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A non convex problem

Let Ω be a bounded domain of Rd . We consider the problem

J(Ω) := inf
u=u0 on Γ0

{∫
Ω

(f (∇u) + g(x , u)) dx +

∫
Γ1

γ(u) dHd−1
}

where:

f : Rd → R convex continuous with p-growth (1 ≤ p < +∞)
g , γ are possibly non convex functions with suitable growth
conditions
(Γ0, Γ1) is a partition of ∂Ω.

If p > 1, existence of a global minimizer
If p = 1, relaxed minimizer in BV (Ω).
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Typical examples

Cahn Hilliard fluid
f (z) = ε |z |2 , g(x , t) = W (t)−p(x) t , γ ∈ Lip(R) , Γ1 = ∂Ω
(W two wells potential , p(x) pressure , γ wetting potential)

Free boundary Pb
f (z) =

√
1 + |z |2 , g(t) = 11(0,+∞) , Γ0 = ∂Ω , u0 = 1

(The free boundary coincides with ∂{u > 0})
!

"

1

Ω# = {$ = 0}

$ = 1
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Free boundary Pb

The case f (z) = |z |2 and g(x , t) = ω(x) 11{t>0} has been studied
by Alt-Cafarelli (viscosity solutions of Euler equation)

J(Ω) := inf
{∫

Ω

|∇u|2
2

+ λ |u > 0| : u = 1 on ∂Ω

}
.

 Free boundary Pb in term of D = {u > 0},

t

x

1 -
u = 1

D

u = 0

u solves {
−∆uD = 0 in D
uD = 1 on ∂Ω.

 Shape functional

J : D → λ|D|+ 1
2

∫
Ω
|∇uD |2.
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Questions

How to characterize global minimizers ?
Approximation scheme ruling out local minimizers and
compatible with multiple solutions.
Derivability of J(Ω) as a shape functional ?
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Outline

1. Dual problem and inf = sup result.
2. Case d = 1. Construction of explicit calibrations.
3. Min-Max scheme and identification of global minimizers
4. Case d > 1. Existence of calibrations for linear growth

functionals
5. An open issue related to Munford-Shah functional.
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1. Dual Problem

Assume u0 = 0 and γ(0) = 0. Recall:

J(Ω) := inf
u=0 on Γ0

{∫
Ω

(f (∇u) + g(x , u)) dx +

∫
Γ1

γ(u) dHd−1
}

The dual problem reads as a linear program on Ω× R:

J∗(Ω) := sup
σ∈K(Ω)


−
∫

Ω σt(x , 0) dx , divσ = 0 on Ω× R

σx · νΩ = −γ′(t) a.e. on Γ1 × R


where νΩ unit exterior normal on ∂Ω and competitors
σ = (σx , σt) ∈ L∞(Ω× R; Rd+1) belong to convex set

K (Ω) =
{
σ ∈ C 0(Ω×R; Rd+1) : f ∗(σx) ≤ g + σt in Ω× R

}
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Maximisation of downflow under constraint

t

x

Gu

νu

Γ0 Γ1

Σ

νΩ

∆

div σ = 0


f ∗(σx) ≤ g + σt on Ω× R

σx · νΩ = γ′(t) a.e. on Σ := Γ1 × R
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Inequality J(Ω) ≥ J∗(Ω)

Let u a competitor and divergence free σ such that
σt ≥ −f ∗(σx) + g(t). By Fenchel:∫

Ω
(f (∇u) + g(x , u)) dx ≥

∫
Ω

(σx(x , u(x)) · ∇u − σt(x , u(x))) dx∫
Γ1

γ(u) dHd−1 =

∫
Γ1

(∫ u(x)

0
γ′(t)dt

)
dHd−1

Thus, the total energy E (u) satisfies

E (u) ≥
∫

Gu

σ · νu dHd +

∫
Γ1×R

σx · νΩdHddt ≥
∫

Ω
−σt(x , 0) dx

where νu = 1√
1+|∇u|2

(∇u,−1) unit normal to th graph Gu, and we

apply Stokes formula on ∆ = {(x , s u(x)) : x ∈ Ω, s ∈ (0, 1)}
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Integration by parts over ∆

t

x

Gu

νu

Γ0 Γ1

Σ

νΩ

∆

div σ = 0

Σ := Γ1 × R , ∂∆ = Gu ∪ (Ω× {0}) ∪ Σ
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Calibration fields (σx , σt) ∈ L∞(Ω× R; Rd × R)

requiring continuity of σ is to stringent for being optimal in
J∗(ω).
f ∗(σx) ≤ g + σt holding merely a.e. can’t handle possible
discontinuities of g(u)
( at u = 0 in the free-boundary problem)
σ has a normal trace well defined a.e. on every Lipschitz
hypersurface S , in particular on every St = Ω× {t} , t ∈ R
(by Anzellotti , it exists on d − 1 -rectifiable subsets)
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Class B of admissible fields for problem J∗(Ω)

We extend the class of competitors for J∗(Ω) to the class B0 of
fields σ = (σx , σt) ∈ (L∞(Ω× R))d+1 such that:

(s0) div σ = 0 in Ω× R;
(s1) f ∗(σx) ≤ g(t) + σt a.e. (x , t) ∈ Ω× R;
(s2) ∀s ∈ Dg , −f (0) ≤ g(s) + σt(·, s) a.e. in Ω

(s3) σx · νΩ = γ′(t) a.e. on Γ1 × R

Here Dg is the set of discontinuities of g (assumed to be negligible).

Lemma: J(Ω) ≥
∫

Ω−σt(x , 0) dx ∀σ ∈ B0 .

Note that in (s3):
- horizontal component σx is missing
- f ∗(σx) has been replaced by inf f ∗ = −f (0).
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Duality result

Theorem It holds

J(Ω) = sup
{∫

Ω
−σt(x , 0) dx : σ ∈ B0

}
= J∗(Ω) .

• The theortical existence of a maximizer σ (calibration) is a
difficult issue: no control on the positive part of σt .
(in Neumann case, can show L1 estimate and existence of relaxed
solutions with possible singular part in σt

+).
• No uniqueness in general
• If J(Ω) admits a bounded minimizer u such α ≤ u ≤ β, then in
dual problem J∗(Ω) we may take the supremum on the larger class
Bα,β obtained by requiring conditions (s0–s3) merely on Ω× [α, β].
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Optimality conditions for primal-dual problem

Let C (t) :=
{

q ∈ Rd+1 : qt ≥ f ∗(qx)− g(t)
}
, with support

function

h(t, p) :=

{
−pt

(
f
(
− px

pt

)
+ g(t)

)
if pt < 0

+∞ otherwise

Theorem An admissible pair (u, σ) ∈W 1,2(Ω)× B is optimal iff

σ · νu = h(t, νu) holds Hd a.e. in Gu . (∗)
If Dg is finite and σ continuous in Ω× (R \ Dg ), (∗) amounts to
check that:{

f ∗(σx(x , u(x)) = σt(x , u(x)) + g(u(x)) a.e. x ∈ Ω
∀s ∈ Dg , −f (0) = σt(·, s) + g(s) a.e. x ∈ {u = s} (∗∗)

Remark: this determines σ on Gu \ Dg × R
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Explicit optimal σ if g , γ are convex continuous

Let u a minimizer for J(Ω). Then there exists ψ(x) such that
(Euler equation)

ψ(x) ∈ ∂f (∇u) , divψ ∈ ∂g(u) in Ω , −ψ · νΩ ∈ ∂γ(u(x)) in Γ1.

With ψ , we may associate the field

σ =

(
ψ(x)

−t divψ(x) + η(x)

)
, η := f ∗(ψ) + g∗(divψ) .

It is divergence free (s1) and satisfies boundary condition (s4). As
g(t) ≥ g(u) + divψ(t − u), we deduce inequality (s2) from the
Euler Eq combined with Fenchel inequality.
Thus σ ∈ B and optimality condition (∗∗) holds by exploiting
Fenchel equality

g(u(x)) = u(x) divψ(x) + g∗(divψ)
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Proof of inequality J(Ω) ≤ J∗(Ω)

Assume that Γ0 = ∂Ω, Γ1 = ∅,

Step 1. We use u ∈W 1,2
0 (Ω) v = 1u(x , t) ∈ A0 where

1u(x , t) :=

{
1 if t ≤ u(x)

0 if t > u(x)
, A0 := v0 + BV (Ω× R)

Let F : A0 → (−∞,+∞] be the convex functional defined by

F (v) :=

∫
Ω×R

h(t,Dv) .

Then F (1u) =
∫

Ω(f (∇u) + g(u)). By classical convex duality
arguments:

J∗(Ω) = inf {F (v) : v ∈ A0} .

Q: is previous infimum unchanged if we restrict to functions of the
form v = 1u ??
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Generalized coarea formula

Proposition Let v ∈ A0 such that F (v) < +∞. Then
(i) For a.e; x ∈ Ω, v(x , ·) is non increasing with

v(x ,−∞) = 1, v(x ,+∞) = 0.
(ii) Let us(x) := inf

{
τ ∈ R : v(x , τ) ≤ s

}
. Then us ∈W 1,2

0 (Ω)
for a.e s ∈ (0, 1) and

F (v) =

∫ 1

0

(∫
Ω

(f (∇us) + g(us))

)
ds.

Corollary J(Ω) = min {F (v) : v ∈ A0} (= J∗(Ω)).
If v ∈ A0 is optimal, then us is solution to J(Ω) for a.e s ∈ (0, 1)

In particular, if J(Ω) has finitely many solutions uj , v must be piece-
wise constant jumping across the graphs of the uj ’s
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3- Case d = 1. Construction of calibrations

Let d = 1, Ω = (0, h), Γ0 = {0, h} , u0 = 0.

Write divergence free σ as σ = (∂tw ,−∂xw) for some scalar
potential w : [0, a]× R→ R. Then J∗(Ω) reads

sup
{

w(h, 0)− w(0, 0) : f ∗(∂tw) + ∂xw ≤ g(t)
}

Remark: it looks like Monge-Kantorovich problem (in dual form)

δ(0,0) is transported to δ(h,0)

constraint |∇w | ≤ 1 is substituted with the one above
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By using value-function

Let us perturbe the infimum problem J(Ω) by taking

Ω = (0, x) , u0(0) = 0 , u0(x) = t .

Then, we introduce the value function

V (x , t) := inf
{∫ x

0
(f (u′) + g(u)) ds , u(0) = 0 , u(x) = t

}
LEMMA σ = (∂tV ,−∂xV ) solves J∗(Ω).

Proof: By Bellman’s dynamic optimization principle, V (x , t)
solves in the viscosity sense ∂xV + f ∗(∂tV ) = g(t) (needs only ≤)
Besides: J∗(Ω) ≥ −

∫ h
0 σ

t(s, 0) ds = V (h, 0) = J(Ω)

Remark: This solution σ(x , t) is singular closed to {x = 0}
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Free boundary example

Let Ωh = (0, h) , f = |z|2
2 , gλ = λ 1t>0 (Dg = {0}), u0 = 1.

Jλ(Ωh) := inf

{∫ h

0

u′2

2
ds + λ|u > 0| : u(0) = u(h) = 1

}
= min{λh, 2

√
2
√
λ} (non differentiable in h)

0

t

x

1

h1√
2λ

h − 1√
2λ

u1

u0

u0, u1 are local minimizers

Argmin(Jλ(Ωh)) =


{u0} if λh2 < 8
{u1} if λh2 > 8
{u0, u1} if λh2 = 8
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Numerical computation of optimal flow

We treat a case with two solutions u0, u1.

Ω = [0, 2], g(t) =

{
2 ift > 0
0 ift ≤ 0,

(λ = 2),

Sε(Ω) := sup
σ∈B

{
−
∫

Ω
σt(x , 1)dx−ε

∫
Ω×[0,1]

|σ|2
}

(ε ≥ 0)

ε = 0 unperturbed dual Pb J∗(Ω)

ε > 0 viscosity term ( select solution of minimal L2-norm)

x0 2σt(x , t) ≥ 0

1

|σx |2
2 + λ ≤ σt
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Numerical solution by Matlab + 2d-finite elements
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(b) ε > 0
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(c) Singular solution

• Singular solution (c) constructed by symmetrization of gradient
rotated of σ = (∂tV ,−∂xV ) (value function)
• Time of computation is very high (Matlab optimization toolbox).

22/30



3- Min-Max formulation

• We observe that F (v) = supσ∈B L(v , σ) where B is the class of
fields σ ∈ L∞(Ω× R, div) which satisfy (s1)(s2)(s3) and

L(v , σ) :=

∫
Ω×R

σ · Dv

Thus according to our duality result

J(Ω) = min{F (v) : v ∈ A0} = min
v∈A0

sup
σ∈B

L(v , σ) .

• Similarly we have for every σ ∈ B:
infv∈A0 L(v , σ) = −

∫
Ω σ

t(x , 0) if div σ = 0 ( +∞ otherwise).
Thus

J∗(Ω) = sup
σ∈B

inf
v∈A0

L(v , σ) .

Remark: Divergence free condition on σ is treated by duality (v
represents a pressure).
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Saddle point

Let (v , σ) ∈ A0 × B. Then (v , σ) is an optimal pair iff

L(v , σ) ≤ L(v , σ) ≤ L(v , σ) , for all (v , σ) ∈ A0 × B
We can use then an approximation scheme

σh
n+1 = ProjBh(σh

n + α∇hvh
n)

vh
n+1 = vh

n − β(divh σh
n+1)

vh
n+1 = 2vh

n+1 − vh
n

where

- hx , ht are the size parameters of a d + 1-cartesian grid Gh
- divh is adjoint to ∇h, ProjBh is a suitable non linear projector
(discretization of constraint B)
- αβc2

h < 1 with ch = sup‖vh‖6=0
‖∇hvh‖
‖vh‖ = 2

‖h‖
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Scheme MAC + Orthogonal projections

Scheme MAC seems well adapted. Here are some results by Minh
Phan
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Optimal v exhibits two plateaus corresponding to solutions u0, u1
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4- Case d > 1. A case of Existence

Theorem Assume that
α|z | − δ ≤ f (z) ≤ β(1 + |z |)
f ∗ is bounded on its domain
g = g(t) is a bounded nondecreasing function.
Γ0 = ∂Ω

Then there exists a calibration, i.e. the supremum J∗(Ω) is attained.

Example. The next free boundary pb falls into this framework.

inf
{∫

Ω

√
1 + |∇u|2 dx +

∣∣{u > 0}
∣∣ : u = 1 on ∂Ω

}
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Proof strategy

Let for instance u0 = 1, g(t) = 11(0,+∞), f (z) = |z |.
We consider the modified dual problem

J̃∗(Ω) := sup
σ∈eK(Ω)

{
−
∫

Ω σt(x , 1) dx , divσ = 0 on Ω× R
}

which resembles J∗(Ω), BUT now competitors σ belong to

K̃ (Ω) =
{
σ ∈ L∞(Ω×R; Rd+1) : |σt |+ |σx | ≤ g a.e. in Ω× R

}
.

It turns out that J̃∗(Ω) is attained and agrees with J∗(Ω)

[cf. rearrangement results for functionals with non constant density,
Landes 2008].

27/30



5- About Munford Shah problem

A celebrated example of non convex variational Pb:

J(Ω) := inf
u∈SBV (Ω)

{∫
Ω\Su

1
2
|∇u|2 dx + Hd−1(Su) +

1
2

∫
Ω
|u − h(x)|2 dx

}

Existence due to Ambrosio in 1990
Sufficient conditions for global minimizers (calibrations) ,
G.Alberti, GB, G. Dal Maso (2001)
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A possible dual Pb

J∗(Ω) := sup
σ∈K(Ω)


−
∫

Ω σt(x , 0) dx , divσ = 0 on Ω× R

σx · νΩ = 0 a.e. on ∂Ω× R


BUT here the convex constraint is non local. In order to account
the jump energy, σ ∈ K (Ω) requires two conditions:

1
2
|σx |2 ≤ σt +

1
2
|t − h(x)|2∣∣∣∣∫ t2

t1
σx(x , s) ds

∣∣∣∣ ≤ 1 , for every t1, t2

THEOREM J(Ω) ≥ J∗(Ω) with equality if, for an admissible
(u, σ), one has

σ(x , u(x)) = (∇u(x), 1
2(|∇u|2 − |u − h|2)) a.e. x ∈ Ω∫ u+(x)

u−(x) σ
x(x , t) · νu = 1 Hd−1 a.e. x ∈ Su
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Open problem

Do we have the equality J(Ω) = J∗(Ω) ?

Difficulty: no coarea formula for Munford Shah functional !
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