
Introduction
Homogenous system

Finite-time stabilization with two boundary controls
Finite-time stabilization by acting on the point mass

Simulated moving bed (SMB) chromatography

Partial differential equations, optimal design and numerics

Finite-time stabilization of strings connected by
point mass and the SMB chromatography

Ghada Ben Belgacem and Chaker Jammazi
Ecole Polytechnique de Tunisie

BENASQUE, August 27, 2015

1



Introduction
Homogenous system

Finite-time stabilization with two boundary controls
Finite-time stabilization by acting on the point mass

Simulated moving bed (SMB) chromatography

Outline

1 Introduction

2 Homogenous system

3 Finite-time stabilization with two boundary controls
Transformation of system by Riemann invariants
Settling time

Characteristic method and uniqueness of solution
Finite-time stability of solution

4 Finite-time stabilization by acting on the point mass

5 Simulated moving bed (SMB) chromatography
Presentation of the SMB
Controllability around quasi-periodic trajectories
Finite-time stabilizability of the SMB chromatography

1



Introduction
Homogenous system

Finite-time stabilization with two boundary controls
Finite-time stabilization by acting on the point mass

Simulated moving bed (SMB) chromatography

Problem description

The deformations of the first and second string will be
described respectively by the functions :

u = u(x , t), x ∈ Ω1, t > 0,
v = v(x , t), x ∈ Ω2, t > 0.

The position of the mass M > 0 attached to the strings at the
point x = 0 is described by the function z = z(t) for t > 0.
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The unforced system is given by :

ρ1utt = σ1uxx , x ∈ Ω1, t > 0,

ρ2vtt = σ2vxx , x ∈ Ω2, t > 0,

Mztt(t) + σ1ux(0, t)− σ2vx(0, t) = 0,

u(−`1, t) = v(`2, t) = 0, t > 0,

u(0, t) = v(0, t) = z(t), t > 0,

u(x , 0) = u0(x), ut(x , 0) = u1(x), x ∈ Ω1,

v(x , 0) = v0(x), vt(x , 0) = v1(x), x ∈ Ω2,

z(0) = z0, zt(0) = z1.

(2.1)
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IThe energy of the system (2.1) is given by :

EM(t) =
1

2

∫ 0

−`1
[ρ1|ut(x , t)|2 + σ1|ux(x , t)|2] dx +

M

2
|zt(t)|2

+
1

2

∫ `2

0
[ρ2|vt(x , t)|2 + σ2|vx(x , t)|2] dx .

I (Hansan and Zuazua, SIAM 95) : System (2.1) is stable, in
particular EM is conserved.

I The authors are oriented to study the controllability problem,
but here we will interested to a special stabilization called
”Finite-time stabilization”.
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Definition

Let f : X × Y → X smooth function, f(0,0)=0.
The control system ẋ = f (x , u) is said finite-time stabilizable if
there exists an admissible feedback u for which ẋ = f (x , u(x)) is
F.T.S in the sense that ∃ r > 0 : |x(0)| < r such that x(t) = 0 in
finite-time.

Example

ẋ = −x
1
3 , x(0) = x0

x(t) =

{
sgn(x0)(x

2
3
0 −

2
3 t)

3
2 if 0 ≤ t ≤ 3

2 |x0|
3
2

0 if t ≥ 3
2 |x0|

3
2 .
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Problematic

I Our objective is to build proper feedbacks (boundary or internal)
such that the solution of our system vanishs in finite-time.

I This means to attenuate vibrations of the strings.

I This requires to define the appropriate functional space of state
and control such that the solutions in closed loop are defined.

I L2(X ) denotes the space square integrable functions f : X → R.
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Strategy of Stabilization

I We start by transforming the two wave equations to first order,
hence we introduce the Riemann invariants.

•The equation utt −
σ1
ρ1

uxx = 0 is converted to


∂tu1 +

√
σ1
ρ1
∂xu1 = 0,

∂tu2 −
√
σ1
ρ1
∂xu2 = 0,

with


u1 = r1 −

√
σ1
ρ1

s1,

u2 = r1 +

√
σ1
ρ1

s1,

where (r1, s1) = (∂tu, ∂xu).
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•The equation vtt −
σ2
ρ2

vxx = 0 is converted to


∂tv1 +

√
σ2
ρ2
∂xv1 = 0,

∂tv2 −
√
σ2
ρ2
∂xv2 = 0.

with


v1 = r2 −

√
σ2
ρ2

s2,

v2 = r2 +

√
σ2
ρ2

s2,

where (r2, s2) = (∂tv , ∂xv).
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Hence, for i = 1, 2, we get the following hybrid system :

∂tui (x , t) + λi∂xui (x , t) = 0, (x , t) ∈ (−`1, 0)× (0,∞);

∂tvi (x , t) + µi∂xvi (x , t) = 0, (x , t) ∈ (0, `2)× (0,∞);

2Mztt(t) +
√
σ1ρ1

(
u2(0, t)− u1(0, t)

)
−√σ2ρ2

(
v2(0, t)− v1(0, t)

)
= 0;

2zt(t) = u1(0, t) + u2(0, t) = v1(0, t) + v2(0, t);

ui (x , 0) = u0i (x); vi (x , 0) = v0i (x).

(3.1)

With λ1 ≥ c1 > 0 > −c1 > λ2,
and

µ1 ≥ c2 > 0 > −c2 > µ2. .
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As in the work of (Perrollaz-Rosier 2014), we assume that the
boundary conditions satisfy the ODE , for example

d

dt
u1(−`1, t) = −k sgn

(
u1(−`1, t)

)∣∣u1(−`1, t)
∣∣γ , (3.2)

d

dt
v2(`2, t) = −k sgn

(
v2(`2, t)

)∣∣v2(`2, t)
∣∣γ . (3.3)

Where (k , γ) ∈ (0,∞)× (0, 1),

and sgn=


1 if x > 0,

0 if x = 0,

−1 if x < 0.
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Definition

We call settling time or response time of the transformed
system (3.1), the critical time T (u0i , v

0
i ) such that

(ui , vi )(x , t) = 0 ∀t ≥ T .

T1 =
|u01(−`1)|1−γ

(1− γ)k
+

1

c1
,

T2 =
|v02 (`2)|1−γ

(1− γ)k
+

1

c2
.

Let T ∗ = max(T1,T2) and c∗ = min(c1, c2),

∀t ≥ T ∗ − 1

c∗
, u1(−`1, t) = v2(`2, t) = 0. (3.4)
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
ρ1
σ1
∂tu1(x , t) + λ1∂xu1(x , t) = 0, (x , t) ∈ (−`1, 0)× (0,∞),

u1(x , 0) = u01(x),

u1(−`1, t) = u−`1(t),

(3.5)

2Mztt(t)+
√
σ1ρ1

(
u2(0, t)−u1(0, t)

)
−√σ2ρ2

(
v2(0, t)−v1(0, t)

)
= 0;

2zt(t) = u1(0, t) + u2(0, t) = v1(0, t) + v2(0, t);


ρ2
σ2
∂tv2(x , t) + µ2∂xv2(x , t) = 0, (x , t) ∈ (0, `2)× (0,∞),

v2(x , 0) = v02 (x),

v2(`2, t) = v`2(t).

(3.6)
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• Let φλ1 the flow associated with λ1 which is defined on a
subinterval [eλ1(t, x), fλ1(t, x)] of [0,T ∗].

• φλ1 denote the C1 maximal solution to the Cauchy problem{
∂sφλ1(s, x , t) = λ1,

φλ1(t, x , t) = x .

• The domain of φλ1 is denoted by :
D1 = {(s, x , t); (x , t) ∈ [−`1, 0]× [0,T1], s ∈ [eλ1 , fλ1 ](x , t)}.
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Consider the characteristic lines

P1 = {(s, φλ1(s, 0, 0)); s ∈ [0, fλ1(0, 0)]},

I1 = {(t, x) ∈ [0,T ]× [−`1, 0]; eλ1(t, x) = 0},

J1 = {(t, x) ∈ [0,T ]× [−`1, 0];φλ1(eλ1(t, x), t, x) = −`1}.
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figure 2 : Partition of [−`1, `2]× [0,T ∗] into I1
⋃
P1

⋃
J1
⋃
I2
⋃

P2

⋃
J2
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ρ1
σ1
∂tu1 + λ1∂xu1 = 0,

u1(x , 0) = u01(x), (3.5)

u1(−`1, t) = u−`1(t),


ρ2
σ2
∂tv2 + µ2∂xv2 = 0,

v2(x , 0) = v02 (x), (3.6)

v2(`2, t) = v`2(t).

Proposition

We suppose that u01 et u−`1 (resp v02 et v`2) are uniformly Lipschitz
continuous, and u01(−`1) = u−`1(0) (resp v02 (`2)= v`2(0)). Then

u1(x , t) =

{
u−`1

(
eλ1(x , t)

)
if (x , t) ∈ J1,

u01
(
φλ1(0, x , t)

)
if (x , t) ∈ I1 ∪ P1,

(3.7)

(
resp v2(x , t) =

{
v`2
(
eµ2(x , t)

)
if (x , t) ∈ J2,

v02
(
φµ2(0, x , t)

)
if (x , t) ∈ I2 ∪ P2,

)
is the unique weak solution of (3.5)

(
resp (3.6)

)
in the class

L2([−`1, 0]× [0,T1])
(
resp L2([0, `2]× [0,T2])

)
.
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Idea of the proof

Step 1. Existence of solution

Ω =
{

(u1, v2)/ u1 ∈ L2([−`1, 0]×[0,T1]), v2 ∈ L2([0, `2]×[0,T2]),

and u1, v2 with the same Lipschitz constant
}

equipped with
the topology of the uniform convergence. We show

. By Ascoli-Arzela theorem, Ω is a compact set in
C 0
(
[−`1, 0]× [0,T1])× C 0

(
[0, `2]× [0,T2]).

. Ω is a convex set.

For (ũ1, ṽ2) ∈ Ω, we define (u1, v2) = F (ũ1, ṽ2), and we show that

. F is continuous on Ω.

. It follows from Schauder fixed-point theorem that F has a
fixed-point

18
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Step 2. Uniqueness
Let u01 ∈ L2([−`1, 0]) and v02 ∈ L2([0, `2]). We assume that u1, u

′
1

(resp v2, v
′
2) are two weak solutions of system (3.5) (resp (3.6)).

Assume û1 = u1 − u
′
1,

v̂2 = v2 − v
′
2.

Let û1 ∈ L2([−`1, 0]× [0,T1]), v̂2 ∈ L2([0, `2]× [0,T2]),

verify ∂t û1 (x , t) + λ1∂x û1(x , t) = 0, (3.8)

∂t v̂2(x , t) + µ1∂x v̂2(x , t) = 0, (3.9)

û1(−`1, t) = û1(x , 0) = û1(0, t) = 0, (3.10)

v̂2(`2, t) = v̂2(x , 0) = v̂2(0, t) = 0. (3.11)
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∂t û1 (x , t) + λ1∂x û1(x , t) = 0, (3.8)
∂t v̂2(x , t) + µ1∂x v̂2(x , t) = 0, (3.9)
û1(−`1, t) = û1(x , 0) = û1(0, t) = 0, (3.10)
v̂2(`2, t) = v̂2(x , 0) = v̂2(0, t) = 0. (3.11)

Multiplying in (3.8)
(
resp (3.9)

)
by 2û1

(
resp 2v̂2

)
, integrating

over (−`1, 0)× (0, t)
(
resp (0, `2)× (0, t)

)
. Thus, adding the two

equations and using (3.10) and (3.11), gives

‖û1(x , t)‖2
L2
(
(−`1,0)×(0,T∗)

) + ‖v̂2(x , t)‖2
L2
(
(0,`2)×(0,T∗)

) = 0

which proves the uniqueness of solutions.
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∀t ≥ T ∗ − 1

c∗
u1(−`1, t) = v2(`2, t) = 0, (3.4)

u1(x , t)=

{
u−`1

(
eλ1(x , t)

)
if (x , t) ∈ J1,

u01
(
φλ1(0, x , t)

)
if (x , t) ∈ I1 ∪ P1,

(3.7)

v2(x , t)=

{
v`2
(
eµ2(x , t)

)
if (x , t) ∈ J2,

v02
(
φµ2(0, x , t)

)
if (x , t) ∈ I2 ∪ P2,

Proposition

u1(x ,T ∗) = 0, x ∈ [−`1, 0], (3.12)

v2(x ,T ∗) = 0, x ∈ [0, `2]. (3.13)
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In a second step, we show the finite-time stability of u2 and v1.
The idea is to find a relation between u1 and u2 (resp v1 and v2)
then deduce the stability of one from the other.
More precisely, we will try to find a function h1 (resp h2) such that
at the point mass (x = 0) we have

u2(0, t) = h1
(
u1(0, t)

)
,

and

v1(0, t) = h2
(
v2(0, t)

)
.
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figure 3 : The invariants along the characteristic curves 23
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I This implies that, for any arbitrary t there is an increasing
sequence of time instants ti , i=0,1,2,... such that{

u1(−`1, ti ) = u1(0, ti+1),

u2(−`1, ti ) = u2(0, ti−1),

{
v1(`2, ti ) = v1(0, ti+1),

v2(`2, ti ) = v2(0, ti−1).

I By the same technique used by (Coron, d’Andréa-Novel and
Bastin, 2007) for some hyperbolic systems, we get implicitly the
following compatibility conditions

u2(0, t) = −k0u1(0, t), (3.14)

and

v1(0, t) = −k ′0v2(0, t). (3.15)

Where k0, k
′
0 two positive constants.
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Corollary

Assume that u2 and v1 satisfy (3.14) and (3.15). Then

u2(0, t) = v1(0, t) = 0 for t ≥ T ∗. (3.16)

This result is a direct application of Greenberg and Li’s theorem
(1984).

Remark

Rather than taking the compatibility conditions we apply a control
p in x = 0, for example

p = −k1sgn(ż)|ż |α − k2sgn(z)|z |
α

2−α ,

then, we get z = 0 in F.T.
In this case, by 2ż(t) = u1(0, t) + u2(0, t) = v1(0, t) + v2(0, t),
one easily show (3.16).
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Theorem

For every t ≥ T ∗, z(t) is equal to a constant that depends on the
initials data. Moreover, the energy EM is constant for t is large
enough.

Apparition of Synchronization Phenomena
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u1(x ,T ∗) = 0, x ∈ [−`1, 0], (3.12)
v2(x ,T ∗) = 0, x ∈ [0, `2], (3.13)
u2(0, t) = v1(0, t) = 0 for t ≥ T ∗. (3.16)

Idea of the proof

•ĖM =

∫ 0

−`1
ρ1ututt dx +

∫ 0

−`1
σ1uxuxt dx

+

∫ `2

0
ρ2vtvtt dx +

∫ `2

0
σ2vxvxt dx + Mztztt ,

• recall that

Mztt =

√
σ2ρ2

2

(
v2(0, t)− v1(0, t)

)
−
√
σ1ρ1

2

(
u2(0, t)− u1(0, t)

)
,

• we deduce thanks to (3.12), (3.13) and (3.16) that

ztt = 0 ∀t ≥ T ∗ (3.17)
27
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In replacing by the Riemann Invariants, we find

ux(−`1, t) = vx(`2, t) = 0 for t ≥ T ∗

by integration by parts, and taking into account (3.17) we deduce
that, for every t ≥ T ∗

ĖM =

∫ 0

−`1
ut(ρ1utt −σ1uxx) dx +

∫ `2

0
vt(ρ2vtt −σ2vxx) dx = 0.

So, the energy EM is conserved for t ≥ T ∗, in particular
E = E (T ∗). Then

ż(t) = 0 ∀ t ≥ T ∗.
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Interpretation

Attenuation of the vibration of the two strings on either side of the
mass point, while ignoring the mass position.

Since z −→ zc

t → T ∗,

where zc est constante.

Problem : Synchronization phenomena

How we can change the feedbacks obtained so that

|zc | ≤ ε,

with ε > 0 fixed in advance.
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Finite-time stabilization by acting on the point
mass
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Lemma

Let the scalar control system ẋ = u + g(t), where g(.) is a
finite-time perturbation. Then for t is large enough, ẋ = u is F.T.S
by choosing

u = −k sgn(x)|x |α, (k , α) ∈ ((0,∞)× (0, 1)).
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We will be interested in the finite-time stability of the following
system


ρ1utt = σ1uxx , x ∈ Ω1, t > 0,

ρ2vtt = σ2vxx , x ∈ Ω2, t > 0,

ztt(t) + σ1ux(0, t)− σ2vx(0, t) = 0, t > 0,

u(−`1, t) = v(`2, t) = 0, t > 0.

with the following feedbacks at the point mass x = 0

d

dt
vx(0, t) = −k sgn

(
vx(0, t)

)∣∣vx(0, t)
∣∣γ , (4.1)

p := −σ1ux(0, t) = −k1sgn(ż)|ż |α − k2sgn(z)|z |
α

2−α . (4.2)
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Then by the precedent lemma and from the equation

ztt =
1

M

[
σ2vx(0, t)− σ1ux(0, t)

]
,

we get z(t) = 0 in finite time.
Let T∗ the settling time of z .

Theorem

Under the family of homogeneous continuous controllers (4.1) and
(4.2), the energy EM of the system vanishes in finite time. More
precisely, we get u = v = 0 in finite time.
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Idea of the proof

• u and v are given, respectively, in terms of the initial data by
d’Alembert’s formula as follows

u(x , t) =
1

2

[
z(t− d1x) + z(t + d1x)

]
+

1

2d1

∫ t+d1x

t−d1x
ux(0, s)ds,

v(x , t) =
1

2

[
z(t − d2x) + z(t + d2x)

]
+

1

2d2

∫ t+d2x

t−d2x
vx(0, s)ds,

with di =
σi
ρi

for i = 1, 2.

• Using (4.1) and (4.2) it is easily seen that u and v vanish in
finite time.

• A simple calculation of the system energy, allows us to
conclude that EM vanishes in finite time. 34
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Simulated moving bed (SMB)
chromatography
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Definition

The SMB chromatography is a technique used to separate particles
that would be difficult or impossible to resolve otherwise.

The use of many columns allows for a continuous separation with a
better performance than the discontinuous single-column
chromatography.
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System Description

• The SMB system is divided in four zones {I , II , III , IV }.
• Each zone contains one chromatography column i ∈ {1, 2, 3, 4}.
• Between each zone there will be provision for 4 process steams :

B Two inlets : - Feed mixture (A,B),
- Incoming solvent.

B Two outlets : - The less absorbed component (A),
- The more absorbed component (B).
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• The switching time period is T

• The column length is L.

• C `i (t, x) ≥ 0 is the concentration of species ` ∈ {A,B} in the
column i ∈ {1, 2, 3, 4}.

with 0 ≤ x ≤ L,

t ≥ 0.

• V1 (resp V2) is the fluid velocity in the columns located in
zones I and III (resp II and IV).

• h` > 0 denotes the Henry coefficient.

• VF > 0 is the constant fluid velocity while CA
F , CB

F > 0 are
the constant species concentrations in the input flow.
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The general form for the hyperbolic system of conservation laws
describing the periodic SMB chromatography is given for
mT ≤ t < (m + 1)T , m = 0, 1, 2, ... by

(1 + h)∂tC
` + (Pm)Υ(Pm)T∂xC

` = 0, (5.1)

C `(t, 0) = PmK (Pm)TC `(t, L) + (Pm)U`,

C `(0, x) = C `0(x).

with
C `(t, x) =

(
C `1 ,C

`
2 ,C

`
3 ,C

`
4

)T
,

U` =
(
(VF/V1)C `F , 0, 0, 0

)T
, Υ = diag{V1,V2,V1,V2},

K =


0 0 0 V2/V1

1 0 0 0
0 V2/V1 0 0
0 0 1 0

 , P =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .
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Proposition

The system (5.1) has a single quasi-periodic time solution
C ∗ = (C ∗A,C ∗B) such that C ∗(t, x) = C ∗(t + 4T , x), x ∈ [0, L],
t ≥ 0 provided that VFC

A
F and VFC

B
F are sufficiently small.

Idea of the proof

I Existence : Schauder fixed-point theorem.

I Uniqueness : Assume that (5.1) admits two solutions C ∗ and
C̃ ∗, then we prove that for Ĉ = C ∗ − C̃ ∗

‖Ĉ (t, x)‖2
L2
(
(mT ,(m+1)T )×(0,L)

) = 0.

I Periodicity : For z(t, x) = C ∗(t, x)− C ∗(t + 4T , x) we have
shown without difficulty that under some conditions

z ≡ 0 ∀(t, x) ∈ [mT , (m + 1)T [×[0, L]. 41
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Controllability around quasi-periodic trajectories

Let
z(t, x) = (z1, z2, z3, z4)T

such that z(t, x) = C (t, x)− C (t + 4T , x)

be the solution for the following problem

∂tz + Am∂xz = 0, (5.2)

z(t, 0) = PmK (Pm)T z(t, L) := um(t), (5.3)

z(0, x) = 0, zt(0, x) = z1(x). (5.4)

with

um(t) =

{
u1(t) if m even,
u2(t) if m odd,

u1(t) = (v1, v2, v3, v4)T and u2(t) = (v1, v2, v3, v4)T .
42
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Theorem

The control system (5.2)-(5.4) is controllable in time if and only if

T ≥ L

4λ2
.

Idea of the Proof

IStep 1. Choose two measurable functions with values assumed
to switch so that, the control activates alternating in a manner
that, in each time t, only one control is active.

γmv (t) =

{
1 if m even,
0 if m odd,

γmv (t) =

{
0 if m even,
1 if m odd.

⇒ um(t) = u1(t)γmv (t) + u2(t)γmv (t).
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I Step 2. Write the system in the characteristic form :
• Let define the Riemann invariants of (5.2)-(5.4) by

wi (t, x) = Liz(t, x),

where Li is the left eigenvector satisfying

Li .Am = µiLi ,

• The eigenvalue µi is expressed as follows

µ = λ1γ
1
i ,m(t) + λ2γ

2
i ,m(t),

with

γ1i ,m(t) =

{
1 if t ∈ [mT , (m + 1)T [ χ{S1∪S4},
0 if t ∈ [mT , (m + 1)T [ χ{S2∪S3},
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γ2i ,m(t) =

{
0 if t ∈ [mT , (m + 1)T [ χ{S1∪S4},
1 if t ∈ [mT , (m + 1)T [ χ{S2∪S3}.

S1 = {m even , i odd}, S3 = {m odd , i odd },

S2 = {m even , i even}, S4 = {m odd , i even }.

⇒ Each Riemann invariant wi (t, x) is a solution of the scalar
advection problem

∂twi + µi∂xwi = 0, (5.5)

wi (t, 0) = Li (vi (t)γmv (t) + v i (t)γmv (t)), (5.6)

wi (0, x) = w0
i (x) = Liz

0
i (x) = 0, (5.7)

∂twi (x , 0) = w1
i (x) = Liz

1
i (x). (5.8)
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I Step 3. Give the explicit solution of the problem (5.5)-(5.8)
for every t ∈ [mT , (m + 1)T [.

• If m is even, the solution is

wi (t, x) =

{
w0
i (x − µi t) if x − µi t ≥ 0,

Li .vi (t − x
µi

) if x − µi t < 0.
(5.9)

• In the case when m is odd the solution expression is

wi (t, x) =

{
w0
i (x − µi t) if x − µi t ≥ 0,

Li .v i (t − x
µi

) if x − µi t < 0.
(5.10)
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I Step 4. The time of controllability

• For the case m = 0 i.e 0 ≤ t < T , the explicit solution of
wi , for i = 1, 2, 3, 4 is given by (5.9).
Hence, based on Coron’s proof, it is easily shown that

wi (T , x) = vi (T −
x

µ
) = w1

i (x) for T ≥ L

λ2
.

• We treat the case m = 1 (T ≤ t < 2T ). By the same aspect
we have

wi (T , x) = v i (T −
x

µ
) = w1

i (x) for T ≥ L

2λ2
.

47



Introduction
Homogenous system

Finite-time stabilization with two boundary controls
Finite-time stabilization by acting on the point mass

Simulated moving bed (SMB) chromatography

Presentation of the SMB
Controllability around quasi-periodic trajectories
Finite-time stabilizability of the SMB chromatography

I By iterative manner, for t ∈ [mT , (m + 1)T [, it is easily shown

that , the system is controllable for T ≥ L

(m + 1)λ2
.

I The periodicity of the solution (wi (t, x) = wi (t + 4T , x))
intervenes to reduce the time of controllability, thus

T ≥ L

4λ2
.
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Finite-time stabilizability of the SMB chromatography

In order to show the F.T.S around the trajectory C ∗, we define the
Riemann coordinates as follows

Ri = (1 + h)(Ci − C ∗i ), 1 ≤ i ≤ 4.

Then, the quasi-periodic linear system (5.1) is written

∂tR + Λm∂xR = 0, (5.11)

R(t, 0) = KmR(t, L), (5.12)

R(0, x) = R0(x). (5.13)

with
R(t, x) = (R1,R2,R3,R4)T

Λm = (Pm)Λ(Pm)T , Km = (Pm)K (Pm)T , Λ = diag{λ1, λ2, λ1, λ2}.
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I To get this F.T.S, we will add boundary feedbacks as follows

d

dt
R1(t, 0) = −ksgn(R1(t, 0))|R1(t, 0)|α, (5.14)

d

dt
R3(t, 0) = −ksgn(R3(t, 0))|R3(t, 0)|α. (5.15)

Let T ∗ = max
( |R0

j (0)|1−α

(1− α)K

)
, j = 1, 3.

Thus,
Rj(t, 0) = 0 ∀t ≥ T ∗.

with (K , α) ∈ (0,∞)× (0, 1).

50



Introduction
Homogenous system

Finite-time stabilization with two boundary controls
Finite-time stabilization by acting on the point mass

Simulated moving bed (SMB) chromatography

Presentation of the SMB
Controllability around quasi-periodic trajectories
Finite-time stabilizability of the SMB chromatography

Proposition

Under the feedback laws (5.14)-(5.15) that can be also
discontinuous or bounded, the periodic solution C ∗(t, x) of the
system (5.1) vanishes for t ≥ T ∗.

Idea of the proof

• Using the characteristic method in particular the explicit
solution of (5.11)-(5.13), we prove that

Rj(t, x) = 0 ∀t ≥ T ∗.
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• The switching boundary condition (5.12) is equivalent to

R1(t, 0) = (Pm)
V2

V1
(Pm)TR4(t, L), (5.16)

R2(t, 0) = R1(t, L), (5.17)

R3(t, 0) = (Pm)
V2

V1
(Pm)TR2(t, L), (5.18)

R4(t, 0) = R3(t, L). (5.19)

• We have from the feedback (5.14), and the equality (5.17) :

R2(t, 0) = 0 ∀t ≥ T ∗, (5.20)
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⇒ From the characteristic method which says that each solution
Ri of (5.11)-(5.13) is constant along its characteristic curves.
Using (5.20) one can deduce that

R2(t, x) = 0 ∀t ≥ T ∗.

• By similar way, from (5.19) and the feedback (5.15) we show
that

R4(t, x) = 0 ∀t ≥ T ∗.
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Thank you for your attention
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