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Stokes System

In this work we are interested in the study of size estimates for an obstacle

D C R inside a cavity Q C RY, which is fulfill for a fluid, governed for the Stokes

system. In particular we consider the following problem.

|
o

—div(o(u, p))
(1) { divu =
where
A+AT
o(u, p) = 2ue(Vu) — pl, e(A) = &5
> u(x) velocity field.
> p(x) presure, scalar function.
> i

x) viscosity, scalar positive function.
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|
Boundary Value Problem

—div(o(u,p)) = 0

divu = 0

(2) v
u = 0

» g € H'/?(0Q) satisfies the compatibility condition /

)

inQ\ D,
in Q\ D,
on 09,
on 0D,

o0

> The condition u|gp = 0 is the no-slip condition.
» Existence: There exists u € (H}(Q\ D))? and p € L2(Q\ D) satisfying (2).
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Inverse Problem

» We can define the Cauchy-force

Y =o(u,p) - nlog € HY2(09Q),
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Inverse Problem

» We can define the Cauchy-force

Y = a(u,p) - nlag € HY/2(09),

> Inverse Problem: size estimates of D from the boundary data (g, ) known
on the boundary 09.
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Previous Result

> Alvarez, Conca, Fritz, Kavian, Ortega (2005). Identification of immersed
obstacles via boundary measurements.

» Heck, Uhlmann, Wang (2007). Reconstruction of obstacles inside a bounded
domain filled with an incompressible fluid.

» Lin, Uhlmann, Wang (2010). Optimal three-ball inequality for Stokes System.

> Ballerini (2011). Stable determination of an immersed body in a stationary
Stokes fluid.
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> Alessandrini, Rosset, Seo (1999). Optimal size estimates for the inverse
conductivity problem with one measurements.

> Alessandrini, Morassi, Rosset (2002). Detecting an inclusion in an elastic
body by boundary measurements.

» Nguyen, Wang (2014). Estimate of an inclusion in a body with discontinuous
conductivity.
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Inverse Problem

» When D is present, let us denote by u the solution of the following problem

—div(o(u, p)) =
divu =
3
3) S
u =
Size Estimates

oMl O O

in Q\ D,
in Q\ D,
on 022,
on 0D,
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Inverse Problem

> Let us denote by uy the corresponding velocity of the fluid in the case
without obstacle D, namely ug is the solution of the Dirichlet problem

—div(o(uo,po)) = 0 , inQ,
(4) divu = 0 , inQQ,
uw = g , ondf.
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Inverse Problem

> Let us denote by uy the corresponding velocity of the fluid in the case
without obstacle D, namely ug is the solution of the Dirichlet problem

—div(o(uo,po)) = 0 , inQ,
(4) divu = 0 , inQQ,
u = g , ondf.
» Considere the numbers
Wo= [ gt ad W= [ gu
Joq Joq

where ¢ = o (u, p) - nlaq and 1y = o(uo, po) - nlaa
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Inverse Problem

> Let us denote by uy the corresponding velocity of the fluid in the case
without obstacle D, namely ug is the solution of the Dirichlet problem

—div(o(uo,po)) = 0 , inQ,
(4) divu = 0 , inQQ,
u = g , ondf.
» Considere the numbers
Wo= [ gt ad W= [ gu
Joq Joq

where ¢ = o (u, p) - nlaq and 1y = o(uo, po) - nlaa
» Inverse Problem: consist of estimating, from above and below, the measure
|D| of the obstacle D, in terms of the ratio

W — W,
Wo
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Mathematical Setup

Definition

Let Q C R” a bounded domain. We say 9 is of a class CX®, with constants
po, Mo > 0, where k is a nonnegative integer and « € [0, 1] if, for any xo € 0
there exists a rigid transformation of coordinates, in which xo = 0 and

QN By, (0) = {x € Byy(0) : xn > p(x)},
where ¢ is a function of class Ck’a(BF’)(O)) such that

Yi = Oa
V(0) =0, k>1,

||80||ckva(3,go(0)) < Mopo.

We will sometimes use the following notation, for h > 0:

Qp={xeQ: d(x,00Q) > h}.
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A Priori Information

We assume that:

> Q C RY to be a bounded domain such that 99 is connected, and it has
smooth boundary, i.e., OQ is of a class C*>® with constants po, Mo. Further,
|Q| < Mypg, where M; > 0.

» We consider D C €2, which represents the obstacle we want to size estimates
from the boundary measurements, on which we require that Q\ D is
connected, D connected and is of class C%® with constants p, L.

» Additionally, we suppose that the obstacle is well contained in €, this
meaning d(D, 0Q) > dp.

» We assume that D satisfies the scale-invariant fatness condition with
constant Q > 0, i.e., diam(D) < Qp.
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Main Theorems

Theorem 1

Let Q C RY be a bounded domain such that 9Q € C%?, with constants py, M,
o €[0,1] and let h; > 0 be such that |Dp,| > 3|D|. Moreover, we assume that

g€H3/2(6Q), g7_é07 / g-nds:O, ”g-”’-ﬂw SCO7
a0 HgHLZ(aQ)

for a given constant ¢y > 0. Also suppose that there exists a point p € 99, such
that,

g =00n 902N B, (p).

Then, we have

() D] < K (faﬂ(“/’%)g> ‘

Joq tog

The constant K only depending on [Q|, po, Mo, p, l|g || n1r2(00)/11& | 2(59)-

— o




Theorem 2

Under the hypotheses of Theorem 1 and let D satisfying the scale-invariant
fatness condition with constant Q. Then

W — W,
(6) —— 7 < |D|'/2,
&l 1er2(00) Wo

where C only depends on |Q[, p, L, Q.
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Lemma

Let up € H1(Q) be the solution to problem (4) and u € H*(Q\ D) be the solution
to problem (3). Then

(7) /D Vuof? < /8 (0= v)e = /8 u-o(up)n

where n denotes the exterior unit normal to 9D. |
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Proposition (A. Ballerini)

Under the hypothesis of Theorem 1, there exists a constant s > 1, depending only
on d and My, such that for every r > 0 and for every X € €, we have

/ |V uo|?dx > Cp/ |V uo|?dx,
B (x) Q

where C, is a constant depending only on d, My, My, o, r.
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|
Sketch of the Proof: Theorem 1

» We consider a intermediate domain Q4 /».

> Let us cover Dy, with cubes Q) of side e.

=
D U, Q

I=1%/

» Then, we have
Dy,

[Vuo|* > LC,I'/ \Vuol?,
€ Q

where [ is chosen in such way that

/|Vu0|2:min/ |V uol.
Q I Ja
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» From the Proposition of Ballerini we obtain that

D Lip
/|VU0|22 u/ VU02>2|d|/ Vol
D e Jo e Jo

> |D|K/Q\Vuo\2 - <K/m1/fo g) D]

» From the Lemma, we have that

/m(w—?/)o)g > /D [Vuol* > (K/anz/;o g> D).

/aQ(dj - /‘/}O)g
Joatog

» Therefore,

DI < K
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Sketch of the Proof: Theorem 2

» Applying Holder's inequality to the estimate in the Lemma, and using a
appropriate Poincare inequality, we obtain

1/2 1/2
W W §C</ VUOZ) (/ o(u,p)~n2)
D oD

» The first integral in the right hand side can be estimates as follows
/ |Vuo|2< C|DY? sup [Vuo| < C|D*? sup |ug|
JD D

Qqy /2

< C|D[M2||Vup|i2(@) = CID2Wy 2.
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» For the second integral, we can deduce that

|o(u, p) - nllizap) < Cligll o2 (00)-
» Therefore,
W — W,
—01/2 < |D|M2.
||g||H3/2(aQ) Wo
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Figure: Influence of dy for circle inclusion.
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Figure: Influence of the size of the circle.
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Thank you for your attention
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