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Homogenous system

Problem description

-4 B Ez

@ The deformations of the first and second string will be
described respectively by the functions :
u=u(x,t), x €, t>0,
v = v(x,t), x € o, t > 0.



Homogenous system

Problem description

-4 B Ez

@ The deformations of the first and second string will be
described respectively by the functions :
u=u(x,t), x € Qy, t>0,
v =v(x,t), x € S, t>0.
@ The position of the mass M > 0 attached to the strings at the
point x = 0 is described by the function z = z(t) for t > 0.



Homogenous system

The unforced system is given by :

P1Ut = 01 Uxx, x €, t>0,
P2Vt = 02Vxx, X € Q2> t> 07
Mz (t) + o1ux(0, t) — o2v4 (0, t) = 0,
—01,t) =v(ly, t) = t
U( 1, ) V( 2, ) 07 > 07 (21)
u(0,t) = v(0,t) = z(t), t >0,

u(x,0) = u0(x), wu(x,0) = vl(x), x € {2y,
v(x,0) = v0(x), wvi(x,0) = v(x), x € D,
z(0) =2%  z(0)=z%




Homogenous system

» The energy of the system (2.1) is given by :

En(t) = / [pr e, D + 1], )P e+ [2(D)

42
+ 5 [ [p2lve(x, )] + o2lva(x, 1) 7] dx.
0



Homogenous system

» The energy of the system (2.1) is given by :

En(t) = / [pr e, D + 1], )P e+ [2(D)

1 b
+ 5 [p2|ve(x, t)|? + oa|vi(x, t)]?] dx.
0
» (Hansan and Zuazua, SIAM 95) : System (2.1) is stable, in
particular Ep is conserved.



Homogenous system

» The energy of the system (2.1) is given by :

En(t) = / [pr e, D + 1], )P e+ [2(D)

1 b
+ 5 [p2|ve(x, t)|? + oa|vi(x, t)]?] dx.
0
» (Hansan and Zuazua, SIAM 95) : System (2.1) is stable, in
particular Ep is conserved.

» The authors are oriented to study the controllability problem,
but here we will interested to a special stabilization called
" Finite-time stabilization”.
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controls



Transformation of system by Riemann invariants
Settling time

Characteristic method and uniqueness of solution
Finite-time stability of solution

Finite-time stabilization with two boundary controls

Definition

Let f: X x Y — X smooth function, f(0,0)=0.

The control system x = f(x, u) is said finite-time stabilizable if
there exists an admissible feedback v for which x = f(x, u(x)) is
F.T.S in the sense that 3 r > 0: |x(0)| < r such that x(t) =0 in
finite-time.

Example
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Finite-time stabilization with two boundary controls

Problematic

» Our objective is to build proper feedbacks (boundary or internal)
such that the solution of our system vanishs in finite-time.
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Finite-time stabilization with two boundary controls

Problematic

» Our objective is to build proper feedbacks (boundary or internal)
such that the solution of our system vanishs in finite-time.

» This means to attenuate vibrations of the strings.
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Finite-time stabilization with two boundary controls

Problematic

» Our objective is to build proper feedbacks (boundary or internal)
such that the solution of our system vanishs in finite-time.

» This means to attenuate vibrations of the strings.

» This requires to define the appropriate functional space of state
and control such that the solutions in closed loop are defined.



Transformation of system by Riemann invariants
Settling time

Characteristic method and uniqueness of solution
Finite-time stability of solution

Finite-time stabilization with two boundary controls

Problematic

» Our objective is to build proper feedbacks (boundary or internal)
such that the solution of our system vanishs in finite-time.

» This means to attenuate vibrations of the strings.

» This requires to define the appropriate functional space of state
and control such that the solutions in closed loop are defined.

» [2(X) denotes the space square integrable functions f : X — R.



Transformation of system by Riemann invariants
Settling time

Characteristic method and uniqueness of solution
Finite-time stability of solution

Finite-time stabilization with two boundary controls

Strategy of Stabilization

» We start by transforming the two wave equations to first order,
hence we introduce the Riemann invariants.

. o .
eThe equation Upp — —luxx =0 is converted to
P1

o o
8tul+1/718xul =0, uy =f1—~/*151,

gi with gi
Oply — A | —Oxup = 0, up=1r —+,/—si,

P1 1

where (ri,s1) = (Oru, Oxu).

o=



Transformation of system by Riemann invariants

Finite-time stabilization with two boundary controls SIeHAi die

Characteristic method and uniqueness of solution
Finite-time stability of solution

. (o} .
eThe equation Vit — —2VXX =0 is converted to
P2

02
Orvi + | —0xv1 =0, vi=rn—,/—%,

& with &
Orvo — | —0Oxvo = 0. Vo =+ ,/—S,
\/ P2 P2



Transformation of system by Riemann invariants
Settling time

Characteristic method and uniqueness of solution
Finite-time stability of solution

Finite-time stabilization with two boundary controls

Hence, for i = 1,2, we get the following hybrid system :

Orui(x, t) + Nioxui(x,t) =0, (x,t) € (—41,0) x (0, 0);
Orvi(x, t) + pioxvi(x,t) =0,  (x,t) € (0,42) x (0,00);
2Mzy(t) + /o1p1 (u2(0, t) — u1(0, t))

= O'2p2(V2(O, t) = Vl(o7 t)) =0;
2z:(t) = uv1(0, t) + u2(0, t) = v1(0, t) + v2(0, t);
ui(x,0) = u?(x); vi(x,0) = v2(x).

i

(3.1)

With AM>ca>0>—c > A,
and
p1 =2 >0>—c > po.

10



Transformation of system by Riemann invariants

Finite-time stabilization with two boundary controls SIeHAi die

Characteristic method and uniqueness of solution
Finite-time stability of solution

As in the work of (Perrollaz-Rosier 2014), we assume that the
boundary conditions satisfy the ODE , for example

iul(—fl, t) = —k sgn(ul(—ﬁl, t))‘ul(—fl, t) A/, (32)

dt

%vz(ez, £) = —k sgn(va(ts, 1)) |waller ). (3.3)

Where  (k,7) € (0,00) x (0,1),

1 if x>0,
and sgn=<0 if x =0,
-1 ifx<0O.

11



Transformation of system by Riemann invariants
Settling time

Characteristic method and uniqueness of solution
Finite-time stability of solution

Finite-time stabilization with two boundary controls

Definition

We call settling time or response time of the transformed
system (3.1), the critical time T(u?, v?) such that

(ui,vi)(x,t) =0 Vt>T.

12



Transformation of system by Riemann invariants
Settling time

Characteristic method and uniqueness of solution
Finite-time stability of solution

Finite-time stabilization with two boundary controls

Definition

We call settling time or response time of the transformed
system (3.1), the critical time T(u?, v?) such that

(ui,vi)(x,t) =0 Vt>T.
(=) 1
Th=—— + —
' (1—7)k - a’
v () 1
T, = 22 2
? (1 =)k - &)

12



Transformation of system by Riemann invariants
Settling time

Characteristic method and uniqueness of solution
Finite-time stability of solution

Finite-time stabilization with two boundary controls

We call settling time or response time of the transformed
system (3.1), the critical time T(u?, v?) such that

(ui,vi)(x,t) =0 Vt>T.
(=) | 1
Tl — )
(1 -7k C1
0 Y 1—v 1
T2: ’V2( 2)| 4

1-7k o

Let T*=max(T1,T2) and c* = min(c, ),

Yt > T = = Ul(*él, t) = V2(£2, t) =0. (34)

c*
12



Transformation of system by Riemann invariants

Finite-time stabilization with two boundary controls BELIDRYtinE

Characteristic method and uniqueness of solution
Finite-time stability of solution

BOrun(x, t) + MOxui(x,t) =0, (x,t) € (—£1,0) x (0, 00),
u1(x,0) = u(x),
ul(igla t) — u—él(t)a

2MZtt(t)—|—m(U2( ) U1(0 t) p2(V2 0 t 0 t)) 0;
2z:(t) = u1(0,t) + u2(0, t) = v1(0, t) + v2(0, )

%81“‘/2()(7 t) + N28XV2(X7 t) = 07 (X7 t) € (07€2) X (07 OO);
v2(x,0) = v3(x),
V2(€2, t) = ng(t).

(3.6) ",



Transformation of system by Riemann invariants

Finite-time stabilization with two boundary controls et e

Characteristic method and uniqueness of solution
Finite-time stability of solution

e Let ¢, the flow associated with A1 which is defined on a
subinterval [ey, (¢, x), fn, (t, x)] of [0, T*].

14



Transformation of system by Riemann invariants

Finite-time stabilization with two boundary controls et e

Characteristic method and uniqueness of solution
Finite-time stability of solution

e Let ¢, the flow associated with A1 which is defined on a
subinterval [ey, (¢, x), fn, (t, x)] of [0, T*].
e ¢, denote the C! maximal solution to the Cauchy problem
85(25)\1(S,X, t) = A1,
O (t,x, 1) = x.

14



Transformation of system by Riemann invariants

Finite-time stabilization with two boundary controls Setipeing

Characteristic method and uniqueness of solution
Finite-time stability of solution

e Let ¢, the flow associated with A1 which is defined on a
subinterval [ey, (¢, x), fn, (t, x)] of [0, T*].
e ¢, denote the C! maximal solution to the Cauchy problem
85(25)\1(S,X, t) = A1,
O (t,x, 1) = x.

e The domain of ¢,, is denoted by :
Dy = {(S,X, t); (X, t) € [—fl,O] X [0, Tl],S € [e)\l, f)\l](X, t)}

14



Transformation of system by Riemann invariants

Finite-time stabilization with two boundary controls et e

Characteristic method and uniqueness of solution
Finite-time stability of solution

Consider the characteristic lines

P1 = {(57 ¢>\1(57070)); se [07 fAl(O’O)]}v
/1 = {(t,X) € [0, T] X [—51,0]; e/\l(t,x) = 0},
J = {(t,X) € [O, T] X [—gl,O]; <b)\1(e)\1(t,x), t,X) = —El}.

15



Transformation of system by Riemann inva ts
Settling time

Finite-time stabilization with two boundary controls s rrede ame oSS of el
Finite-time stability of solution

t
T
G ED: x,t)epr,
(x.t) EJ2
xt)e)
ey, (%, )
(x,t) €l
ex, (x, t)
(x,t) €L
—£, @;,(0,x,t) 0 @, (0,x,1) t2  x

figure 2 : Partition of [—{1, 03] x [0, T*] into hUP1UALULUPU%

16



Transformation of system by Riemann invariants
Settling time

Finite-time stabilization with two boundary controls s rrede ame oSS of el
Finite-time stability of solution

B0pun + MOy =0, £20¢va + p20xva = 0,
u1(x,0) = u(l)(x), (3.5) va(x,0) = g(x), (3.6)
Ul(—fl, t) = U_gl(t), Vz(fz, l’) = Vg2(t).

Proposition

We suppose that u? et u_g, (resp v et v;,) are uniformly Lipschitz
continuous, and u$(—¢1) = u_y,(0) (resp v9(£2)= v4,(0)). Then

rx ) — u_gl(e)\l(x, t)) if (x,t) € J,
i) = {U‘f (62, (0, x, t)) if (x,t) € Iy U Py, (37)

resp w(x,t) = VZQ(e”Z(X’ t)) if (x,t) € J,
( i 2( 7t) {Vg(¢H2(O’X’ t)) if (X, t) € LU Py, >

is the unique weak solution of (3.5) (resp (3.6)) in the class
Lz([—ﬁh()] X [0, Tl]) (resp L2([0,€2] X [O, Tg])) 17



Transformation of system by Riemann invariants
Settling time

Characteristic method and uniqueness of solution
Finite-time stability of solution

Finite-time stabilization with two boundary controls

Idea of the proof

Step 1. Existence of solution
Q= {(ul, V2)/ u € L2([—£1,0] X [0, Tl]), W € Lz([O,fz] X [0, Tz]),

and w3, vo with the same Lipschitz constant} equipped with
the topology of the uniform convergence. We show

> By Ascoli-Arzela theorem, € is a compact set in
CO([—fl,O] X [07 Tl]) X CO([O,EQ] X [0, Tg])
> Q is a convex set.
For (1, v) € Q, we define (u1, v2) = F(u1,v2), and we show that
> F is continuous on 2.
> It follows from Schauder fixed-point theorem that F has a
fixed-point

18



Transformation of system by Riemann invariants

Finite-time stabilization with two boundary controls et e

Characteristic method and uniqueness of solution
Finite-time stability of solution

Step 2. Uniqueness
Let uf € L2([ ¢1,0]) and v§ € L3([0, £2]). We assume that uy, u;
(resp v, v,) are two weak solutions of system (3.5) (resp (3.6)).

~ /

Assume U3 = u; — uy,
~ /
Vo = Vo — Vs,

Let & € L?([—£1,0] x [0, T1]), Vo € L2([0,45] x [0, T2]),

verify Oruy (x,t) + A10xu1(x,t) =0, (3.8)
O Vo(x, t) + p10xvo(x,t) =0, (3.9)

1 (—01,t) = v1(x,0) = 01(0, t) 0, (3.10)

Va(la, t) = Wa(x,0) = v»(0,t) =0. (3.11)

19



Transformation of system by Riemann invariants
Settling time

Finite-time stabilization with two boundary controls s rrede ame oSS of el
Finite-time stability of solution

el (%, £) + MO (x, 1) = O, (3.8)
atVQ(X, t) + u16XV2(X, t) =0, (39)

Gi(—t1, ) = Gi(x,0) = 71(0, £) = 0, (3.10)
V2(€2, t) = VQ(X,O) = VQ(O, t) =0. (3.11)

Multiplying in (3.8) (resp (3.9)) by 2u1 (resp 2v5), integrating
over (—f1,0) x (0,t) (resp (0,£2) x (0,t)). Thus, adding the two
equations and using (3.10) and (3.11), gives

2 p—

~ 2 v
1T (x, t)| +[[72(x, t)”Lz((o,ez)x(o,T*))

12((~£1,0)x(0,7%))

which proves the uniqueness of solutions.

20



Transformation of system by Riemann invariants

Finite-time stabilization with two boundary controls SIeHAi die

Characteristic method and uniqueness of solution
Finite-time stability of solution

1

vt > T — F Ul(—ﬁl, t) = Vz(ﬁg, t) =0, (3.4)
_Ju—py (e)\l(X, t)) if (X, t) SR
(. t)_{u(l)(gb,\l(O,x, A B.7)
EZACHES)) if (x,t) € Jo,
alx, t)_{vg(%(o,x, t)  if (x.t) € hUP,,

Proposition

u(x, T") =0, x¢€[-£,0], (3.12)
va(x, T*) =0, x € [0, 42]. (3.13)

21



Transformation of system by Riemann invariants

Settling time
Characteristic method and uniqueness of solution
Finite-time stability of solution

Finite-time stabilization with two boundary controls

In a second step, we show the finite-time stability of v, and v;.
The idea is to find a relation between u; and uy (resp vi and v»)
then deduce the stability of one from the other.

More precisely, we will try to find a function h; (resp hy) such that
at the point mass (x = 0) we have

w(0, t) = hy(u1(0, 1)),

and

V1(0, t) = hQ(VQ(O, t))

22



Finite-time stabilization with two boundary controls

Transformation of system by Riemann invariants
Settling time
ess of solution

Characteristic method and uniq

r t
g )
Q? (‘-‘p £ ) td 3 = U'LL-K T'L..L-"'
&) =V -
“ .l@‘t:- -
S
= —k:ﬂ)z 0, t-l) ,—""
S -
_ 0,4 tq >~ el o
gyt u2(0,t1) i,
N=W = —kouy[0,t,) e "")*rbz 0
X S L e,
wlF 1)
tu “"“-..
-, 0 £,

figure 3 : The invariants along the characteristic curves

23



Transformation of system by Riemann invariants
Settling time

Characteristic method and uniqueness of solution
Finite-time stability of solution

Homogenous system
Finite-time stabilization with two boundary controls

ite-time stabilization by acting on the point mass
Simulated moving bed (SMB) chromatography

» This implies that, for any arbitrary t there is an increasing
sequence of time instants t;, i=0,1,2,... such that

ur (=1, t;) = u1(0, tit1), vi(lo, ti) = vi(0, tit1),
uo(—41, ti) = wa(0, tj_1), vo(la, t;) = v2(0, tji—1).

24



Introduction

et Transformation of system by Riemann invariants
Homogenous system

Finite-time stabilization with two boundary controls SIeHAi die

S P . - 4 o Characteristic method and uniqueness of solution
Finite bilization by acting on the point mass Finite-time stability of solution
Simulated moving bed (SMB) chromatography y

» This implies that, for any arbitrary t there is an increasing
sequence of time instants t;, i=0,1,2,... such that

ur(—£1, t;) = u1(0, tiy1), vi(l2, ti) = va(0, tit1),
u(—1, t;) = w2(0, ti—1), va(la, ti) = va(0, ti—1).
» By the same technique used by (Coron, d'Andréa-Novel and

Bastin, 2007) for some hyperbolic systems, we get implicitly the
following compatibility conditions

U2(0, t) = —k0u1(0, t), (3.14)
and
vi(0, 1) = —kyva(0, t). (3.15)

Where kg, k(/) two positive constants.

24



Transformation of system by Riemann invariants
Settling time

Characteristic method and uniqueness of solution
Finite-time stability of solution

Finite-time stabilization with two boundary controls

Corollary
Assume that up and vy satisfy (3.14) and (3.15). Then
up(0,t) =v1(0,t) =0 fort > T*. (3.16)

This result is a direct application of Greenberg and Li's theorem
(1984).

Remark

Rather than taking the compatibility conditions we apply a control
pin x = 0, for example

p = —kisgn(2)|2|* — kasgn(z)|z|7"7,

then, we get z=10in F.T.
In this case, by 2z(t) = u1(0, t) + u2(0,t) = v1(0, t) + wo(0, t),
one easily show (3.16).
25



Transformation of system by Riemann invariants
Settling time

Characteristic method and uniqueness of solution
Finite-time stability of solution

Theorem

For every t > T*, z(t) is equal to a constant that depends on the
initials data. Moreover, the energy Ep, is constant for t is large
enough.

Finite-time stabilization with two boundary controls

Apparition of Synchronization Phenomena

26



Transformation of system by Riemann invariants
Settling time

Characteristic method and uniqueness of solution
Finite-time stability of solution

Finite-time stabilization with two boundary controls

u(x, TF) =0, x € [—41,0], (3.12)
va(x, T*) =0, x € [0, 42], (3.13)
up(0,t) = v1(0,t) =0 for t > T*. (3.16)

Idea of the proof

0 0
oEM:/ plututtdx+/ 01 Ux Uyt dX

—0 —0
EQ Z2
+ / P2Vi Ve dXx + T2 Vx Vxt dX + Mzt zys,
0 0
e recall that
\/ 0202 v 01pP1
Mz = > (v2(07 t) — v1(0, t)) i (u2(0, t) — u1(0, t)),

e we deduce thanks to (3.12), (3.13) and (3.16) that

27



Transformation of system by Riemann invariants

Finite-time stabilization with two boundary controls SIeHAi die

Characteristic method and uniqueness of solution
Finite-time stability of solution

In replacing by the Riemann Invariants, we find
ux(—21,t) = vx(lr, t) =0 fort>T*

by integration by parts, and taking into account (3.17) we deduce
that, for every t > T*

. 0 123
Ey = / Ur(p1Ust — 01 Uxx) dx+/ Ve(p2avir — 02V ) dx = 0.
—l1 0

So, the energy Ey is conserved for t > T*, in particular
E = E(T*). Then

z(t)=0 Vt>T"

28



Transformation of system by Riemann invariants
Settling time

Characteristic method and uniqueness of solution
Finite-time stability of solution

Finite-time stabilization with two boundary controls

Interpretation

Attenuation of the vibration of the two strings on either side of the
mass point, while ignoring the mass position.

Since zZ— Z
t— T,

where z. est constante.

29



Transformation of system by Riemann invariants
Settling time

Characteristic method and ur ness of solution
Finite-time stability of soluti

Finite-time stabilization with two boundary controls

Interpretation

Attenuation of the vibration of the two strings on either side of the
mass point, while ignoring the mass position.

Since zZ— Z
t— T,

where z. est constante.

Problem : Synchronization phenomena

How we can change the feedbacks obtained so that
‘Zc‘ <&

with € > 0 fixed in advance.
29



Finite-time stabilization by acting on the point mass

Finite-time stabilization by acting on the point
mass

30



Finite-time stabilization by acting on the point mass

Lemma

Let the scalar control system x = u + g(t), where g(.) is a
finite-time perturbation. Then for t is large enough, x = u is F.T.S
by choosing

u = —k sgn(x)|x|%, (k,a) € ((0,00) x (0,1)).

31



Finite-time stabilization by acting on the point mass

We will be interested in the finite-time stability of the following

system

x € Q, t >0,
P2Vit = 02Vxx, x € S, t >0,
z1(t) + o1ux(0, t) — o2v(0,t) = 0,

u(—L1,t) = v(la, t) =0, t>0.

P1Utt = O01Uxx,

with the following feedbacks at the point mass x = 0

%VX(O, t)=—k sgn(vX(O, t))!vX(O, t)}A’",

p:= —o1ux(0,t) =

= —kisgn(z)|z]* — kgsgn(z)\z\ﬁ.

t >0,

32



Finite-time stabilization by acting on the point mass

Then by the precedent lemma and from the equation

1
Zit = M [O‘2VX(O, t) - 0'1UX(0, t)]’

we get z(t) = 0 in finite time.
Let T, the settling time of z.

Theorem

Under the family of homogeneous continuous controllers (4.1) and
(4.2), the energy Ep of the system vanishes in finite time. More
precisely, we get u = v = 0 in finite time.

33



Finite-time stabilization by acting on the p
Simulated moving bed (SMB) chromatography

Idea of the proof

e u and v are given, respectively, in terms of the initial data by
d’'Alembert’s formula as follows

1 t-‘rdlx
u(x,t) = . [2(t — dix) + z(t + d1x)] + 24, / uy(0, s)ds,
t—dix
1 1 t+dorx
v(x, t) = 5 [2(t — dox) + z(t + dox)]| + 2, / vx(0, s)ds,
t—dox

with d; = 74 for i = 1,2.

1
e Using (4.1) and (4.2) it is easily seen that v and v vanish in
finite time.

e A simple calculation of the system energy, allows us to
conclude that Ejp; vanishes in finite time. 34



Presentation of the SMB
Controllability around quasi-periodic trajectories
Finite-time stabilizability of the SMB chromatography

Simulated moving bed (SMB) chromatography

Simulated moving bed (SMB)
chromatography

35



Presentation of the SMB
Controllability around quasi-periodic trajectories

Finite-time stabilizability of the SMB chromatography
Simulated moving bed (SMB) chromatography

The SMB chromatography is a technique used to separate particles
that would be difficult or impossible to resolve otherwise.

P
=} TS

Products

The use of many columns allows for a continuous separation with a
better performance than the discontinuous single-column
chromatography.

36



Presentation of the SMB
Controllability around quasi-periodic trajectories
Finite-time stabilizability of the SMB chromatography

Simulated moving bed (SMB) chromatography

System Description

e The SMB system is divided in four zones {/, I, lll, IV}.
e Each zone contains one chromatography column i € {1,2,3,4}.
e Between each zone there will be provision for 4 process steams :
> Two inlets : - Feed mixture (A, B),
- Incoming solvent.
> Two outlets : - The less absorbed component (A),
- The more absorbed component (B).

product B mixture (A, B)
v

37



Presentation of the SMB

Simulated moving bed (SMB) chromatography

product B

7 mture (A, B}
zone IV o

T<t<2T

2T<t<3T

product B e TV Mot B)

3T<t<4T
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e The switching time period is T
e The column length is L.

e C/(t,x) > 0 is the concentration of species £ € {A, B} in the
column i € {1,2,3,4}.

with 0<x<L,
t > 0.

e V; (resp V5) is the fluid velocity in the columns located in
zones | and Il (resp Il and IV).

e h’ > 0 denotes the Henry coefficient.

e Vg > 0 is the constant fluid velocity while C£, CZ > 0 are
the constant species concentrations in the input flow.
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The general form for the hyperbolic system of conservation laws
describing the periodic SMB chromatography is given for
mT <t<(m+1)T, m=0,1,2,... by

(1+ h)o:C* + (P™)T(P™)Ta,.Ct =0, (5.1)
CH(t,0) = P"K(P™T C(t, L) + (P™)UY,
C4(0,x) = C§(x).

with
Cl(t,x) = (Cf, G5, ¢, )T,

U’ = (VF/V1)CE0,0,0)7, T = diag{Vy, Vo, Vi, V},

0 0 0 W/Ww 0 001
1 0 0 0 1 000
K= 0 W/Vvi o0 0 ’ = 0100
0 0 1 0 0 0 1-0
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Proposition

The system (5.1) has a single quasi-periodic time solution
C* = (C*A, C*B) such that C*(t,x) = C*(t +4T,x), x € [0, L],
t > 0 provided that VFC,f-‘ and VFC,‘_-B are sufficiently small.

Idea of the proof
» Existence : Schauder fixed-point theorem.

» Uniqueness : Assume that LS 1) admits two solutions C* and
C*, then we prove that for C = C* — C*

o~ 2 =
H C(t, X)||L2 ((mT,(m+1)T)><(0,L)) =

» Periodicity : For z(t,x) = C*(t,x) — C*(t + 4T, x) we have
shown without difficulty that under some conditions

z=0 VY(t,x) e [mT,(m+1)T[x[0,L]. a1
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Controllability around quasi-periodic trajectories

Let
Z(t7X) - (Zla 22723724)7—

such that z(t, x) = C(t, x) — C(t +4T, x)

be the solution for the following problem

0z + AmOxz = 0, (5.2)
z(t, 0) = PT"K(P™ T z(t, L) := um(t), (5.3
z(0, x) =0, z(0,x) = z*(x). (5.4)

with 10
ut(t) if meven,
“A”_{fu)wmw¢

Ul(t) = (Vl, Vo, V3, V4)T and uz(t) = (Vl,VQ,V3,V4)T.
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Theorem
The control system (5.2)-(5.4) is controllable in time if and only if

Idea of the Proof

»Step 1. Choose two measurable functions with values assumed
to switch so that, the control activates alternating in a manner
that, in each time t, only one control is active.

m(¢) = 1 if m even, m(y) — 0 if m even,
WA T 0 if modd, WA= 1 if m odd.
= um(t) = ut (£} (t) + P (£) 17 (2)-
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» Step 2. Write the system in the characteristic form :
e Let define the Riemann invariants of (5.2)-(5.4) by

w;(t,x) = L;iz(t, x),
where L; is the left eigenvector satisfying
Li.Am = piL;,
e The eigenvalue p; is expressed as follows
1= A%im(E) + A27im(t),
with

{ 1 ifte[mT,(m+1)T[ x{s,us>

1
P () = . T
)um( ) 0 ifte [m7 7(I” + 1) [X{52U53}7
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2 (1) = { 0 if te[mT,(m+1)T[ X{s,us:}s
L 1 ifte[mT,(m+1)T] X{S:US3}-

S1 = {meven ,i odd}, S3={modd ,iodd },
So = {meven ,i even}, Sy ={modd ,ieven }.

= Each Riemann invariant w;(t, x) is a solution of the scalar
advection problem

Orw; + piOxw; = 0, (5.5)
wi(£,0) = L(EnT(0) + TEn2(®), (5.6)
w;(0,x) = wP(x) = Liz?(x) = 0, (5.7)
Dewi(x,0) = wh(x) = Liz}(x). 58)
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» Step 3. Give the explicit solution of the problem (5.5)-(5.8)
for every t € [mT,(m+1)T].

e If m is even, the solution is

wl(x — pit) if x — pit >0,
wie)={ [N RTZe 69
e In the case when m is odd the solution expression is
O .
'  owi(x = pit) if x—pit >0,
w(ex)={ [t %) gxmize  (610)
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» Step 4. The time of controllability

e For the case m=01i.e 0 <t < T, the explicit solution of
w;, for i =1,2,3,4 is given by (5.9).
Hence, based on Coron's proof, it is easily shown that
1 L
wi(T,x) =vi(T — =) = w;(x) for TE)\—.
2

e We treat the case m =1 (T <t < 2T). By the same aspect
we have

W;(T,X) = V,’(T —
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» By iterative manner, for t € [mT,(m+ 1) T[, it is easily shown

that , the system is controllable for T > ——« ——.
y = (m+ DX

» The periodicity of the solution (w;(t,x) = w;(t +4T,x))
intervenes to reduce the time of controllability, thus

L
T>—.
— 4)
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Finite-time stabilizability of the SMB chromatography

In order to show the F.T.S around the trajectory C*, we define the
Riemann coordinates as follows

Ri=(1+h)(C—C), 1<i<a.

Then, the quasi-periodic linear system (5.1) is written

OtR + AmOxR = 0, (5.11)
R(t,0) = KnR(t, L), (5.12)
R(0,x) = R%(x). (5.13)

with
R(t,X) = (Rla R27 R37 R4)T
Am = (P™AP™T, Kp=(PMK(P™T, A= diag{\i, 2, 1, A2}
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» To get this F.T.S, we will add boundary feedbacks as follows

%Rl(t, 0) = —ksgn(Ru(t, 0))|Ru(,0)%,  (5.14)
%%(t, 0) = —ksgn(Rs(t,0))|Rs(£,0)[.  (5.15)
0 11—«
Let T" = max(|(R11(_O)CL)K), j=1,3.

Thus,
R;j(t,0) =0 vVt > T

with (K, a) € (0,00) x (0, 1).
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Proposition

Under the feedback laws (5.14)-(5.15) that can be also
discontinuous or bounded, the periodic solution C*(t, x) of the
system (5.1) vanishes for t > T*.

Idea of the proof
e Using the characteristic method in particular the explicit
solution of (5.11)-(5.13), we prove that

Ri(t,x)=0  Vt> T*
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e The switching boundary condition (5.12) is equivalent to

R(£:0) = (P)2(P™)Ry(t.L),  (5.16)
R>(t,0) = Ri(t, L), (5.17)
Ri(£.0) = (PM)2(P™)Re(t. 1), (5.18)
R(£,0) = Ra(t, L). (5.19)

e We have from the feedback (5.14), and the equality (5.17) :

Ry(t,0) =0 Vt> T, (5.20)
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= From the characteristic method which says that each solution
R; of (5.11)-(5.13) is constant along its characteristic curves.
Using (5.20) one can deduce that

Ry(t,x)=0  Vt>T*

e By similar way, from (5.19) and the feedback (5.15) we show
that
R4(t,X) =0 Vt>T"
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Thank you for your attention
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