Partial differential equations, optimal design and numerics, Benasque 2015, Aug 23 – Sep 04

A duality scheme for a class of non convex problems in calculus of variations

G. Bouchitté, IMATH, University of Toulon (FRANCE)

joined program with:

I. Fragalà (Politecnico di Milano) and PHAN Tran Duc Minh (PHD student Toulon)

A non convex problem

Let Ω be a bounded domain of \mathbb{R}^d . We consider the problem

$$J(\Omega) := \inf_{u=u_0 \text{ on } \Gamma_0} \left\{ \int_{\Omega} (f(\nabla u) + g(x, u)) \, dx + \int_{\Gamma_1} \gamma(u) \, dH^{d-1} \right\}$$

where:

- $f: \mathbb{R}^d \to \mathbb{R}$ convex continuous with *p*-growth $(1 \le p < +\infty)$
- \mathbf{g}, γ are possibly non convex functions with suitable growth conditions
- (Γ_0, Γ_1) is a partition of $\partial \Omega$.
- If p > 1, existence of a global minimizer If p = 1, relaxed minimizer in $BV(\Omega)$.

Typical examples

- Cahn Hilliard fluid
 f(z) = ε |z|², g(x, t) = W(t) − p(x) t, γ ∈ Lip(ℝ), Γ₁ = ∂Ω
 (W two wells potential, p(x) pressure, γ wetting potential)
- Free boundary Pb $f(z) = \sqrt{1+|z|^2}$, $g(t) = \mathbf{1}_{(0,+\infty)}$, $\Gamma_0 = \partial \Omega$, $u_0 = 1$

(The free boundary coincides with $\partial \{u > 0\}$)

Free boundary Pb

The case $f(z) = |z|^2$ and $g(x, t) = \omega(x) \mathbf{1}_{\{t>0\}}$ has been studied by Alt-Cafarelli (viscosity solutions of Euler equation)

$$J(\Omega) := \inf \left\{ \int_{\Omega} \frac{|\nabla u|^2}{2} + \lambda |u > 0| : u = 1 \text{ on } \partial \Omega
ight\}.$$

 \rightsquigarrow Free boundary Pb in term of $D = \{u > 0\}$, u solves

$$\begin{cases} -\Delta u_D = 0 \text{ in } D \\ u_D = 1 \text{ on } \partial \Omega. \end{cases}$$

 $\rightsquigarrow \mathsf{Shape} \ \mathsf{functional}$

$$J: D \to \lambda |D| + \frac{1}{2} \int_{\Omega} |\nabla u_D|^2.$$

- How to characterize global minimizers ?
- Approximation scheme ruling out local minimizers and compatible with multiple solutions.
- Derivability of $J(\Omega)$ as a shape functional ?

- 1. Dual problem and inf = sup result.
- 2. Case d = 1. Construction of explicit calibrations.
- 3. Min-Max scheme and identification of global minimizers
- 4. Case d > 1. Existence of calibrations for linear growth functionals
- 5. An open issue related to Munford-Shah functional.

1. Dual Problem

Assume
$$u_0 = 0$$
 and $\gamma(0) = 0$. Recall:

$$J(\Omega) := \inf_{u=0 \text{ on } \Gamma_0} \left\{ \int_{\Omega} (f(\nabla u) + g(x, u)) \, dx + \int_{\Gamma_1} \gamma(u) \, dH^{d-1} \right\}$$

The dual problem reads as a linear program on $\Omega \times \mathbb{R}$:

$$J^{*}(\Omega) := \sup_{\sigma \in K(\Omega)} \begin{cases} -\int_{\Omega} \sigma^{t}(x,0) \, dx \,, & \operatorname{div} \sigma = 0 \text{ on } \Omega \times \mathbb{R} \\ \sigma^{\times} \cdot \nu_{\Omega} = -\gamma'(t) \quad \text{a.e. on } \Gamma_{1} \times \mathbb{R} \end{cases}$$

where ν_{Ω} unit exterior normal on $\partial\Omega$ and competitors $\sigma = (\sigma^{x}, \sigma^{t}) \in L^{\infty}(\Omega \times \mathbb{R}; \mathbb{R}^{d+1})$ belong to convex set

 $\mathcal{K}(\Omega) \ = \ \left\{ \sigma \in C^0(\overline{\Omega} \times \mathbb{R}; \mathbb{R}^{d+1}) \ : \ f^*(\sigma^x) \le g + \sigma^t \text{ in } \Omega \times \mathbb{R} \right\}$

1. Dual Problem

Assume
$$u_0 = 0$$
 and $\gamma(0) = 0$. Recall:

$$J(\Omega) := \inf_{u=0 \text{ on } \Gamma_0} \left\{ \int_{\Omega} (f(\nabla u) + g(x, u)) \, dx + \int_{\Gamma_1} \gamma(u) \, dH^{d-1} \right\}$$

The dual problem reads as a linear program on $\Omega \times \mathbb{R}$:

where ν_{Ω} unit exterior normal on $\partial\Omega$ and competitors $\sigma = (\sigma^{x}, \sigma^{t}) \in L^{\infty}(\Omega \times \mathbb{R}; \mathbb{R}^{d+1})$ belong to convex set

$$\mathcal{K}(\Omega) \;=\; \left\{\sigma \in \mathcal{C}^0(\overline{\Omega} imes \mathbb{R}; \mathbb{R}^{d+1}) \;:\; f^*(\sigma^{ imes}) \leq g + \sigma^t ext{ in } \Omega imes \mathbb{R}
ight\}$$

Maximisation of downflow under constraint

Inequality $J(\Omega) \geq J^*(\Omega)$

Let *u* a competitor and divergence free σ such that $\sigma^t \ge -f^*(\sigma^x) + g(t)$. By Fenchel:

$$\begin{split} \int_{\Omega} (f(\nabla u) + g(x, u)) \, dx &\geq \int_{\Omega} (\sigma^{x}(x, u(x)) \cdot \nabla u - \sigma^{t}(x, u(x))) \, dx \\ \int_{\Gamma_{1}} \gamma(u) \, dH^{d-1} &= \int_{\Gamma_{1}} \left(\int_{0}^{u(x)} \gamma'(t) \, dt \right) \, dH^{d-1} \end{split}$$

Thus, the total energy E(u) satisfies

$$E(u) \geq \int_{G_u} \sigma \cdot \nu_u \, dH^d + \int_{\Gamma_1 \times \mathbb{R}} \sigma^x \cdot \nu_\Omega dH^d \, dt \geq \int_{\Omega} -\sigma^t(x,0) \, dx$$

where $\nu_u = \frac{1}{\sqrt{1+|\nabla u|^2}} (\nabla u, -1)$ unit normal to th graph G_u , and we apply Stokes formula on $\Delta = \{(x, s u(x)) : x \in \Omega, s \in (0, 1)\}$

Integration by parts over Δ

 $\Sigma := \Gamma_1 \times \mathbb{R} \quad , \quad \partial \Delta = G_u \cup (\Omega \times \{0\}) \cup \Sigma$

- requiring continuity of σ is to stringent for being optimal in $J^*(\omega)$.
- f*(σ^x) ≤ g + σ^t holding merely a.e. can't handle possible discontinuities of g(u)
 (at u = 0 in the free-boundary problem)
- σ has a normal trace well defined a.e. on every Lipschitz hypersurface S, in particular on every $S_t = \Omega \times \{t\}$, $t \in \mathbb{R}$ (by Anzellotti, it exists on d-1-rectifiable subsets)

Class \mathcal{B} of admissible fields for problem $J^*(\Omega)$

We extend the class of competitors for $J^*(\Omega)$ to the class \mathcal{B}_0 of fields $\sigma = (\sigma^x, \sigma^t) \in (L^{\infty}(\Omega \times \mathbb{R}))^{d+1}$ such that:

- (s0) div $\sigma = 0$ in $\Omega \times \mathbb{R}$;
- $(\texttt{s1}) \quad f^*(\sigma^{\mathsf{x}}) \leq g(t) + \sigma^t \quad \texttt{a.e.} \ (\mathsf{x},t) \in \Omega \times \mathbb{R};$
- (s2) $\forall s \in D_g \ , \ -f(0) \leq g(s) + \sigma^t(\cdot,s)$ a.e. in Ω
- (s3) $\sigma^{X} \cdot \nu_{\Omega} = \gamma'(t)$ a.e. on $\Gamma_{1} \times \mathbb{R}$

Here D_g is the set of discontinuities of g (assumed to be negligible).

Lemma:
$$J(\Omega) \geq \int_{\Omega} -\sigma^t(x,0) \, dx \quad orall \sigma \in \mathcal{B}_0$$
 .

Note that in (s3):

- horizontal component σ^{x} is missing
- $f^*(\sigma^x)$ has been replaced by $\inf f^* = -f(0)$.

$$J(\Omega) = \sup \left\{ \int_{\Omega} -\sigma^t(x,0) \, dx : \sigma \in \mathcal{B}_0 \right\} = J^*(\Omega) \; .$$

• The theortical existence of a maximizer $\overline{\sigma}$ (calibration) is a difficult issue: no control on the positive part of σ^t .

(in Neumann case, can show L^1 estimate and existence of relaxed solutions with possible singular part in σ^t_+).

• No uniqueness in general

$$J(\Omega) = \sup \left\{ \int_{\Omega} -\sigma^t(x,0) \, dx \ : \ \sigma \in \mathcal{B}_0 \right\} = J^*(\Omega) \; .$$

• The theortical existence of a maximizer $\overline{\sigma}$ (calibration) is a difficult issue: no control on the positive part of σ^t .

(in Neumann case, can show L^1 estimate and existence of relaxed solutions with possible singular part in σ_+^t).

No uniqueness in general

$$J(\Omega) = \sup \left\{ \int_{\Omega} -\sigma^t(x,0) \, dx \ : \ \sigma \in \mathcal{B}_0 \right\} = J^*(\Omega) \; .$$

• The theortical existence of a maximizer $\overline{\sigma}$ (calibration) is a difficult issue: no control on the positive part of σ^t . (in Neumann case, can show L^1 estimate and existence of relaxed solutions with possible singular part in σ^t_+).

• No uniqueness in general

$$J(\Omega) = \sup \left\{ \int_{\Omega} -\sigma^t(x,0) \, dx \ : \ \sigma \in \mathcal{B}_0 \right\} = J^*(\Omega) \; .$$

• The theortical existence of a maximizer $\overline{\sigma}$ (calibration) is a difficult issue: no control on the positive part of σ^t .

(in Neumann case, can show L^1 estimate and existence of relaxed solutions with possible singular part in σ_+^t).

• No uniqueness in general

Optimality conditions for primal-dual problem

Let
$$C(t) := \left\{ q \in \mathbb{R}^{d+1} : q^t \ge f^*(q^x) - g(t) \right\}$$
, with support
function
 $h(t, p) := \left\{ \begin{aligned} -p^t \Big(f \big(- rac{p^x}{p^t} \big) + g(t) \Big) & ext{if } p^t < 0 \\ +\infty & ext{otherwise} \end{aligned} \right.$

Theorem An admissible pair
$$(\overline{u}, \overline{\sigma}) \in W^{1,2}(\Omega) \times \mathcal{B}$$
 is optimal iff
 $\overline{\sigma} \cdot \nu_{\overline{u}} = h(t, \nu_{\overline{u}})$ holds H^d a.e. in $G_{\overline{u}}$. (*)

If D_g is finite and $\overline{\sigma}$ continuous in $\Omega \times (\mathbb{R} \setminus D_g)$, (*) amounts to check that:

$$\begin{cases} f^*(\overline{\sigma}^x(x,\overline{u}(x)) = \overline{\sigma}^t(x,\overline{u}(x)) + g(\overline{u}(x)) & \text{a.e. } x \in \Omega \\ \forall s \in D_g, \ -f(0) = \overline{\sigma}^t(\cdot,s) + g(s) & \text{a.e. } x \in \{\overline{u} = s\} \end{cases} (**)$$

Remark: this determines $\overline{\sigma}$ on $G_{\overline{u}} \setminus D_g \times \mathbb{R}$

Explicit optimal $\overline{\sigma}$ if g, γ are convex continuous

Let \overline{u} a minimizer for $J(\Omega)$. Then there exists $\psi(x)$ such that (Euler equation)

 $\psi(x) \in \partial f(\nabla \overline{u}) , \operatorname{div} \psi \in \partial g(\overline{u}) \text{ in } \Omega , -\psi \cdot \nu_{\Omega} \in \partial \gamma(u(x)) \text{ in } \Gamma_1.$ With ψ , we may associate the field

$$\overline{\sigma} \;=\; egin{pmatrix} \psi(x) \ -t \operatorname{div} \psi(x) + \eta(x) \end{pmatrix} \quad,\quad \eta := f^*(\psi) + g^*(\operatorname{div} \psi) \;.$$

It is divergence free (s1) and satisfies boundary condition (s4). As $g(t) \ge g(\overline{u}) + \operatorname{div}\psi(t - \overline{u})$, we deduce inequality (s2) from the Euler Eq combined with Fenchel inequality. Thus $\overline{\sigma} \in \mathcal{B}$ and optimality condition (**) holds by exploiting Fenchel equality

 $g(\overline{u}(x)) = \overline{u}(x)\operatorname{div}\psi(x) + g^*(\operatorname{div}\psi)$

Proof of inequality $J(\Omega) \leq J^*(\Omega)$

Assume that $\Gamma_0 = \partial \Omega, \Gamma_1 = \emptyset$,

Step 1. We use $u \in W_0^{1,2}(\Omega) \rightsquigarrow v = 1_u(x,t) \in \mathcal{A}_0$ where

$$\mathbf{1}_{u}(x,t) := \begin{cases} 1 & \text{if } t \leq u(x) \\ 0 & \text{if } t > u(x) \end{cases}, \quad \mathcal{A}_{0} := v_{0} + BV(\Omega \times \mathbb{R})$$

Let ${\it F}:{\cal A}_0\to (-\infty,+\infty]$ be the ${\it convex}~$ functional defined by

$$F(\mathbf{v}) := \int_{\Omega imes \mathbb{R}} h(t, D\mathbf{v}) \; .$$

Then $F(\mathbf{1}_u) = \int_{\Omega} (f(\nabla u) + g(u))$. By classical convex duality arguments:

$$J^*(\Omega) ~=~ \inf \left\{ F(v) ~:~ v \in \mathcal{A}_0
ight\}$$
 .

Q: is previous infimum unchanged if we restrict to functions of the form $v = \mathbf{1}_u$??

16/30

Generalized coarea formula

Proposition Let $v \in A_0$ such that $F(v) < +\infty$. Then (i) For a.e; $x \in \Omega$, $v(x, \cdot)$ is non increasing with $v(x, -\infty) = 1$, $v(x, +\infty) = 0$. (ii) Let $u_s(x) := \inf \{ \tau \in \mathbb{R} : v(x, \tau) \le s \}$. Then $u_s \in W_0^{1,2}(\Omega)$ for a.e $s \in (0, 1)$ and

$$F(v) = \int_0^1 \left(\int_\Omega (f(\nabla u_s) + g(u_s)) \right) \, ds.$$

Corollary $J(\Omega) = \min \{F(v) : v \in A_0\} (= J^*(\Omega)).$ If $v \in A_0$ is optimal, then u_s is solution to $J(\Omega)$ for a.e $s \in (0, 1)$ In particular, if $J(\Omega)$ has finitely many solutions \overline{u}_j , v must be piecewise constant jumping across the graphs of the \overline{u}_j 's Let d = 1, $\Omega = (0, h)$, $\Gamma_0 = \{0, h\}$, $u_0 = 0$.

Write divergence free σ as $\sigma = (\partial_t w, -\partial_x w)$ for some scalar potential $w : [0, a] \times \mathbb{R} \to \mathbb{R}$. Then $J^*(\Omega)$ reads

$$\sup\left\{w(h,0)-w(0,0)\ :\ f^*(\partial_t w)+\partial_x w\leq g(t)
ight\}$$

Remark: it looks like Monge-Kantorovich problem (in dual form)

- $\delta_{(0,0)}$ is transported to $\delta_{(h,0)}$
- constraint $|\nabla w| \leq 1$ is substituted with the one above

Let us perturbe the infimum problem $J(\Omega)$ by taking

$$\Omega = (0, x)$$
 , $u_0(0) = 0$, $u_0(x) = t$.

Then, we introduce the value function

$$V(x,t) := \inf \left\{ \int_0^x (f(u') + g(u)) \, ds \, , \, u(0) = 0 \, , \, u(x) = t \right\}$$

LEMMA $\overline{\sigma} = (\partial_t V, -\partial_x V)$ solves $J^*(\Omega)$.

Proof: By Bellman's dynamic optimization principle, V(x, t) solves in the viscosity sense $\partial_x V + f^*(\partial_t V) = g(t)$ (needs only \leq) Besides: $J^*(\Omega) \geq -\int_0^h \overline{\sigma}^t(s, 0) \, ds = V(h, 0) = J(\Omega)$

Remark: This solution $\overline{\sigma}(x, t)$ is singular closed to $\{x = 0\}$

Free boundary example

Let
$$\Omega_h = (0, h)$$
, $f = \frac{|z|^2}{2}$, $g_\lambda = \lambda \mathbf{1}_{t>0}$ $(D_g = \{0\})$, $u_0 = 1$.
 $J_\lambda(\Omega_h) := \inf \left\{ \int_0^h \frac{u'^2}{2} \, ds + \lambda |u>0| : u(0) = u(h) = 1 \right\}$
 $= \min\{\lambda h, 2\sqrt{2}\sqrt{\lambda}\}$ (non differentiable in h)

 $\overline{u}_0, \overline{u}_1$ are local minimizers

$$\operatorname{Argmin}(J_{\lambda}(\Omega_{h})) = egin{cases} \{\overline{u}_{0}\} & ext{if } \lambda h^{2} < 8 \ \{\overline{u}_{1}\} & ext{if } \lambda h^{2} > 8 \ \{\overline{u}_{0}, \overline{u}_{1}\} & ext{if } \lambda h^{2} = 8 \end{cases}$$

Numerical computation of optimal flow

We treat a case with two solutions
$$\overline{u}_0, \overline{u}_1$$
.

$$\Omega = [0, 2], \qquad g(t) = \begin{cases} 2 & \text{if } t > 0 \\ 0 & \text{if } t \le 0, \end{cases} \qquad (\lambda = 2),$$

$$\mathcal{S}_{\epsilon}(\Omega) := \sup_{\sigma \in \mathcal{B}} \left\{ -\int_{\Omega} \sigma^t(x, 1) dx - \epsilon \int_{\Omega \times [0, 1]} |\sigma|^2 \right\} \quad (\epsilon \ge 0)$$

- $\epsilon = 0$ unperturbed dual Pb $J^*(\Omega)$
- $\epsilon > 0$ viscosity term (\rightsquigarrow select solution of minimal L^2 -norm)

Numerical solution by Matlab + 2d-finite elements

- Singular solution (c) constructed by symmetrization of gradient rotated of $\overline{\sigma} = (\partial_t V, -\partial_x V)$ (value function)
- Time of computation is very high (Matlab optimization toolbox).

3- Min-Max formulation

• We observe that $F(v) = \sup_{\sigma \in \mathcal{B}} L(v, \sigma)$ where \mathcal{B} is the class of fields $\sigma \in L^{\infty}(\Omega \times \mathbb{R}, \operatorname{div})$ which satisfy (s1)(s2)(s3) and

$$L(\mathbf{v},\sigma):=\int_{\Omega\times\mathbb{R}}\sigma\cdot D\mathbf{v}$$

Thus according to our duality result

 $J(\Omega) = \min\{F(v) : v \in \mathcal{A}_0\} = \min_{v \in \mathcal{A}_0} \sup_{\sigma \in \mathcal{B}} L(v, \sigma) .$

• Similarly we have for every $\sigma \in \mathcal{B}$: $\inf_{v \in \mathcal{A}_0} L(v, \sigma) = -\int_{\Omega} \sigma^t(x, 0)$ if $\operatorname{div} \sigma = 0$ ($+\infty$ otherwise). Thus

$$J^*(\Omega) = \sup_{\sigma \in \mathcal{B}} \inf_{v \in \mathcal{A}_0} L(v, \sigma) .$$

Remark: Divergence free condition on σ is treated by duality (*v* represents a pressure).

Saddle point

Let $(\overline{\nu}, \overline{\sigma}) \in \mathcal{A}_0 \times \mathcal{B}$. Then $(\overline{\nu}, \overline{\sigma})$ is an optimal pair iff

 ${\it L}(\overline{v},\sigma) \ \le \ {\it L}(\overline{v},\overline{\sigma}) \ \le \ {\it L}(v,\overline{\sigma}) \quad, \ \ {\rm for \ all} \ (v,\sigma) \in {\cal A}_0 \times {\cal B}$

We can use then an approximation scheme

$$\begin{cases} \sigma_{n+1}^{h} = \operatorname{Proj}_{B^{h}}(\sigma_{n}^{h} + \alpha \nabla^{h} \overline{v}_{n}^{h}) \\ v_{n+1}^{h} = v_{n}^{h} - \beta(\operatorname{div}^{h} \sigma_{n+1}^{h}) \\ \overline{v}_{n+1}^{h} = 2v_{n+1}^{h} - v_{n}^{h} \end{cases}$$

where

- h_x , h_t are the size parameters of a d + 1-cartesian grid G_h
- div^h is adjoint to ∇^h , $Proj_{B^h}$ is a suitable non linear projector (discretization of constraint \mathcal{B})

$$-\alpha\beta c_h^2 < 1 \text{ with } \quad c_h = \sup_{\|\boldsymbol{v}^h\|\neq 0} \frac{\|\nabla^h \boldsymbol{v}^h\|}{\|\boldsymbol{v}^h\|} = \frac{2}{\|h\|}$$

Scheme MAC + Orthogonal projections

Scheme MAC seems well adapted. Here are some results by Minh Phan

Optimal v exhibits two plateaus corresponding to solutions $\overline{u}_0, \overline{u}_1$

Theorem Assume that

- $\alpha |z| \delta \leq f(z) \leq \beta(1+|z|)$
- f* is bounded on its domain
- g = g(t) is a bounded nondecreasing function.
- $\Gamma_0 = \partial \Omega$

Then there exists a calibration, i.e. the supremum $J^*(\Omega)$ is attained.

Example. The next free boundary pb falls into this framework.

$$\inf\Big\{\int_\Omega \sqrt{1+|\nabla u|^2}\,dx+\big|\{u>0\}\big|\ :\ u=1\ {\rm on}\ \partial\Omega\Big\}$$

Proof strategy

Let for instance $u_0 = 1, g(t) = 1_{(0,+\infty)}, f(z) = |z|$.

We consider the modified dual problem

$$\widetilde{J}^*(\Omega) := \sup_{\sigma \in \widetilde{\kappa}(\Omega)} \left\{ \begin{array}{l} -\int_{\Omega} \ \sigma^t(x,1) \, dx \ , \ \ {
m div} \sigma = 0 \ \ {
m on} \ \Omega imes \mathbb{R} \end{array}
ight\}$$

which resembles $J^*(\Omega)$, BUT now competitors σ belong to

$$\widetilde{K}(\Omega) = \ \left\{ \sigma \in L^\infty(\Omega \times \mathbb{R}; \mathbb{R}^{d+1}) \ : \ |\sigma^t| + |\sigma^x| \leq g \ \text{ a.e. in } \Omega \times \mathbb{R} \right\}.$$

It turns out that $\widetilde{J}^*(\Omega)$ is attained and agrees with $J^*(\Omega)$

[cf. rearrangement results for functionals with non constant density, Landes 2008].

A celebrated example of non convex variational Pb:

$$J(\Omega) := \inf_{u \in SBV(\Omega)} \left\{ \int_{\Omega \setminus S_u} \frac{1}{2} |\nabla u|^2 \, dx + H^{d-1}(S_u) + \frac{1}{2} \int_{\Omega} |u - h(x)|^2 \, dx \right\}$$

- Existence due to Ambrosio in 1990
- Sufficient conditions for global minimizers (calibrations) , G.Alberti, GB, G. Dal Maso (2001)

A possible dual Pb

$$J^{*}(\Omega) := \sup_{\sigma \in \mathcal{K}(\Omega)} \left\{ \begin{array}{cc} -\int_{\Omega} \sigma^{t}(x,0) \, dx \ , & \operatorname{div}\sigma = 0 \ \text{ on } \Omega \times \mathbb{R} \\ \\ \sigma^{x} \cdot \nu_{\Omega} = 0 & \text{ a.e. on } \partial\Omega \times \mathbb{R} \end{array} \right\}$$

BUT here the convex constraint is **non local**. In order to account the jump energy, $\sigma \in K(\Omega)$ requires two conditions:

•
$$\frac{1}{2} |\sigma^{x}|^{2} \leq \sigma^{t} + \frac{1}{2} |t - h(x)|^{2}$$

• $\left| \int_{t_{1}}^{t_{2}} \sigma^{x}(x, s) \, ds \right| \leq 1$, for every t_{1}, t_{2}

THEOREM $J(\Omega) \geq J^*(\Omega)$ with equality if, for an admissible (u, σ) , one has

$$\begin{split} \sigma(x, u(x)) &= (\nabla u(x), \frac{1}{2}(|\nabla u|^2 - |u - h|^2)) \quad \text{a.e. } x \in \Omega \\ \int_{u-(x)}^{u^+(x)} \sigma^x(x, t) \cdot \nu_u &= 1 \quad H^{d-1} \text{ a.e. } x \in S_u \end{split}$$

A possible dual Pb

$$J^{*}(\Omega) := \sup_{\sigma \in \mathcal{K}(\Omega)} \left\{ \begin{array}{cc} -\int_{\Omega} \sigma^{t}(x,0) \, dx \ , & \operatorname{div}\sigma = 0 \quad \text{on } \Omega \times \mathbb{R} \\ \sigma^{x} \cdot \nu_{\Omega} = 0 & \text{a.e. on } \partial\Omega \times \mathbb{R} \end{array} \right\}$$

BUT here the convex constraint is **non local**. In order to account the jump energy, $\sigma \in K(\Omega)$ requires two conditions:

•
$$\frac{1}{2} |\sigma^{x}|^{2} \leq \sigma^{t} + \frac{1}{2} |t - h(x)|^{2}$$

• $\left| \int_{t_{1}}^{t_{2}} \sigma^{x}(x, s) \, ds \right| \leq 1$, for every t_{1}, t_{2}

THEOREM $J(\Omega) \geq J^*(\Omega)$ with equality if, for an admissible (u, σ) , one has

$$\begin{aligned} \sigma(x, u(x)) &= (\nabla u(x), \frac{1}{2}(|\nabla u|^2 - |u - h|^2)) & \text{a.e. } x \in \Omega \\ \int_{u_-(x)}^{u^+(x)} \sigma^x(x, t) \cdot \nu_u &= 1 \quad H^{d-1} \text{ a.e. } x \in S_u \end{aligned}$$

Do we have the equality $J(\Omega) = J^*(\Omega)$?

Difficulty: no coarea formula for Munford Shah functional !