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Motivation: Cover (as uniformly as possible) a plate with semiconducting
material. Essential for mobile phone industry.

Varios problems: ejection and vibrations of the piezo device, drop impact
and drop evaporation.



Motivation

The evaporation of droplets is a classical problem in fluid
mechanics: Maxwell(1877) and Langmuir(1918)

The main assumption of their works are
» the evaporation process is diffusion-controlled
» quasi-stationary
» isothermal
» the interface of the drop is at local equilibrium

the simplifying hypotheses

They computed the evolution of a spherical drop undergoing
evaporation



Motivation

After about one century later, the problem of evaporating dops has
attracted a great deal of attention in the physics society agin:

the pioneering work is

Deegan, R.D. et al.: Capillary flow as the cause of ring stains fram
dried liquid drops. Nature. 389, 827-829 (1997)




Stick-slip motion of the contact line (pinned-depinned) and
the formation of deposit ring patters
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Fluorescent micrographs of typical DNA multiple-ring pattern formed by evaporation of DNA droplets
H. Ma, J. Hao, Chem. Soc. Rev., 2011,40, 5457-5471



Motivation

The key analysis by Deegan et al.(1997)'s work is based on the
simplifying hypotheses and the wedge geometry near the pinned
contact line

evaporating flux
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Motivation: the shrinking-droplet problem
» the evaporation of a completely wetting liquid on a perfecty
flat surface

Many experiments reveal that the radius of such a drop goes tozero
in finite time, with a characteristic scaling exponent closeto 1/2
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Evaporation of hexane droplets deposited on mica. R o (fp —1)?; a = 0.47.



Motivation: the shrinking-droplet problem

The simple argument based on Deegan et al.(1997)'s work:

1) the evaporation rate is proportional to the perimeter of the

droplet

Vv
Cth x —27R

2) assume that the contact angle 6 is constant in time

3) by using
V x R? - height < R%,

we finally deduce
R o (t — to)/?

A question is thus on the origin of the exponent1/2



We now give our study on the coffee-stain problem and the
shrinking-droplet problem



The shrinking-droplet problem

First, we address a simple case by neglecting a substrate

This case can be reminiscent of the classical works of
Maxwell(1877) and Langmuir(1918)

the simplifying hypotheses and the spherical symmetry lead to
the classical D? law, i.e., the square of the drop-diameter D
decreases linearly in time

R o (t — to)/?

Our result on the shrinking-droplet problem

Evaporating drops with arbitrary shapes close to a sphere abo obey
the D? law and the asymptotic shape of the drop is generically an
ellipsoid



The shrinking-droplet problem: the model
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The shrinking-droplet problem: the model

where I'(t) denotes the boundary of Q(t), % is the initial shape of
the free boundary, T[u, p] = —pl + Vu + (Vu) " is the stress
tensor, o is a given positive constant, « is the mean curvature of
I(t) (k is positive for a sphere), and v, is the velocity of the free
boundary in the direction of the outward normal



The shrinking-droplet problem: the self-similar solution

The system (1)-(3) has a self-similar solution given by

p=o(l—t)2

u=0,

¢ = |x|7H(1 - 1)'/2,

r(t) = {x| = (1 - )2}

The only self-similar solutions of (1)-(3) with a power-law structure
are the ones given by (4)

(4)

The D? law is satisfied by (4)

The main aim of this study is therefore to provethe stability of
the self-similar solution (4)



The shrinking-droplet problem: stable ellipsoidal collapse

Fontelos, M.A., Hong, S.H., Hwang, H.J.: Arch. Ration. Mech. Anal.(2015)

Theorem

Assume that the initial shapel© is given by {r = 1+ €g°(0, )},
where g° € H8(S). Then, for a sufficiently small e > 0, there exists
a unique solution to the free-boundary problem (1)-(3) suchthat

r(tl)?(—t)exo ={r=1+e06.0.0)},
. 1/2
0= [t v

on the time interval 0 < t < 1 + ety(2,/m) ! for some
(%0, to) = (xo(€), to(€)) € R® x R, and we have:



The shrinking-droplet problem: stable ellipsoidal collapse

Theorem

(a) The solution {r =1+ eg(0, ¢, t)}, as well as the
corresponding (u, p, ¢), of the transformed problem is unique in the
function space 2 to be defined in the corresponding theorem

(b) The quantity (xo, ty) satisfies
xo — %ol = O(¢), [to — fo| = O(e),

where (%o, ty) € R3 x R merely depends on the | < 2 terms in the
spherical harmonic expansion of g°.



The shrinking-droplet problem: stable ellipsoidal collapse

Theorem
(c) There exist constants C > 0 and 0 < A\g < 1 such that

sup [g%(0,¢,t) — g%(0, ¢)| < CRM(t),
(0.0)€S

forall t € [0,1+4 eto(2/7) 1), where {r =1+ ¢g®(0,¢)} is an
ellipsoid which satisfies

_,20
sup [8%(0,9) — 800 Yoo — > e 71983 Yam| = O(c).
(0.0)€S |m|<2



The shrinking-droplet problem: remark on Theorem

If neglecting the Stokes equations, i.e.,c = 0, then it is known that
the system (1)-(3) has a shrinking self-similar solution whese
asymptotic shape near extinction is an ellipsoid (the Hele-Shaw
problem)

Surface tension usually plays the role of a stabilizing force=—- one
may suspect that, if o > 0, (1)-(3) has a shrinking solution whose
shape converges to a sphere or ...



The shrinking-droplet problem: remark on Theorem

Our result confirms that, for the case of evaporating drops, wrface
tension merely produces a shifting on the center, orientaton, and
semi-axes of a “o = 0 ellipsoid”, i.e., in Theorem,

¢ 0 -2 0
sup [g~(0,¢) — 80,0 Y00 — Z e 71985 nYa,ml = O(e),
(0.9)€S |m|<2
but not modification in the ellipsoidal structure near extirction

The reason for this ellipsoidal structure is thatthe evaporative

flux % overwhelms u - n near extinction

Indeed, this is the key point of the proof!



The coffee-stain problem

We also address a simple case for the coffee-stain problem

Some common features of deposit-patterns are now apparent: he
formation of periodic or quasi-periodic deposit-patterns due to
stick-slip motion of the contact line

The contact line remains pinned (stick) at the growing deposit up
to a moment when it unpins

After unpinning, the contact line moves {lips) towards a different
location where the contact line pins again and a new deposit garts

to grow
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The coffee-stain problem: the model

liquid

solid
The deposit shape is idealized by a wedge
Our analysis yields criteria for the stability/instability of the contact
line, where instability represents a transition from pinna to

unpinned contact line representative of stick-slip motion

Our formulation relies on the introduction of suitable enegies



The coffee-stain problem: the pinned-unpinned transition
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The coffee-stain problem: the pinned-unpinned transition

The plot for the equilibrium configurations

In the evaporation dominated limit, the threshold of the staility is
the point between the thick line and the thin line, where
¢ = 0.78706752635 ~ 45.1°

The thick line represents stable configurations



The coffee-stain problem: remark

Our criteria for pinning and depinning of the contact line are based
on the energy dissipation/supply mechanism

When the energy supply exceed some point of V, + V, > 0,
depinning occurs
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Capillary oscillations at the
exit of a nozzle

Ligquidl

Capillary oscillations at the exit of a nozzle,

HJ.Kim, M.A Fontelos & H.J Hwang

IMA Journal of Applied Mathematics (2014)



Surface Waves
Capillary / Gravity / Gravity-capillary

Capillary waves Gravity waves
dominated by the surface tension dominated by the gravity/the buoyancy
Gravity—capi]lary waves

dominated by the both effects of surface tension and gravity



Capillary waves

Frequencies

Capillary water waves:

w= [—— |k,
Pyt Po

* P P, : the densities of water, air, resp.,

e o : the surface tension coefficient,

e k : the wavenumber of the capillary wave.

Gravity-capillary waves:

Pw — Pa o 2
= g+ k) k|,
\/(Perpa pwtra )M




Mathematical model

a pertect incompressible fluid

Euler equation for inviscid incompressible flow:
V-u=0, in D(?),
p(u;+ (u-V)u) = —Vp.
+ Irrotational:
A¢ = 0, in D(t),
I} 9 OK
¢ + 5 |IVo|” + — = 0, on the free surface,
p

* p: the density of the fluid, o : surface tension coefficient,

e K :the curvature of the free surface,

eu=Vg,ie, pisthe potential function of the velocity u,

. D(t) is the fluid domain bounded by solid walls and the free boundary.



Contact line B.C. & volume
constraint

Salid Salid
; ¥ L O
e Free surface
Licquaiel
(1-1) Pinned end B.C. i
(1-2) Free end B.C. fele—sa =10,
(2)Volume conservation [° =z t)de — U

We consider both cases :

(1-1) with (2) and (1-2) with (2)



Linearized problem

*Ap=0,y<0,

*$,, ¢, +0, as y — —o0 or |z| — oo,
with boundary conditions:

¢, =0,y=0, [z] > a,

"?by:ft&y:o} |$|£ﬂ:

.q&t:% xI’y:[},lmlgﬂ..



Integro-ditfterential
equation

fu (3 t)

dz, |z| < a.

—f (z,t) = ——PVf

* Rescale variables: # — ax, { — ¥ i f—a
+ Separation method: f(z,t) = A(£)S(z) = eV 5(z)

( Pvflf(i )S"’(:x:)
e AS(z) = ——PV/11/1 ; z)dz




Frequency Spectrum of Mode 1 at f_ 123 Hz
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Numeric: 63.67 Hz



Conformal mapping

We can €X i’EHd to the following problem for both cases b=0andb >> a:

Sohd Solid

. R | b e e b
x=—g e x=a
Free surtace "
b Ligquud

i3 nr 1 = hy (=’ t)dz' —
(2(a+b))cm(w)ﬂpiv'fnsin( nz )—Sin( ! ):_;hzm




Capillary oscillations at a circular
orifice
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Fig. 1. Sketch of the physical setting of the problem.

Capillary oscillations at a circular orifice,
H.J.Kim, M.A Fontelos & H.]. Hwang

Applied Mathematics Letter (2013)



Integro-ditterential
equations

¢ = sin(nf)®(r, z,t), h(r,0,t) = sin(nb)H(r,t),

h: = ¢, =L re : H; = ,,

g 2
pr——=5A1h=0, 2=0, r<L & — 1 d dH n“H
pa =l =

pa® | r dr dr r2

G- [
— —
pa

1 d dH (r,t) n?H (r,t) fl : ; ,. :
r dr (T dr ) 72 - I (ry 1) His(r°, t)dr



R Y. surface tension, V! viscosity [:density
2pRU? 2RU U?

U We = , Re= : | —
Yy v 2¢R

Explicit inviscid solution:

v, = i: UT:_E p(g,rjf)/p:_?,z?/r;
4 ) t
dh
! (?lrh + Ura = UZ'
v b
h This equation has the similarity solution

h(r,t) = :_zH(g) p==3h*(z,1)/1*
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Similarity solution:

H (x) =1/(d + 625",

with the constant C=0.625.
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He = 400 and We = 400

Re = 400 and We = 8000



Kinetic energy ~ |Ru (E)m Kinetic energy %,

Into surface energyR  \ 6 Into viscous disip.

Scaling law for thé R /

. . _m 1/5 —5
maximum radius: R xRe f(WeRe™)
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(R,,/R)/Re'?) is plotted (a) as a function of x=We/Re*”; the expected
behavior for small x, Vx/6, is indicated in dotted line; (b) as function of
x=We/Re*?, again showing the expected behavior for small x, (8x/9)"*
(dotted line).




