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Photonic crystal fibres: guiding light by confinement

Figure: Taken from “Photonic Crystal Fibres” Phillip Russell, Science, 2015
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Photonic crystals: Problem Formulation

∇× E = −µ∂H
∂t

, ∇× H = ε
∂E

∂t
,

∇ · (εE) = 0, ∇ · H = 0,

ε = ε0χ0(x) + ε1χ1(x), ε0 6=ε1, µ constant (µ = 1)

E = E(x1, x2) exp
(
i(kx3 + ωt)

)
, H = H(x1, x2) exp

(
i(kx3 + ωt)

)
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Maxwell equations for plane waves in PCF

In each phase E3 and H3 satisfy the following equations

∆E3 + (ω2ε1 − k2)E3 = 0, ∆H3 + (ω2ε1 − k2)H3 = 0 in Ω1

∆E3 + (ω2ε0 − k2)E3 = 0, ∆H3 + (ω2ε0 − k2)H3 = 0 in Ω0

E3 and H3 coupled across interface Γ = ∂Ω0:

ω
[ ε
a
∇E3 · n

]
= −k

[
1

a
∇H3 · n⊥

]
, k

[
1

a
∇E3 · n⊥

]
= ω

[
1

a
∇H3 · n

]
where a = ω2ε(x)− k2 discontinuous on Γ.
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Figure: From J.M.Pottage, D.M.Bird, T.D.Hedley, T.A.Birks, J.C.Knight and P.St.J. Russell,
Optics Express, 2003
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Maxwell’s equations as elliptic system: Strong and Weak formulation

∂1

(
iωε

a
E3,1

)
+ ∂2

(
iωε

a
E3,2

)
+ ∂1

(
ik

a
H3,2

)
− ∂2

(
ik

a
H3,1

)
= −iωεE3

∂1

(
ik

a
E3,2

)
− ∂2

(
ik

a
E3,1

)
− ∂1

(
iω

a
H3,1

)
− ∂2

(
iω

a
H3,2

)
= iωH3,

Find u = (E3,H3) such that∫
R2

ω

a

(
ε∇u1 · ∇φ1 +∇u2 · ∇φ2

)
+

k

a

({
φ1, u2

}
+
{
u1, φ2

})
dx

= ω

∫
R2

ε(x)u1φ1 dx + u2ϕ2 ∀φ ∈ C∞0 (R2)

{f , g} := fx1gx2 − gx1 fx2 .
The above form is symmetric, and positive if k2 < ω2 min{ε0, ε1}.
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Oblique incidence (Case of PCF): k 6= 0

If k = ωκ, κ ≥ 0 gives usual spectral problem: Find u such that∫
R2

1

ε(x)− κ2

(
ε(x)∇u1 · ∇φ1 +∇u2 · ∇φ2

)
+

+

∫
R2

κ

ε(x)− κ2

({
φ1, u2

}
+
{
u1, φ2

})
dx = ω2

∫
R2

ε(x)u1φ1 dx + u2φ2

∀φ ∈ C∞0 (R2), a(x) = ω2ε(x)− k2

The above form is symmetric, and positive if κ2 < min{ε0, ε1}.
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Anti-resonant reflecting optical waveguide (ARROW)

Assume ε0 > ε1 = 1.

Bκ[u] :=

∫
Ω1

ε0 − 1

1− κ2
|∂u|2 +

ε0 + κ

1 + κ
|∇u|2dx +

∫
Ω0

ε0|∇u1|2 + |∇u2|2dx

where
|∂u|2 = |∂x1u1 + ∂x2u2|2 + |∂x2u1 − ∂x1u2|2

Scalar product is

A[u] :=

∫
Ω1

|u1|2dx +

∫
Ω0

ε0|u1|2 + |u2|2dx

Spectral problem

Bκ(u, φ) = λA(u, φ), ∀φ ∈ C∞0 (R2),

here λ2 = ω2(ε0 − κ2).

ε0 ≤ κ2 : No solutions with ω ∈ R\{0}
1 < κ < ε0 : Bκ is sign-indefinite

κ < 1 : Form positive

Goal Analytically study spectrum as κ→ 1.
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(anti-resonant reflecting optical waveguide (ARROW) )

Floquet-Bloch decomposition

Fixed θ ∈ [−π, π)3. Find u ∈ H1
θ(Q) ( u(y) = eiθ·yv(y), v Q-periodic) such that

Bκ(u, φ) = λA(u, φ), ∀φ ∈ C∞0 (R2), ∀φ ∈ V (θ).

Spectrum:

0 ≤ λ1(κ, θ) ≤ λ2(κ, θ) ≤ . . . ≤ λn(κ, θ) ≤ . . .

For κ < 1. Let

Σκθ =
∞∑
i=1

λi (κ, θ).
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Asymptotic behaviour of spectra near κ = 1

Theorem

‘
lim
κ↗1
∪θΣκθ = ∪θΣ1

θ,

where

Σ1
θ =

∞∑
i=1

λi (1, θ)

and λi (1, θ) are eigenvalues of

B[u] :=

∫
Q

ε0|∇u1|2 + |∇u2|2

with domain V = {u ∈ H1
θ(Q) : ∂u = 0 in Q1} and scalar product

a[u] :=

∫
Q

|u1|2 + (ε0 − 1)|u2|2
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Example: 1-dimensional Photonic crystal fibre

f1(z) := cos
√

z(ε0 − ε1)(b − a)

f2(z) := 1−b+a
2

√
z(ε0 − ε1) sin

√
z(ε0 − ε1)(b − a)

TM polarised EM-field u = (v , 0): cos θ = f1(λ)− ε1
ε0
f2(λ)

TE polarised EM-field u = (0, v): cos θ = f1(λ)− f2(λ)
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Example: 2-dimensional Photonic crystal fibre: dilute inclusions

Q0 = δΩ for some smooth, open bounded Ω

λ2(1, θ) ≤ − c1

δ2 ln δ
& λ3(1, θ) ≥ c2δ

−2

Theorem

Let Σδθ =
∑∞

i=1 λi (1, θ).
Then,

lim
δ→0
∪θδ2 ln δΣδθ = [0,Λ?], lim

δ→0
∪θδ2Σδθ = {0,Λ1,Λ2, . . . ,Λ3},

where Λi are eigenvalues of

B[u] :=

∫
Ω

ε0|∇u1|2 + |∇u2|2

with domain V = {u ∈ H1
loc(R2) : ∂u = 0 in R2\Ω} and scalar product

a[u] :=

∫
R2

|u1|2 + (ε0 − 1)|u2|2
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Thank you for listening
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