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Capillarity and wetting phenomena

Capillarity is the ability of a liquid to flow in narrow spaces, even in
opposition to external forces like gravity. Wetting is the ability of a
liquid to maintain contact with a solid surface.
-connected and essentially due to intermolecular forces between the
liquid and surrounding solid surfaces.
Given Ω open set in Rn (the container), E ⊂ Ω (regione occupied
by) the liquid the equilibrium state of E in Ω is determined by the
Gauss’ free energy

ˆ
∂E∩Ω

ϕ(x , νE (x)) dHn−1 +

ˆ
∂E∩∂Ω

σ(x) dHn−1 +

ˆ
E
g(x) dx

+ condition |E | = m for m ∈ (0, |Ω|).

ϕ(x , ν(x)) (anisotropic) surface tension density at point x of the
surface with normal ν, σ(x) adhesion coefficient at point x of ∂Ω



Variational formulation
↪→ weak formulation on sets of finite perimeter + direct methods
⇒ existence of E minimizer such that its ’essential’ boundary is a
hypersurface in a ’weak geometric measure sense’.

Main goal: establish the suitable PDE satisfied by the equilibrium
state of the liquid and the contact equation at the boundary of the
(possible) adhesion set (Young’s law)

↪→ Regularity issue for the free boundary of the contact set

↪→ Further regularity hypotheses on ∂Ω and some compatibility
condition between the anisotropic surface tension density ϕ(x , ν)
and the adhesion coefficent σ

Rem. For ϕ(x , ν) = |ν|, g = 0 = σ one recovers the relative
isoperimetric inequality in Ω, hence the regularity cannot improve
that of minimal surfaces.



Trasversality conditions and contact equations
Theorem(Maggi-De Philippis 2015)
If ∂Ω is C 1,1, ϕ is regular elliptic, g ∈ L∞(Ω), σ ∈ Lip(Ω) and

−ϕ(x ,−νΩ(x)) < σ(x) < ϕ(x , νΩ(x)) ∀x ∈ ∂Ω

Then E is an open set with ∂E ∩ ∂Ω a set of finite perimeter in
∂Ω. Moreover ∃ a set Σ with Hn−2(Σ) = 0 and ∂E ∩ Ω \ Σ is a
C 1,1/2 hypersurface with boundary and it holds

div(∇ϕ(x , νE (x))) +∇ϕ(x , νE (x)) · νΩ(x) = −g(x) + constant

∇ϕ(x , νE (x)) · νΩ(x) = σ(x) for any x in ∂E ∩ Ω ∩ ∂Ω \ Σ

For ϕ(x , ν) = |ν| and n = 3 the contact equations rewrites as

H(x) = −g(x) + constant for any x in ∂E ∩ Ω ∩ Ω

νE (x) · νΩ(x) = σ(x) for any x in ∂E ∩ Ω ∩ ∂Ω



Nonlocal fractional perimeters

Capillarity surfaces are determined by the balance between
adhesive and cohesive forces, depending in turn by the
intermolecular interactions.
Main idea: substitute the local nature of these interactions
admitting in the model long-range interactions among particles
producing surface tension effects both in the cohesive and adhesive
term.
↪→ Nonlocal fractional perimeters
For s ∈ (0, 1) and Ω regular bounded open set let

Ps(E ,Ω) :=

ˆ
E∩Ω

ˆ
Ω\E

1

|x − y |n+s
dy dx

+

ˆ
E∩Ω

ˆ
Ωc\E

1

|x − y |n+s
dy dx +

ˆ
E\Ω

ˆ
Ω\E

1

|x − y |n+s
dy dx



Main features

• different scaling law:
For any λ > 0, E ,Ω it holds Ps(λE , λΩ) = λn−sPs(E ,Ω)

• weaker than the euclidean perimeter if Ω regular
∃ C = C (n, s,Ω) > 0 such that Ps(E ,Ω) ≤ CPer(E ,Ω) + C

• finiteness on sets F whose boundary has Hausdorff dimension
n − s > n − 1

• compact embedding in L1(Ω), continuous in Ln/n−1(Ω)
∀(Ek) with Ps(Ek ,Ω) ≤ C ∃ Ekh ,E with ‖Ekh − E‖L1(Ω) → 0.

• ’approximation’ of euclidean perimeter in a variational sense

Theorem(Ambr.-De Phil. Mart., Caffa.-Roquej.-Savin 2011)

Γ- lim
s→1−

(1− s)Ps(E ,Ω) = wn−1Per(E ,Ω), wn−1 = Hn−1(Sn−1)



Nonlocal free energies

Let σ ∈ C 0(Ω̄); for E ⊂ Ω we define

Fσs (E ) :=

ˆ
E

ˆ
Ω\E

1

|x − y |n+s
dy dx +

ˆ
E

ˆ
Ωc

σ(x)

|x − y |n+s
dy dx

Goal: Analyze these new nonlocal surface and wetting energies in
capillarity problems.

I study the asymptotics as s → 1− of Fσs (E );

I study existence of minimizers for Fσs (E ) +
´
E gs with |E | = m;

I establish suitable regularity properties of minimizers;

I deduce non local contact equations and relative contact
angles;

I compare the information derived by the local and non-local
model.



Γ-convergence analysis

Theorem(G.-Novaga)

Assume Ω regular and σ ∈ C 0(Ω̄), then (1− s)Fσs → Fσ as
s → 1− with respect to the L1 convergence in Ω, where Fσ is
defined by

Fσ(E ) =wn−1

(
Per(E ,Ω) +

ˆ
∂∗E∩∂Ω

(−1) ∨ σ ∧ 1 dHn−1

+

ˆ
{σ<−1}∩∂Ω

(1 + σ) dHn−1
)



Approximation of local capillarity problems

Theorem(G.-Novaga)

Let m ∈ (0, |Ω|) and g ∈ L∞(Ω). Assume that

−1 ≤ σ(x) ≤ 1 for any x ∈ Ω,

then the energies

(1− s)Fσs +

ˆ
E
g(x)

defined for sets E ⊆ Ω with |E | = m, Γ-converge as s → 1−, with
respect to the L1 convergence in Ω, to

wn−1

(
Per(E ,Ω) +

ˆ
∂∗E∩∂Ω

σ dHn−1
)

+

ˆ
E
g(x) dx

defined for sets E ⊆ Ω with |E | = m.



Relaxation of Gauss’ free energy

Proposition(G.-Novaga)

Assume Ω regular and σ ∈ C 0(Ω̄). For E ⊂ Ω define F σ as

F σ(E ) =wn−1

(
Per(E ,Ω) +

ˆ
∂∗E∩∂Ω

σ dHn−1
)
.

Then its lower semicontinuous envelope with respect to the L1

convergence in Ω is

Fσ(E ) =wn−1

(
Per(E ,Ω) +

ˆ
∂∗E∩∂Ω

(−1) ∨ σ ∧ 1 dHn−1

+

ˆ
{σ<−1}∩∂Ω

(1 + σ) dHn−1
)



Asymptotics of Ps with an additional constraint
If σ ≡ 1 we recover the analogous of Ambrosio-De
Philippis-Martinazzi result with the additional condition that
admissible sets must lie in Ω:

Proposition Define P̃s(E ,Ω) for any measurable set E ⊂ Rn as

P̃s(E ,Ω) =

{
Ps(E ,Ω) if E ⊆ Ω

+∞ otherwise.

Then (1− s)P̃s(E ,Ω) Γ-converge as s → 1− with respect to the
L1

loc convergence in Rn to

wn−1Per (E ) = wn−1

(
Per (E ,Ω)+Hn−1(∂∗E ∩ ∂Ω)

)
.

Rem. For sets touching the boundary the recovery sequence is
obtained in the Ambr.-De Phil.-Mart.’s setting by sets having
boundary transversal to ∂Ω.



Existence and compactness of s-minimizers

Proposition

Let m ∈ (0, |Ω|) and gs ∈ L∞(Ω) then there exists at least a
minimizer Es of Fσs (E ) +

´
E gs dx among sets E ⊆ Ω with

|E | = m.

Ω regular ⇒ Ps(Ω,Rn) < +∞ ⇒ l.s.c. of Fσs (E ). The Sobolev
fractional embedding allows to conclude.

Proposition

For s ∈ (0, 1) let Es be as above with gs = g/(1− s). Then there
exists a set E limit point of Es in L1. Moreover E is a minimizer
for Fσ(E ) +

´
E g dx among sets E ⊆ Ω with |E | = m.

We can prove a priori estimates on (1− s)Fσs (E ) and deduce the
validity of the Frechet-Kolmogorov compactness criterion. The last
part follows by the Γ-convergence.


