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The Hamiltonian

Consider the magnetic Schrödinger operator

HB =
(
− i∇x −A(x)

)2 − cd
|x|2 in L2(Rd), d ≥ 2. (1)

• A : Rd → Rd is a magnetic potential (1-form)
• B is the magnetic tensor (2-form).
• The relationship between A and B: B = dA.
• The Maxwell equation: dB = 0, i.e. B is a closed form.
• The dimensional quantity cd in (1) is the best constant in the classical Hardy
inequality

∀ψ ∈ C∞0 (Rd) ,
∫
Rd

|∇ψ(x)|2 dx ≥ cd
∫
Rd

|ψ(x)|2

|x|2 dx . (2)

Explicitly:

cd =

(
d− 2

2

)2

, d ≥ 3.

Conventionally put cd := 0 for d = 2.
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The corresponding heat equation

Cauchy problem: 
∂u

∂t
+HB u = 0 ,

u(x, 0) = u0(x) ,
(3)

where (x, t) ∈ Rd × (0,∞) and u0 ∈ L2(Rd). Formally

u(x, t) := e−tHBu0(x).

GOAL: Determine the large time behavior of the heat semigroup e−tHB .

General facts:

• It is well known that the large-time behaviour of a heat semigroup is
determined by spectral-threshold properties of its generator.
• An important characterisation of this threshold behaviour is given by the
existence/non-existence of Hardy-type inequalities.
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• DIAMAGNETIC INEQUALITY: For any smooth A∣∣(∇− iA)ψ(x)
∣∣ ≥ ∣∣∇|ψ|(x)

∣∣ (4)

holds for a. e. x ∈ Rd and any ψ ∈ H1
loc(Rd).

DIAMAGNETIC INEQUALITY+HARDY INEQUALITY =⇒ HB can be
defined as a self-adjoint operator in L2(Rd) =⇒ the Cauchy problem is
well-posed.

• More specifically, HB is defined as the self-adjoint operator in L2(Rd)
associated with the quadratic form

hB [ψ] :=

∫
Rd

∣∣(∇−iA)ψ(x)
∣∣2 dx−cd

∫
Rd

|ψ(x)|2

|x|2 dx D(hB) := C∞0 (Rd)
‖·‖hB .

(5)
Here the norm with respect to which the closure is taken is defined by

‖ψ‖hB :=
√
hB [ψ] + ‖ψ‖2

L2(Rd)
. (6)
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• inf σ(HB) ≥ 0 = inf σ(H0).

Then ‖e−tHB‖L2→L2 ≤ 1 = ‖e−tH0‖L2→L2 .

• The decay of the heat semigroup in the presence of magnetic field can be
only better with respect to B = 0.

• If B is compactly supported then

σ(HB) = σ(H0) = [0,∞].

• Then ‖e−tHB‖L2→L2 = 1 and no extra decay of the heat semigroup is seen
at this level.
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The repulsive effect of the magnetic field A

In the absence of magnetic field, H0 := −∆x − cd/|x|2 is critical in the sense
that cd is optimal in (2) and there is no weight ω > 0 such that

∀ψ ∈ C∞0 (Rd) ,
∫
Rd

|∇ψ(x)|2 dx− cd
∫
Rd

|ψ(x)|2

|x|2 dx ≥
∫
Rd

ω(x)|ψ|2dx.

On the contrary, whenever B is non-trivial it holds

Theorem (CC, D. Krejcirik ’14)

Let d ≥ 2. Suppose that B is smooth and closed. If B 6= 0, then there exists a
positive constant cd,B such that for any smooth A satisfying dA = B, the
following inequality holds for all ψ ∈ C∞0 (Rd)∫

Rd

|(∇−iA)ψ(x)|2 dx−cd
∫
Rd

|ψ(x)|2

|x|2 dx ≥ cd,B
∫
Rd

|ψ(x)|2

1 + |x|2 log2(|x|)
dx .

(7)

See also [Laptev and Weidl ’99], [Weidl ’99], [Alziary, Fleckinger-Pelle and
Takac ’03], [Balinsky, Laptev, and Sobolev ’04], [Ekholm and Portmann ’14],
etc. for particular/weaker related results.
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To exploit this subtle repulsive property of the magnetic field, we introduce a
weighted space

L2
w(Rd) := L2(Rd, w(x) dx) , where w(x) := e|x|

2/4 , (8)

and reconsider HB as an operator from L2
w(Rd) ⊂ L2(Rd) to L2(Rd). That

is, we restrict the initial data u0 in (3) to lie in L2
w(Rd).

We then consider the polynomial decay rate

γB := sup
{
γ
∣∣∣ ∃Cγ > 0, ∀t ≥ 0,

∥∥e−tHB
∥∥
L2

w(Rd)→L2(Rd)
≤ Cγ (1 + t)−γ

}
.

(9)
where ∥∥e−tHB

∥∥
L2

w(Rd)→L2(Rd)
= inf
u0∈L2

ω(Rd)

∥∥e−tHBu0

∥∥
L2(Rd)

‖u0‖L2
ω(Rd)

.

MAIN GOAL: FIND γB .
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What was done for γB, HB = (−i∇−A(x))2 − cd/|x|2

• No magnetic field:

H0 = −∆− cd/|x|2, d ≥ 3.

Zuazua-Vazquez JFA ’00:

γ0 =
1

2
.

• No singular potential (2-d case):

HB = (−i∇−A(x))2.

Krejcirik PDE Calc Var ’13: γ0 = 1
2

if B = 0. Otherwise,

γB ≥
1 + β

2
,

where

β := dist(ΦB ,Z) , ΦB :=
1

2π

∫
R2

∗B(x) dx ., (10)

where ∗B = rotA = ∂2A1 − ∂1A2.
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The gauge invariance

Why writing B in the subscript of HB rather than A ?

• Let dÃ = B. Then d(Ã−A) = 0, i.e. Ã−A is closed. By the Poincaré
lemma, Ã−A is exact, i.e. there exists a smooth function f such that
Ã = A+ df .

• Let h̃B and H̃B be respectively the form and operator generated by Ã. Then

φ := eifψ, ψ ∈ C∞0 (Rd) =⇒ hB [ψ] = h̃B [φ].

It follows that
D(hB) = D(h̃B), H̃B = eifHB e−if . (11)

=⇒ The operators corresponding to different gauges are unitarily equivalent
and isospectral.

• For our purpose it is enough to work in one gauge. We chose the Poincare
gauge since this choice is convenient because we wish to work in the spherical
coordinates.
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Poincaré gauge

The Poincaré (or transverse) gauge:

x ·A(x) = 0, ∀x ∈ Rd. (12)

• We can assume (12) without loss of any generality, because of the gauge
invariance of the physical theory.

EXISTENCE OF THE GAUGE (12): For a given smooth tensor field B, define
the vector potential

A(x) :=

∫ 1

0

x ·B(xu)u du (13)

Proposition

Let d ≥ 2. Suppose that B is smooth and closed. Then the vector potential A
defined by (13) satisfies (12) and dA = B.
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Spherical coordinates

For this reason it will be convenient to introduce spherical coordinates

L : Sd−1 × (0,∞)→ Rd : {(σ, r) 7→ σr} . (14)

• We use the letters q and x to denote points in Sd−1 × (0,∞) and Rd,
respectively.
• Writing q = (q′, qd), where q′ ∈ Sd−1 and qd ∈ (0,∞), we obviously have
qd = r = |x| and q′ = σ = x/|x| = ∂/∂r, with x ∈ Rd. In these coordinates,
the metric acquires the block-diagonal form

g = r2 dσ2 + dr2 =

(
r2 γ 0

0 1

)
, |g| = r2(d−1) |γ| , (15)

where dσ2 = γµν(θ) dθµ ⊗ dθν is the metric of Sd−1, using local coordinates
θ1, . . . , θd−1 on the sphere Sd−1.
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The transfer matrix reads

∇L =

(
r∇′σ
σ

)
, (16)

in a concise notation where ∇′σ is the gradient with respect to the coordinates
θ1, . . . , θd−1.
• The transformed magnetic potential and magnetic tensor are respectively
given by

A := ∇L · (A ◦ L) and B := ∇L · (B ◦ L) · (∇L)T .

• In addition we have

|A|2 := Ajg
jkAk and |A|2Sd−1 := Aµγ

µνAν .

• The radial component in the spherical coordinates basis vanishes: Ad = 0.
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We introduce the quantity

νB(r) := inf
ϕ∈H1(Sd−1),ϕ6=0

∫
Sd−1

∣∣(d′ − iA(σ, r)
)
ϕ(σ)

∣∣2
Sd−1 dσ∫

Sd−1

|ϕ(σ)|2 dσ

, (17)

• νB(r) is the lowest eigenvalue of a magnetic Laplace-Beltrami operator in
L2(Sd−1).
• Assuming that B is smooth and compactly supported, the limit

A∞(σ) := lim
r→∞

A(σ, r) (18)

exists as a smooth vector field from the unit sphere Sd−1 to Rd and we may
also define the corresponding number

νB(∞) := lim
r→∞

νB(r) . (19)
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Theorem

Let d ≥ 2. Suppose that B is smooth, closed and compactly supported. Then

γB =
1 +

√
νB(∞)

2
. (20)

We find
νB(∞) = dist(ΦB ,Z)2 if d = 2 . (21)

and
νB(∞) = 0 if d ≥ 3 . (22)

Theorem (main result- C.C, D. Krejcirik ’14)

Let d ≥ 2. Suppose that B is smooth, closed and compactly supported. Then

γB =


1 + β

2
if d = 2 ,

1

2
if d ≥ 3 ,

where

β := dist(ΦB ,Z) , ΦB :=
1

2π

∫
R2

∗B(x) dx . (23)
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The self-similarity variables

Define the self-similar variables (y, s) ∈ Rd × (0,∞) by

y := (t+ 1)−1/2 x , s := log(t+ 1) . (24)

If u is a solution of (3), we then define a new function

ũ(y, s) := esd/4 u
(
es/2y, es − 1

)
. (25)

The inverse transform is given by

u(x, t) = (t+ 1)−d/4 ũ
(
(t+ 1)−1/2x, log(t+ 1)

)
. (26)

It is straightforward to check that ũ satisfies a weak formulation of the Cauchy
problem
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ũ,s +

(
− i∇y −As(y)

)2
ũ− cd
|y|2 ũ−

1

2
y · ∇yũ−

d

4
ũ = 0 , (y, s) ∈ Rd × (0,∞) ,

ũ(y, 0) = u0(y) , y ∈ Rd ,
(27)

with the new, s-dependent magnetic potential

As(y) := es/2A(es/2y) . (28)

The self-similarity transform u 7→ ũ acts as a unitary transform in L2(Rd):

‖u(t)‖L2(Rd) = ‖ũ(s)‖L2(Rd) (29)

The natural space to study the evolution is not L2(Rd) but rather the weighted
space L2

w(Rd)
We thus define an additional transform

ṽ(y, s) := w(y)1/2 ũ(y, s) (30)
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that casts (27) formally to ṽ,s +
(
− i∇y −As(y)

)2
ṽ − cd
|y|2 ṽ +

|y|2

16
ṽ − 1

2
iy ·As(y) ṽ = 0(y, s) ∈ Rd × (0,∞)

ṽ(y, 0) = v0(y), y ∈ Rd

(31)
where v0 := w1/2u0.
• Looking for solutions of (27) with an initial datum u0 ∈ L2

w(Rd) is the same
as looking for solutions of (31) with the initial datum v0 ∈ L2(Rd).
• choice of the gauge ⇒ the non-symmetric term vanishes.
• The harmonic-oscillator potential in (31) ensures the compactness of the
resolvent of

Ls :=
(
− i∇y −As(y)

)2 − cd
|y|2 +

|y|2

16
.

• Consequently, Ls has a purely discrete spectrum.
• Let λB(s) denote the first eigenvalue of Ls

λB(s) = min
ψ∈D(l),ψ 6=0

ls[ψ]

‖ψ‖2
L2(Rd)

, (32)
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1

2

d

ds
‖ṽ(s)‖2L2(Rd) = −ls[ṽ(s)] (33)

for every s ≥ 0. Now, using the spectral bound

ls[ṽ(s)] ≥ λB(s) ‖ṽ(s)‖2L2(Rd) , (34)

from Gronwall’s inequality we get

‖ṽ(s)‖L2(Rd) ≤ ‖v0‖L2(Rd) e−
∫ s
0 λB(τ) dτ , ∀s ≥ 0. (35)

Undoing the variables we get

‖u(t)‖L2(Rd) ≤ ‖u0‖L2
ω(Rd) e−

∫ log(t+1)
0 λB(τ) dτ , ∀s ≥ 0. (36)

• The problem of large-time behaviour of (1) is reduced to a spectral analysis
of the family of operators {Ls}s≥0.
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The following theorem is probably the most important auxiliary result of this
paper.

Theorem

Let d ≥ 2. Suppose that B is smooth, closed and compactly supported. , then
the operator Ls converges to L∞ in the norm-resolvent sense as s→∞, i.e.,

lim
s→∞

∥∥L−1
s − L−1

∞
∥∥
H→H

= 0 . (37)

CONSEQUENCE: The spectrum of Ls converges to the spectrum of L∞ as
s→∞, where L∞ is an Ahoronov-Bohn type operator given by

L∞ :=
(
− i∇y −A∞(y)

)2 − cd
|y|2 +

|y|2

16
.

In particular,
λB(s)→ λB(∞), as s→∞,

where λB(∞) is the first eigenvalue of L∞.
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Proposition

Let d ≥ 2. Suppose that B is smooth, closed and compactly supported. We
have

σ(L∞) =

{
n+

1 +
√
νB,`(∞)

2

}
n,`∈N

,

where {νB,`(∞)}`∈N is the set of eigenvalues of the operator(
− i∇σ − A∞(σ)

)2
in L2(Sd−1).

Once we get the spectrum of L∞ we can handle to prove the main result...

C. C. and D. Krejčǐŕık, The Hardy inequality and the heat equation with
magnetic field in any dimension, submitted (available at arxiv.org).
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Thank you for your attention !
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