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Introduction

@ The aim is to give an overview of the potential theory of the porous
medium equation.

@ Superharmonic functions, Perron solutions, Riesz measures, etc. have
their counterparts.

@ The obstacle problem is a crucial tool.



Porous medium equation

@ The porous medium equation (PME for short) is
Oru—Au" =0

with m > 1.
o Weak solutions: u™ € L2(0, T; H*(RQ)) such that

/ —udrp + Vu™ - Vedxdt =0
Qr

for all smooth ¢.

o Weak supersolutions: require “>" for positive .



p-parabolic equation

@ The other prototype is the p-parabolic equation
Oru — div |[VulP72Vu =0

with p > 2.
o Weak solutions: u € LP(0, T; WP(Q)) such that

/ —udp + |VulP™2Vu - Vedxdt =0
Qr

for all smooth .



Nonlinear analogue of superharmonic functions

A function u is a semicontinuous supersolution, if it is
© lower semicontinuous, and

@ satisfies the comparison principle with respect to continuous weak
solutions:
For Uy 1, € Q1 , if v € C(Uy,1,) is a weak solution in Uy, ¢, with
v<uon OpUy ¢, then v < uin Ug 4.

Definition due to F. Riesz.



Barenblatt solution |

@ The Barenblatt solution is given by

_ A(m— x|? 1/(m—1)
A (C _ (2mn1) t|2>\|/">+ , t>0,

0, £<0,

Bm(x,t) =

where A = n/(n(m —1) +2), and C > 0 can be chosen freely.

@ Barenblatt, Zeldovich-Kompaneets



Barenblatt solution Il

@ Nonlinear counterpart of the fundamental solution.

@ Found by looking for solutions in the form
u(x, t) = t7F(|x|tP).

@ B, is a semicontinuous supersolution in R"1, but not a weak
supersolution in any open set containing the origin.



The friendly giant |

@ The friendly giant is given by

t‘ﬁF(x), t >0,
0, t <0,

Gm(x,t) = {

where F > 0 solves the boundary value problem

AF™+ L F=0, inQ,
F=0, on 09

in a bounded domain Q.

@ Constructed by Dahlberg-Kenig.



The friendly giant Il

@ Since F >0in €,

lim G t) =
fimy Gl ) = o

for all x € Q.

@ Gp, is a semicontinuous supersolution in 2 x R but not a weak
supersolution.

@ In fact G/} is not integrable in any cylinder intersecting the line t = 0.

@ No counterpart in linear theory!



What about obstacle problems?

@ By lower semicontinuity, one may approximate a semicontinuous
supersolution by an increasing sequence of smooth functions.

@ Solve the obstacle problem with these smooth functions as obstacles.

@ Outcome: any semicontinuous supersolution is an increasing limit of
weak supersolutions. (Lindqvist)
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Measure data problems

@ A consequence of the approximation is the existence of Riesz
measures of semicontinuous supersolutions.

@ For a class of semicontinuous supersolutions u, there is a measure p
such that

Oru — Au™ = p.
(Kinnunen-Lindqvist).

@ Conversely, one may start from the measure, and construct a
semicontinuous supersolution so that the above equation holds.
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Why obstacle problems?

@ Heuristic principle: solutions to obstacle problems are as regular as
weak solutions, as long as the obstacle allows it.

@ The point of using obstacle problems is to have the ability to
construct supersolutions with favorable regularity properties.

@ Regularity in time is a particularly delicate issue.
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Perron’'s method

@ We want to solve the Dirichlet problem with continuous boundary
values g : 0p,Q27 — [0, 00).

@ The upper class {z: semicontinuous supersolutions v which satisfy

liminfv(z) > g(¢&)

z—E

for all £ € 0,Q27. The upper Perron solution is then

Hg(z) = vienig v(z).

@ Lower Perron solution ﬂg has a similar definition in terms of
semicontinuous subsolutions below g on the boundary.
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Resolutivity |

@ Immediate from definitions: ﬂg < ﬁg.

@ Resolutivity: for which functions g it holds H, = ﬁg?

@ The common function is the Perron solution H,.
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Resolutivity |l

@ Wiener's resolutivity theorem for the PME:

holds for all continuous g in any space-time cylinder Q7.
(Kinnunen-Lindgvist-L.)

e Crucial in the proof: find supersolutions v such that d;v™ is an L2
function.

@ Such supersolutions come from the obstacle problem.
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Turning the tables

@ One can also use semicontinuous supersolutions to construct solutions
to the obstacle problem.

@ The procedure is analogous to the balayage concept from classical
potential theory.
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Smallest solution

@ Consider an obstacle 1, positive, continuous and compactly supported
in QT-

@ Define
Uy, = {v semicontinuous supersolution : v > 1) a.e. in Q7}

and
iy(x,t) =inf{v(x,t) 1 v € Uyp}.

@ The smallest solution to the obstacle problem uy is then

uy(x, t) = (eysi)lir&ntf) dy(y,s),

the lower semicontinuous regularization of iy

@ Parviainen-Lindqvist (p-parabolic equation) , Avelin-L. (PME).
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Variational solutions to the PME obstacle problem

@ A function v is a variational solution to the PME obstacle problem if

Oru(v™ —u™) 4+ Vu™ - (Vv = Vu")dxdt >0
Qr

for comparison functions v > 1.

o Bogelein-L.-Scheven.
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The connection between variational solutions and the

smallest solution

@ The smallest solution is a pointwise limit of variational solutions.
(Avelin-L.)

@ By stability of variational solutions, the smallest solution is a
variational solution for sufficiently regular obstacles.
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Open problems

@ Are variational solutions to the PME obstacle problem unique?

@ Are semicontinuous supersolutions to the PME the same as viscosity
supersolutions?

@ For the p-parabolic equation, the answer to both questions is yes.
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Uniqueness |

@ One way to solve the uniqueness: show that a variational solution is
the smallest supersolution.

@ A variational solution u is a weak solution to the PME in {u > ¢}.

@ Since u =1 on d{u > 1}, by comparison u < v whenever v is a
supersolution with ¢ < v. Thus u must be the smallest solution.
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Uniqueness I

@ The gap in the above argument is that {u > ¢} is a general open set
in R"1, not a space-time cylinder.

o A sufficiently strong comparison principle in general open sets for the
PME is not known.
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Viscosity solutions |

@ One would like to prove a comparison principle for viscosity solutions.

@ This turns out to be a bit complicated even for simple equations like
—div(a(x)Vu) =0,

where the coefficient a is a smooth, strictly positive.
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Viscosity solutions Il

o Formally one may write the PME as

Oy — div(mu™1Vu) = 0.

m—1

@ The coefficient mu can be rough and vanish on a large set...
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Thank you for your attention.
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