Study of an extremal problem for eigenvectors of some Sturm-Liouville problems

Thibault LIARD, Pierre LISSY, Yannick PRIVAT

January 2015

Thibault Liard, Pierre Lissy, Yannick Privat Study of an extremal problem for eigenvectors of some Sturm-Liouville problem

Observation of wave equation

- Introduction
- Main results

-

Observation of wave equation

(Eq-wave)

Let T > 0, L > 0 and $\omega \subset (0, L)$, measurable.

$$\begin{aligned} &\partial_{tt}\varphi(t,x) - \partial_{xx}\varphi(t,x) + \mathsf{a}(x)\varphi(t,x) = 0, \quad (t,x) \in (0,T) \times (0,L), \\ &\varphi(t,0) = \varphi(t,\pi) = 0, \qquad \qquad t \in [0,T], \\ &\varphi(0,x) = \varphi_0(x), \ \partial_t\varphi(0,x) = \varphi_1(x), \qquad \qquad x \in [0,L], \end{aligned}$$

where the potential $a(\cdot) \in L^{\infty}(0, L)$ is non-negative.

Definition

The equation (Eq-wave) is said to be observable on ω in time T if there exists a positive constant C such that

$$C \int_0^{\pi} \left(\varphi_1(x)^2 + \varphi_0'(x)^2 + a(x)\varphi_0(x)^2\right) dx \le \int_0^{T} \int_{\omega} \partial_t \varphi(t, x)^2 dx dt,$$
(Obs-wave)
for all $(\varphi_0, \varphi_1) \in H_0^1(0, \pi) \times L^2(0, \pi).$

We denote by $C_{T,obs}(\omega)$ the largest constant in the previous inequality

Introduction Main results

1 Motivation

Observation of wave equation

2 Presentation of the Problem

- Introduction
- Main results

3 Some ideas on the proofs

4 Conclusion

B 🕨 🖌 B 🕨

Introduction Main results

Let L > 0. Let $a(\cdot) \in L^{\infty}(0, L)$ such that $a \ge 0$ a.e. We consider the operator

$$A_{\mathsf{a}} := -\partial_{\mathsf{x}\mathsf{x}} + \mathsf{a}(\cdot) \operatorname{\mathsf{Id}}$$

defined on $\mathcal{D}(A_a) = H_0^1(0, L) \cap H^2(0, L)$. Let us denoted by $e_{a,j} \in \mathcal{D}(A_a)$ a Hilbert basis of eigenfunctions in $L^2(0, L)$, such that $e_{a,j}$ solves the eigenvalue problem

$$\begin{cases} -e_{a,j}''(x) + a(x)e_{a,j}(x) = \lambda_{a,j}^2 e_{a,j}(x), \ x \in (0, L), \\ e_{a,j}(0) = 0, \\ e_{a,j}(L) = 0. \end{cases}$$
(Pb-vp)

We choose $\int_0^L e_{a,j}^2(x) dx = 1$.

Introduction Main results

Theorem

We have

$$\mathcal{C}_{\mathcal{T},\mathrm{obs}}(\omega) \sim \mathcal{T} \inf_{j \in \mathbb{N}^*} \int_{\omega} e_{\mathsf{a},j}(x)^2 dx, \quad \text{as } \mathcal{T}
ightarrow \infty$$

There exists $T_1 > 0$ such that for all $T > T_1$,

$$C_{\mathcal{T},\mathrm{obs}}(\omega) \geq K(\mathcal{T}) \inf_{j \in \mathbb{N}^*} \int_{\omega} e_{a,j}(x)^2 \, dx > 0,$$

with K(T) > 0.

< 🗇 🕨

B 🕨 🖌 B 🕨

3

Introduction Main results

Let M > 0. We introduce

 $\mathcal{A}_{M} = \left\{ a \in L^{\infty}(0,L) \text{ such that } 0 \leq a \leq M \text{ a.e. on } (0,L) \right\},$

Problem 1 : $(L^{\infty}$ -constraint on a) $\inf_{a \in \mathcal{A}_{M}} \inf_{\substack{\omega \subset (0,L) \\ \text{s.t. } |\omega| = rL}} \inf_{j \in \mathbb{N}^{*}} \int_{\omega} e_{a,j}(x)^{2} dx, \qquad (Pb-\mathcal{A}_{M})$

- A 🖻 🕨

Introduction Main results

Remarks (when we fix j)

- If we do not restrict our search to those subsets ω verifying |ω| = rL, the problem is trivial.
- If we fix the potential a, it is well known that there exists $\tau \in \mathbb{R}_+$ such that

$$\inf_{\substack{\omega \subset (0,L) \\ s.t. \ |\omega| = rL}} \int_{\omega} e_{a,j}(x)^2 \, dx = \int_{\omega^*} e_{a,j}(x)^2 \, dx,$$

where $\omega^* = \{e_{a^*,j}(x)^2 < \tau\}$ up to a set of zero Lebesgue measure.

If a = 0 and L = π, so e_{0,j}(x) = sin(jx). We have the following inequality

$$\int_{\omega} \sin(jx)^2 \, dx \geq rac{|\omega| - \sin |\omega|}{2}, \quad ext{for every measurable } \omega.$$

Introduction Main results

Theorem

Let $r \in (0,1)$ and $M \in \mathbb{R}^*_+$.

Problem (Pb-A_M) has a solution (j₀, ω*, a*). In particular, there holds

$$m(L,r) = \min_{a \in \mathcal{A}_M(0,L)} \min_{\omega \in \Omega_r(0,L)} \int_{\omega} e_{a,j_0}(x)^2 dx$$

and the solution a^* of Problem (Pb- $\mathcal{A}_M)$ is bang-bang, equal to 0 or M a.e. in (0, L).

Assume that M = π²/L². Then, ω* is the union of j₀ + 1 intervals, and a* has at most 3j₀ - 1 and at least j₀ switching points Moreover, one has the estimate

$$\gamma r^3 \le m(L,r) \le r - \frac{\sin(\pi r)}{\pi}, \qquad (1$$

with $\gamma = \frac{7\sqrt{3}}{8}(3 - 2\sqrt{2}) \simeq 0.2600.$

Introduction Main results

Let $r \in (0,1)$ and $M \in (0, \pi^2/L^2]$. There holds

$$m_j(L,r) := \inf_{a \in \mathcal{A}_M(0,L)} \inf_{\omega \in \Omega_r(0,L)} \int_{\omega} e_{a,j}(x)^2 dx \ge \underline{m}_j,$$

for every $j \in \mathbb{N}^*$, where the sequence $(\underline{m}_j)_{j \in \mathbb{N}^*}$ is defined by

$$\underline{m}_{j} = \begin{cases} \frac{1}{2} & \text{if } j = 1, \\ \frac{(2j^{2}-1)(j^{2}-1)^{\frac{3}{2}} \left(\sqrt{\frac{j^{2}}{j^{2}-2}}-1\right)^{2}}{3j^{3} \left(\left(\frac{j^{2}}{j^{2}-2}\right)^{\frac{j}{2}}-1\right)^{2}} & \text{if } j \ge 2. \end{cases}$$

4 E b

Introduction Main results

What about the L^{∞} constraint

The constraint of the L^∞ -norm is mandatory, in the following meaning :

Theorem Let $r \in (0,1)$, $j \in \mathbb{N}^*$ and V > 0. The optimal design problem $\inf_{a \in \mathcal{A}_{\infty}} \inf_{\substack{\omega \subset (0,L) \\ s.t. \ |\omega| = rL}} \int_{\omega} e_{a,j}(x)^2 dx, \quad (Pblnf)$ where \mathcal{A}_{∞} has no solution

where $A_{\infty} = \cup_{M>0} A_M$, has no solution.

1 Motivation

Observation of wave equation

2 Presentation of the Problem

- Introduction
- Main results

Some ideas on the proofs

4 Conclusion

-

In the case : j = 1

Since the eigenfunction $e_{a,1}$ is normalized in $L^2(0, L)$, there holds

$$e_{a,1}^2(x_{max}) \ge \frac{3}{2L}.$$
 (2)

Since $e_{a,1}$ is concave one has the successive inequalities

$$e_{a,1}(x) \ge Tr_{a,1}(x) \ge \triangle_1(x), \tag{3}$$

for every $x \in [0, L]$.

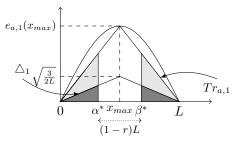


FIGURE : Graphs of the functions $e_{a,1}$, $Tr_{a,1}$ and \triangle_1 .

We readily obtain

$$\inf_{\omega \in \Omega_r(0,L)} \int_{\omega} e_{a,1}(x)^2 dx \ge \inf_{\omega \in \Omega_r(0,L)} \int_{\omega} \triangle_1(x)^2 dx = \int_{\hat{\omega}} \triangle_1(x)^2 dx, \quad (4)$$

with $\hat{\omega} = (0, \alpha^*) \cup (\beta^*, L)$ verifying
 $\triangle_1(\alpha^*) = \triangle_1(\beta^*) \quad \text{and} \quad |\omega^*| = L - \beta^* + \alpha^* = rL.$
one computes

$$\int_{\hat{\omega}} \bigtriangleup_1(x)^2 \, dx = \frac{r^3}{2}.$$
(5)

イロト イポト イヨト イヨト

э

In the general case Let $0 = x_j^0 < x_j^1 < x_j^2 < L = x_3^3$ be the 4 zeros of the 3-th eigenfunction $e_{a,3}$. First step : for every $i \in \{1, 2, 3\}$, there exist $A_i > 0$ such that $e_{a,j}(x_{max}^i) = \max_{x \in \Omega i} e_{a,j}(x) \ge \sqrt{A_i}$. Second step :

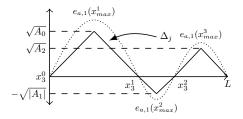


FIGURE : Graphs of the functions $e_{a,1}$ and \triangle_j .

1 Motivation

Observation of wave equation

2 Presentation of the Problem

- Introduction
- Main results

3 Some ideas on the proofs

4 Conclusion

B 🕨 🖌 B 🕨

Motivation Presentation of the Problem Some ideas on the proofs Conclusion

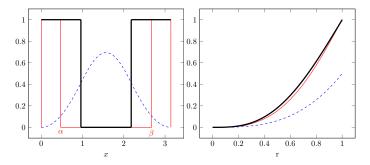


FIGURE : $L = \pi$ and M = 1. Left : plots of the optimal set $\omega(-)$, a(-) and $e_{a,1}^2(\ldots)$ with respect to the space variable with r = 0.3. Right : plot of $r \mapsto m_1(L, r)(-)$, $r \mapsto r - \frac{\sin(\pi r)}{\pi}(-)$ and $r \mapsto r^3/2(\cdots)$.

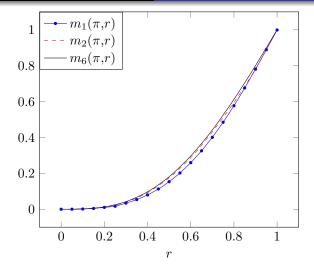


FIGURE : $L = \pi$ and M = 1. Plots of $m_j(\pi, r)$ for j = 1(0), j = 2(-) and j = 6 with respect to r.

Thank you for you attention

-