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Interior null-controllability of the Heat equation

Theorem (Lebeau-Robbiano, Imanuvilov)

Let Q2 C R" an open bounded set with sufficiently smooth boundary,
T >0 and w C Q be an open set, then there is a constant
N = N(w,Q, T) s.t. for each up € L?(R) exists f € L?(Q x (0, T)) s.t.

11l 2(x (0, 7)) < Nllwoll2(@)

and the solution to

Oru — Au = x,f, inQx(0,T],
u=0, on 99 x (0, T],
u(0) = wo. in Q,

satisfies u(T) = 0.
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Interior observability inequality over open sets

The interior null-controllability property for the Heat equation is equivalent
to the interior observability, i.e., there exists a constant N = N(w,Q, T)
s.t. the solution to

ov—Av =0, inQx(0,T],
Vv = O’ on aQ X (0, T]7
V(O) = \p. in Q,

satisfies the observability inequality

Iv(T)ll2@) < NlIVIi2@wx (o, 1))
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An interior observability inequality over measurable sets

Theorem (J. Apraiz, L. Escauriaza, G. Wang, C. Zhang, 2014)

Let0< T <1, DCQx(0,T) (09 Lipschitz) be a measurable set,
|D| > 0. Then 3 N = N(D,Q, T) s.t.

|u(T) 2@y < N /D u(x, )] ddt

holds for all solutions to

Oru—Au=0, inQx(0,T],
u=0 on 9Q x (0, T],
u(0) = uo, up € L2(Q).

S. Montaner (UPV/EHU)

Observation from measurable sets.

August, 31st 2015



Null-controllability of a parabolic equations from
measurable sets

Corollary (J. Apraiz, L. Escauriaza, G. Wang, C. Zhang, 2014)

Let 0< T <land DCQx(0,T) (09 Lipschitz) be a measurable set,
|D| > 0. Then for each ug € L?(Q) exists f € L>(Q x (0, T)) s.t.

1]l (@) < N(D,Q, T)|luol| 2(q)

and the solution to

Oru — Au = xpf, inQx (0, T],
u=0, on 9Q x (0, T,
u(0) = wp. in Q,

satisfies u(T) = 0.
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In Observation from measurable sets for parabolic analytic evolutions and
applications (Escauriaza, Montaner, Zhang (2015)), these results are
extended to some equations and systems with real-analytic coefficients not
depending on time such as:

@ higher-order parabolic evolutions,

@ strongly coupled second-order systems with a possibly non-symmetric
structure,

@ one-component control of a weakly coupled system of two equations,

In this work, the real-analyticity of coefficients is quantified as:

0 aa(x)] < po 151t in Q2 x [0, T].

6/ 18
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The proof of these results rely on:

@ An inequality of propagation of smallness from measurable sets by S.
Vessella (1999).
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The proof of these results rely on:

@ An inequality of propagation of smallness from measurable sets by S.
Vessella (1999).

o New quantitative estimates of space-time analyticity of the form
1/pt1/@m=1) ) _ _
8708 u(x, t)| < €'/ PPy 7P| uoll 2.

0<t<1 v€eN" p>0and2mis the order of the parabolic
problem solved by u. These estimates are obtained quantifying each
step of a reasoning developed by Landis and Oleinik (1974) which
reduces the strong UCP within characteristic hyperplanes of parabolic
equations to its elliptic counterpart and is based on a spectral
representation of solutions.
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The proof of these results rely on:

@ An inequality of propagation of smallness from measurable sets by S.
Vessella (1999).

o New quantitative estimates of space-time analyticity of the form
1/pt1/@m=1) ) _ _
8708 u(x, t)| < €'/ PPy 7P| uoll 2.

0<t<1 v€eN" p>0and2mis the order of the parabolic
problem solved by u. These estimates are obtained quantifying each
step of a reasoning developed by Landis and Oleinik (1974) which
reduces the strong UCP within characteristic hyperplanes of parabolic
equations to its elliptic counterpart and is based on a spectral
representation of solutions.

@ The so-called telescoping series method (L. Miller; K. D. Phung, G.
Wang).
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S. Vessella. A continuous dependence result in the analytic continuation
problem. Forum Math. 11, 6 (1999), 695-703.

Lemma. (Propagation of smallness from measurable sets)

Let w C Bg be a measurable set |w| > 0. Let f be a real-analytic function
in Bor s.t. there exist numbers M and p for which

83 F()| < M(pR)~ !

holds when x € Byg and v € N". Then, there are N = N(Bg, p, |w|) and
0 = 0(Br, p,|w|), 0 < 6 < 1, such that

(1 o
1|00 By < NM*° (le/ |f|dx> .
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Some remarks on the quantitative estimates

The quantitative estimate of space-time real-analyticity

1
030 u(x, t)] < & " pT IR g1 pl £ |ug| 2
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Some remarks on the quantitative estimates

The quantitative estimate of space-time real-analyticity

1
030 u(x, t)] < & " pT IR g1 pl £ |ug| 2

@ yields a positive lower bound p for the radius of convergence of the
Taylor series in the spatial variables independent of ¢,
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1
2m

o blows up like et *" " when t — 0.
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Some remarks on the quantitative estimates

The quantitative estimate of space-time real-analyticity

1
030 u(x, t)] < & " pT IR g1 pl £ |ug| 2

@ yields a positive lower bound p for the radius of convergence of the

Taylor series in the spatial variables independent of t,
1
2m

o blows up like et *" " when t — 0.

These features of the quantitative estimates of analyticity are essential in
the proof of the interior observability estimate over measurable sets.
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Parabolic operators with time dependent coefficients

In order to deal with time-dependent coefficients, we cannot adapt the
reasoning by Landis and Oleinik! J
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Parabolic operators with time dependent coefficients

In order to deal with time-dependent coefficients, we cannot adapt the
reasoning by Landis and Oleinik!

J

Consider the 2m-th order operator

L= D a0 = > 02(Aap(x, 1))+ > Ay(x,1)0]

la[<2m laf,|B]<m lyl<m

assume that for some pg, 0 < pg < 1

Z An p(x, 1)ETE > pol€2™ Ve € R", in Q x [0, T,
la|=|8]=m
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Parabolic operators with time dependent coefficients

In order to deal with time-dependent coefficients, we cannot adapt the
reasoning by Landis and Oleinik!

J

Consider the 2m-th order operator

L= D a0 = > 02(Aap(x, 1))+ > Ay(x,1)0]

la[<2m laf,|B]<m lyl<m

assume that for some pg, 0 < pg < 1

Z An p(x, 1)ETE > pol€2™ Ve € R", in Q x [0, T,
la|=|8]=m

10708 aa(x, t)| < po~*"1=Ply[1p! in Q x [0, T].
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As far as we know, the best estimate that follows from the works of S. D.

Eidelman, A. Friedman, D. Kinderlehrer, L. Nirenberg, G. Komatsu and H.
Tanabe is:

Theorem

There is0 < p <1, p = p(po, n,0Q) such that Vo € N" p € N

ol ol
[BR0Fu(x, £)| < p~t "2 ~P|! pl e e

2m

P7am || woll 12

in Q x (0, T] when u solves

Oru+ (—1)"Lu =0, in Q x (0, T],
u=Du=...=D"1u=0, in0Qx(0,T],
u(-,0) = o, up € L2(Q).

and 0f) is a real-analytic hypersurface.
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If u satisfies
T _bhl_, n
0302 u(x, t)| < p~ ' am Ply|l plt™ 2P am [|ug | 12(q),
Vv e N" peN,
we observe that:

@ the space analyticity estimate blows up as t tends to zero, which is
unavoidable if up is an arbitrary L?(2) function;
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If u satisfies

ol b, n
|070Fu(x, t)] < p~ T Ply|l pltam P am ||ug| 2,
Vv e N" peN,

we observe that:
@ the space analyticity estimate blows up as t tends to zero, which is
unavoidable if up is an arbitrary L?(2) function;

o for each fixed t > 0, the radius of convergence in the space variable is
greater than or equal to %V/pt.
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If u satisfies

[y

'l I,
0708 u(x, t)] < p~ 7 am Py |l pl £ 2m P am [|ug|| 2(q),
Vv e N" peN,

we observe that:
@ the space analyticity estimate blows up as t tends to zero, which is
unavoidable if up is an arbitrary L?(2) function;

o for each fixed t > 0, the radius of convergence in the space variable is
greater than or equal to %V/pt.

This estimate is useless for applications to observability inequalities from
measurable sets.
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Main result

Theorem (L. Escauriaza, S. Montaner, C. Zhang, in preparation,

2015)

Let T € (0,1] and 02 be a real-analytic hypersurface. There are constants
p and N s.t. foranya« € N" and p e N

1 _
0202 u(x, t)] < NeM ™ plol=Pe=Plaipl||u 20,7y in  x (0, T],

if u solves
Oru+ (—1)"Lu =0, in Q x (0, T],
u=Du=...=D"tu=0 indQx(0,T],
u(0) = wo, up € L2(Q).

v

This estimate is adequate to prove the interior observabililty estimate over
measurable sets when the coefficients of L are space-time real-analytic.
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Idea of the proof of the quantitative estimates of

analyticity

We prove a L2 estimate by induction on || and p, let B, C B; C s.t.
B, NQ #0:

_pe—1/2m—1 1
(1= r)?™|eP e P 00 Ul 1208, x (0,7)

k k. _pe—1/2m—1
+ Z (1—r)<|tPtame Dk@f@“”ﬂ(ms,x(o,n)

ol

< p P07 (1= )T ! ull 2 0,7y (1)
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(1= r)?™|eP e P 00 Ul 1208, x (0,7)
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The precise form of the weights tPHLe=0t 2" 1 ie crucial to obtain:
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We prove a L2 estimate by induction on || and p, let B, C B; C s.t.
B, NQ #0:

_pe—1/2m—1 1
(1= r)?™|eP e P 00 Ul 1208, x (0,7)

k k. _pe—1/2m—1
+ Z (1—r)<|tPtame Dk@f@“”ﬂ(ms,x(o,n)

1 y—pp_ _
<pthlmrg== (1-r) M’7‘!p!|’u||L2(Q><(O,T))' (1)
The precise form of the weights tPHLe=0t 2" 1 ie crucial to obtain:

@ the lower bound pé?%(l —r), (not depending on t) for the spatial
radius of convergence of the Taylor series of w.
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We prove a L2 estimate by induction on || and p, let B, C B; C s.t.
B, NQ #0:

_pe—1/2m—1 1
(1= r)?™|eP e P 00 Ul 1208, x (0,7)

k k. _pe—1/2m—1
+ Z (1—r)<|tPtame Dk@f@“”ﬂ(ms,x(o,n)

1 y—pp_ _
<pthlmrg== (1-r) M’7‘!p!|’u||L2(Q><(O,T))' (1)
The precise form of the weights tPHLe=0t 2" 1 ie crucial to obtain:

@ the lower bound pé?%(l —r), (not depending on t) for the spatial
radius of convergence of the Taylor series of w.

e the adequate factors |y|!p! in the right hand side of (1).
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A consequence on null-controllability

Theorem

Let Q be an open bounded set with real-analytic boundary,
D CQx(0,T) be a Lebesgue measurable, |D| > 0 and assume the

abovementioned real-analyticity regularity on the coefficients of L, then:
Yup € L2(Q), If € L>=(D) with

£l LoDy < Nlwoll2(q),

such that the solution to

Oru+ (—1)"Lu = fxp, in Q x (0, T,
u=Du=...=D"1u=0, indQx(0,T],
u(0) = wp, in Q,

satisfies u(T) = 0. Also, the control f with minimal L°>°(D)-norm is
unique and has the bang-bang property; i.e., |f(x,t)| = const. for a.e.
x,t) in D.
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Thank you!
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If t € (0, T), we set
Dy={xeQ:(x,t)eD} , E={te(0,T):|D>|D|/(2T)}.

By Vessella's result on propagation of smallness and the obtained

analyticity estimates:
IN=N(QI|D|/T,p)and 0 = 6(Q,|D|/T,p) in (0,1) such that

1/(2m—1)
lu(D)ll 2@y < Nu(L)|rp,yM =", with M = NeM [u(0)]l 120
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Finally, we arrive to the telescoping series

— N T aA7/(0m—1)

e (/k*/k+1)l/(2m 1 ||U(Ik)||L2(Q) —e (/k+1 ’k+2)1/ HU(Ik+]_)||[_2(Q
Ik

<N [ xelu®lluwode
lkt1

where {/c}x>1 is a monotone decreasing sequence satisfying
limgoolk =1, 1 < h < T, where | € (0, T) is a Lebesgue point of E.
Summing from k =1 to 400 and using energy estimate we obtain

[u(T) 2@y < Nllullpy
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