0 (R3)n × Rn.
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Controllability

Analyticity of MD and ND

Lemma
The maps

S(n) → M6(R)
(D, s) 7→ MD(s)

and
S(n) → M6,n(R)

(D, s) 7→ ND(s)

are analytic.
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Controllability

Stokes solution in exterior domains I

We use spherical coordinates,

ez

ey

ex

0

er
eθ

θ

φ

eφ
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Controllability

Stokes solution in exterior domains II

Solutions of the homogeneous Stokes system take the form (c.f. Lamb, 1993):

u =
∞∑
n=0

(
rot(χ−(n+1)rer ) +∇ϕ−(n+1)

− n − 2

2n(2n − 1)
r 2∇π−(n+1) +

n + 1

n(2n − 1)
π−(n+1)rer

)
,

p =
∞∑
n=0

π−(n+1) ,

with π−(n+1), χ−(n+1) and ϕ−(n+1) rigid spherical harmonics,

(r , θ, φ) 7→ r−(n+1)
n∑

m=−n
γmYn,m(cos θ, φ) .

We have:∫
Σ

σ(u, p)n dΓ = −4π∇(r 3π−2) and

∫
Σ

x×σ(u, p)ndΓ = −8π∇(r 3χ−2) .
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Controllability

Lie algebra evaluated at a particular point

Lemma

The dimension of the Lie Algebra at the point (h,R, s) is independent of h and R.

Let us chose the deformations D =
(
Id, (D1, . . . ,D4)

)
,

D1(r , θ, phi) = r−4<Y3,1(cos θ, φ)er ,

D2(r , θ, phi) = r−4=Y3,1(cos θ, φ)er ,

D3(r , θ, phi) = r−4<Y3,2(cos θ, φ)er ,

D4(r , θ, phi) = r−5<Y4,2(cos θ, φ)er .

and compute the evaluation of the Lie algebra at point s = 0 ∈ R4, R = I3 and
h = 0.

Using maxima, we obtain that the Lie algebra evaluated at this point is of
dimension 10 = 3 + 3 + 4.
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Controllability

Result

Using analyticity together with Chow theorem,

Theorem

Set D̄0 ∈ D1
0 (R3) such that

∫
B

D̄0 dx = 0 and set an absolutely continuous

function t ∈ [0,T ]→ (h̄(t), R̄(t)) ∈ R3 × S0(3).
Then for every ε > 0, there exists D0 ∈ D1

0(R3) such that:

1 ‖D̄0 − D0‖C 1
0 (R3)3 6 ε;

2 for almost every (D0, (D1, . . . ,D4)) ∈ C(4), there exists a function:
t ∈ [0,T ] 7→ s(t) ∈ R4 such that the solution (h,R) of the dynamical system
satisfies:

sup
t∈[0,T ]

(
‖R̄(t)− R(t)‖M3(R) + ‖h̄(t)− h(t)‖R3

)
6 ε .

Remark
It is also possible approximatively follow a prescribed non rigid deformation,
t ∈ [0,T ] 7→ X̄ (t, ·) ∈ D1

0(R3).
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Conclusion

Conclusion

What is the minimal number of controls?

Swimming in a bounded domain? (work in progress with T. Takahashi)

Collective swimming?

Controllability in the presence of inertia?

Thank you for your attention.
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