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1 Control systems

Control systems :

ẋ = f (x, u), f (0, 0) = 0.

x ∈Rn the state, and u ∈Rm the control.

Controllability : ∃ ? u : [0, T ] →Rm ,u ∈ L∞ :

(ẋ = f (x, u), x(0) = a) ⇒ x(T ) = b.

Stabilizability : ∃ ? u ∈C 0(Rn , Rm), u(0) = 0,

ẋ = f (x, u(x)),

is locally (resp. globally ) asymptotically stable (L A S).
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1 Motivations and bibliography

1. If u is available, is possible to, stabilize in finite-time controllable systems by

C 0− feedback law u(x) ?

2. No ! Sontag & Sussmann (1979), Brockett (1983), Zabczyk (1989), Coron

(1990), Coron & Rosier (1994).

3. In dimension 1 : n = m = 1.

Theorem (Sontag & Sussmann (1979))

The control system ẋ = f (x, u) is A. S if, and only if there exists u ∈C 0(R, R)

∀x ∈R\{0}, x f (x, u(x)) < 0.

Ï ẋ = x +u|x| is not C 0-stabilizable.

The condition x(x +u(x)|x|) < 0, x 6= 0 fails.
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2 Brockett’s obstruction

Solution : Sontag & Susmann proposed the stabilization by discontinuous

feedbacks.

Theorem (Brockett (1983))

If the system ẋ = f (x, u) is C 0-L A S, then f (Rn+m) contains a neighborhood of zero

.

Brockett integrateur or Heseinberg system :

ẋ1 = u1, ẋ2 = u2, ẋ3 = x1 u1 −x2u2.

Theorem (Jammazi CDC 2013))

If the system ẋ = f (x, u) is C 0-FTS, then f (Rn+m) contains a neighborhood of zero

.

What is the solution ? What do we do ?
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3 Stabilization strategies

1. Stabilization by discontinuous feedbacks Susmann, Coron & Rosier,

Ceragioli, Bacciotti, Tsiotras, Prieur, Sontag, Clarke, ...

Stabilization by discontinuous time-varying feedbacks Susmann,

Coron Samson et Morin, Pettersen et al., Canudas de Wit

et Sørdalen , Jammazi,...

2. Stabilization by time-varying periodic feedback laws u(x, t ) ; Sontag &

Susmann, Samson, Coron, Morin, Pomet, M’Closky & Murray,

Pettersen, Abichou & Beji,...

3. What do we do if some states dont’t converges ?

4. Could you ignore them ?

5. Finite-time partial stabilization Jammazi, CRAS, IMA, COCV, SIAM,

CDC, ECC.
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4 Partial finite-time stability and stabilization

In Rn , we consider the system ẋ = X (x), where X is only continuous.

Partition of the state : We decompose the state x = (x1, x2) ∈Rp ×Rn−p .

New system

(1) ẋ1 = f1(x1, x2), ẋ2 = f2(x1, x2).

Partial equilibrium point : We assume that

(2) f1(0, x2) = 0 and f2(0, x2) = 0 ∀x2 ∈Rn−p .

Definition

The system (1 ) is sait to be p-finite time partially stable if :

1. The equilibrium is Lyapunov stable.

2. ∃r > 0 and, T = T (x(0)) > 0 called settling-time function, such that, if

ẋ = X (x) and |x(0)| < r , then x1(t ) = 0 for every t Ê T.

3. The solution x(t ) starting from the initial condition x(0) is defined and

unique in forward time for t ∈ [0, T ).
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5 Discontinuous case

In Rn , we consider the system ẋ = X (x), where X is not continuous.

Filippov solutions : The Filippov solutions, are maps x of the interval I ⊂R→Rn

(3) ẋ(t ) ∈ F (x(t )) p.p. t ∈ I ,

(4) F (x) := ⋂
δ>0

⋂
µ(N )=0

c̄o f (B(x, δ) \N )

Definition

Let X :Rn →Rn mesurable, L∞. The equilibrium 0 is said LFTS for ẋ = X (x) if

1. The equilibrium (0,0) is stable in Lyapunov sense.

2. The convergence of the state x1

lim
t→+∞ |x1(t , t0, x0)| = 0,

holds for all (x1(t0), x2(t0)) such that |x1(t0)|+ |x2(t0)| < δ
3. there exists T = T (x(t0)) > 0 called settling-time function, such that, x1(t ) = 0

for every t Ê t0 +T. 10



Some results

Ï For the unicycle system and chained systems.

Ï Theorem ( COCV 2012) Let α ∈ (0, 1), then under the feedbacks

u1 = |x1|α1 +|x2|α1(2−α), wi th 0 <α1 < 1−α
2−α

u2 =−(
sg n(x2) |x2|α+ sg n(x3)|x3| α

2−α )u1.

we have (x2, x3) = (0, 0) ∈R2 in finite-time and x1(t ) is constant for t is large

enough.

Ï Theorem ( SIAM 2014)

ẋ1 = x2 u1, ẋ2 = x3 u1, . . . ẋn−2 = xn−1 u1, ẋn−1 = u2, ẋn = u1,

is (n −1) partially finite-time stabilizable by means of continuous or

discontinuous feedback laws.
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B-1 Links between local controllability and finite-time stability

Perturbed system : In Rn , we consider

(5) ẋ = g (x)+h(x), g ,h ∈C 0 and g (0) = f (0) = 0.

Nominal system : The system ẋ = g (x) is said nominal system.

Question : How the FTS of ẋ = g (x) can affect on (5) ?

Theorem 1 (IMA, 2015)

Consider the system (5) and assume that

1. x = 0 is finite-time stable for the nominal system ẋ = g (x),

2. the settling time T : x 7→ T (x) is a continuous map on Rn ,

3. for all i = 1, ..., n, lim
|x|→0

|hi (x)|
|gi (x)| = 0,

h = (h1, ..., hn)′ and g = (g1, ..., gn)′.

Then, the origin of the perturbed system (5) is locally finite-time stable.
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B-1 Exentension of Bhat and Bernstein condition

Corollary (IMA, 2015)

Consider the system (5) and assume that

1. x = 0 is finite-time stable for the nominal system ẋ = g (x), with

Lyapunov function V satisfies

V̇ + c V α É 0,

where α ∈ (0, 1) and c > 0.

2. For all i = 1, ..., n, lim
|x|→0

|hi (x)|
|x| = 0.

Then, the origin of the perturbed system (5) is locally finite-time stable.

Generalization of Bhat and Bernstein result, without restriction on α.

13



B-1 Proof

Proof. Since the nominal system ẋ = g (x) is finite-time stable with with Lyapunov

function V satisfies V̇ + c V α É 0, then, the solutions are defined in forward time

[Section 2, p. 752]Bernstein :2000, and Rosier :05, and the vector field g with

g (0) = 0 satisfies the inequality

(6) |g (x)| É k|x|β, β ∈ (0, 1),k > 0.

Let be β′ such that 0 <β′ <β, then we get |g (x)| = o(|x|β′
). Then, from (6) and the

above remark, is not hard to obtain

lim
|x|→0

|hi (x)|
|gi (x)| = lim

|x|→0

|hi (x)|
|x|

|x|
|gi (x)| = 0.

The local finite-time stability follows then from Theorem 1.
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B-2 Applications to control systems

Consider the control system

(7) ẋ = f (x, u), f (0, 0) = 0 and f ∈C 1.

Linearized system The linearized system around the equilibrium point

(xe , ue ) = (0, 0) is defined by ẋ = Ax +Bu where

A = ∂ f

∂x
(0, 0), B = ∂ f

∂u
(0, 0).

In this case, we have the expansion :

ẋ = f (x, u) = A x +B u + g (x, u),

with

(8) lim
|(x,u)|→(0,0)

g (x, u)

|(x, u)| = 0,

Theorem 2 (IMA, 2015)

If the linearized system , ẋ = Ax +Bu, is controllable then (7) is locally stabilizable

in finite-time by means of explicit continuous or discontinuous feedback laws.
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B-2 Proof of Theorem 2

Proof of continuous case :

Ï If ẋ = Ax +Bu is controllable, then, thanks to [Bernstein :2005], this is

globally finite-time stable by continuous state feedback laws.

Ï Controllability condition - and Brunovsky transformation - lead to seen the

system as a collection of decoupled independently controlled of chains of

integrators [Sontag :1990].

Ï Let us consider an example of this family of chains which is presented as

follows [Moulay :2009]

(9) ż1 = z2, ż2 = z3, . . . , żn = v.

(10) v̄(z(t )) =−k ′
1 [z1]α1 − . . . −k ′

n [zn]αn , [δ]r := sg n(δ)|δ|r ,

where α2, ...,αn satisfy

(11) αi−1 = αi αi+1

2αi+1 −αi
, i = 2, . . . , (n −1),

with αn+1 = 1, αn =α. 16



B-2 Proof of Theorem 2

We write f (x, u) = Ax +Bu + g (x, u) with assumption (8)

(g (x, u) = o((x, u))), then, if we denote by ū(x), the continuous

finite-time stabilizing feedback laws of the collection of chains of

integrators, it follows that, by the continuity of ū at zero,

lim
|x|→0

g (x, ū(x))

|(x, ū(x))| = lim
(|x, ū(x))|→0

g (x, ū(x))

|(x, ū(x))| = 0.

Proof of discontinuous case

Controllability of linear system ẋ = Ax +Bu leads to finite-time

stabilization of (7) (Jammazi :2014).
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B-2 Discontinuous case

We define the function

(12) s(z) := zn +h(z1, z2, ..., zn−1),

where h(z1, z2, ..., zn−1) =−k ′
1 [z1]α1 − . . . −k ′

n−1 [zn−1]αn−1 .

Then the feedback

(13)

v(z) =

 −k
(
1+

n−1∑
i=1

|zi |
)
sg n(s), i f s 6= 0, k is large enough,

0, i f s = 0,

makes the studied system reaches the set S := {z ∈Rn : s(z) = 0} in

finite-time, and in the sliding surface, the state gets to the

equilibrium in finite-time.

Thus, the system in closed loop is FTS. If we denotes by ū(x) the

sliding finite-time stabilizing feedback laws of the collection of

chains of integrators. Then is not hard to see that

g (x,u(x)) = o(|(x, u(x))|) when x → 0. This achieves the proof.
18



OUTLINE
A Introduction

1 Control systems

2 Motivations and bibliography

B Main results

1 Links between controllability and FTS

2 Continuous and discontinuous case

3 Applications

19



Application : Finite-time of controlled PDE
ρ1ut t =σ1uxx , x ∈Ω1, t > 0

ρ2vt t =σ2vxx , x ∈Ω2, t > 0.

Ï Works of Hansan & Zuazua, Carlos & Zuazua (93, 2000-2007) on vibrating

structures.

Ï The position of the mass M > 0 attached to the point x = 0 is described

by the function z = z(t ) for t > 0.

The dynamic of point charge is given by : M zt t (t )+σ1ux (0, t )−σ2vx (0, t ) = 0.

Ï Problem : How to build feedbacks to remove the vibration of strings in finite

time ? and what about the point mass ?

Ï The inequality Ė É−c Eα is hard for this problem !

Ï Only possible for Schrödinger equation with damping (Work of R. Carles and

C. Gallo, 2011-2013)

Ï The solution will be presented in the talk of Ghada Ben Belgacem !
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Thank you for your attention !


