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Introduction
Linear difference equations

Σδ(L,A) : u(t) =
N∑

j=1
Aj(t)u(t − Lj), t ≥ 0

L1, . . . , LN : (rationally independent) positive delays.
A1(t), . . . ,AN(t): time-dependent d × d matrices.
u(t) ∈ Cd .
Notation: Lmin = minj Lj , Lmax = maxj Lj .

Motivation:

Applications to transport and wave propagation.
Generalization of simpler cases: N = 1, autonomous.
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Introduction
Motivation: transport systems

Hyperbolic PDEs → difference equations: [Cooke, Krumme, 1968],
[Slemrod, 1971], [Greenberg, Li, 1984], [Coron, Bastin, d’Andréa Novel,
2008], [Fridman, Mondié, Saldivar, 2010], [Gugat, Sigalotti, 2010]...



∂tui (t, x) + ∂xui (t, x)
+ αi (t, x)ui (t, x) = 0, t ∈ R+, x ∈ [0, Li ], i ∈ J1,NK,

ui (t, 0) =
N∑

j=1
mij(t)uj(t, Lj), t ∈ R+, i ∈ J1,NK.

Method of characteristics: for t ≥ maxi Li ,

ui (t, 0) =
N∑

j=1
mij(t)uj(t, Lj) =

N∑
j=1

mij(t)e−
r Lj
0 αj (t−s,Lj−s)dsuj(t − Lj , 0).

Set v(t) = (ui (t, 0))i∈J1,NK. Then v satisfies a difference equation.
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Introduction
Motivation: wave propagation on networks

L1

L2

L3

LN

Edges: E
Vertices: V

∂2ttui (t, x) = ∂2xxui (t, x)

ui (t, q) = uj(t, q), ∀q ∈ V, ∀i , j ∈ Eq

+ conditions on vertices.
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Introduction
Motivation: wave propagation on networks

D’Alembert decomposition on travelling waves:

System of 2N transport equations.
Can be reduced to a system of difference equations.
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Introduction
Motivation: case N = 1

When N = 1: u(t) = A(t)u(t − L).
Can be reduced to un = Anun−1.

Autonomous system

un = Aun−1

A ∈Md (C)

Exponential stability
⇐⇒ ρ(A) < 1

ρ(A) = lim
n→+∞

|An|
1
n

= max
λ∈σ(A)

|λ|

Arbitrary switching

un = Anun−1

An ∈ B ⊂Md (C)

Uniform exponential stability
⇐⇒ ρJ(B) < 1

ρJ(B) = lim
n→+∞

sup
A1,...,An∈B

|A1A2 · · ·An|
1
n

(cf. [Jungers, 2009])
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Introduction
Motivation: autonomous [Cruz, Hale, 1970], [Henry, 1974], [Michiels et al., 2009]

Σaut
δ (L,A) : u(t) =

N∑
j=1

Aju(t − Lj), t ≥ 0

Stability for rationally independent L1, . . . , LN characterized
by ρHS(A) = max(θ1,...,θN)∈[0,2π]N ρ

(∑N
j=1 Ajeiθj

)
.

Theorem (Hale, 1975; Silkowski, 1976)
The following are equivalent:

ρHS(A) < 1;
Σaut
δ (L,A) is exponentially stable for some L ∈ (0,+∞)N with

rationally independent components;
Σaut
δ (L,A) is exponentially stable for every L ∈ (0,+∞)N .

Stability of difference equations and applications to wave propagation on networks Guilherme Mazanti



Introduction Main result and applications Proof of the main result

Main result and applications
Main result

Σδ(L,A) : u(t) =
N∑

j=1
Aj(t)u(t − Lj), t ≥ 0

Xδp = Lp([−Lmax, 0],Cd ), p ∈ [1,+∞].
Exponential stability of Σδ(L,A) uniformly with respect to a
given set A of functions A : R→Md (C)N .
Σδ(L,A): family of systems Σδ(L,A) for A ∈ A.
RI: set of all L = (L1, . . . , LN) ∈ (0,+∞)N with rationally
independent components.
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Main result and applications
Main result

Theorem (Chitour, M., Sigalotti)
Let B ⊂Md (C)N bounded and A = L∞(R,B). The following
statements are equivalent:

µ(L,B) < 1;
Σδ(L,A) is exponentially stable in Xδp for some p ∈ [1,+∞]
and L ∈ RI;
Σδ(L,A) is exponentially stable in Xδp for every p ∈ [1,+∞]
and L ∈ (0,+∞)N .
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Main result and applications
Application to wave propagation on networks

L1

L2

L3

LN

Edges: E
Vertices: V
V = Vint ∪ Vd ∪ Vu
Interior vertices: Vint
Damped vertices: Vd
Undamped vertices: Vu

∂2ttui (t, x) = ∂2xxui (t, x),
ui (t, q) = uj(t, q),

∀q ∈ V, ∀i , j ∈ Eq,∑
i∈Eq ∂nui (t, q) = 0,

∀q ∈ Vint,

∂tui (t, q) = −ηq(t)∂nui (t, q),
∀q ∈ Vd,

ui (t, q) = 0, ∀q ∈ Vu.
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Main result and applications
Application to wave propagation on networks

System: Σω(G, L,D), where G = (E,V), (ηq)q∈Vd ∈ D.
((ui )i∈E, (∂tui )i∈E) ∈ Xωp = W 1,p

0 (G, L)× Lp(G, L), where
W 1,p

0 (G, L): W 1,p on each edge, continuous at all vertices,
equal to 0 on q ∈ Vu.

Theorem
Suppose that D = L∞(R,D) for some D ⊂ Rd

+, d = #Vd. The
following statements are equivalent:

Σω(G, L,D) is exponentially stable in Xωp for some
p ∈ [1,+∞] and L ∈ RI;
Σω(G, L,D) is exponentially stable in Xωp for every
p ∈ [1,+∞] and L ∈ (0,+∞)N .
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Main result and applications
Application to wave propagation on networks

Topological characterization of exponential stability:

Theorem
Let D ⊂ Rd

+ be bounded, D = L∞(R,D). Then Σω(G, L,D) is
exponentially stable in Xωp for some p if and only if G is a tree, Vu
contains only one point, and D ⊂ (0,+∞)d .

⇐=: classical methods (see e.g. [Dáger, Zuazua, 2006]). One has
that, for every t, s ≥ 0,

‖u(t + s)‖2Xω
2

= ‖u(t)‖2Xω
2
−
∑

q∈Vd

∑
i∈Eq

w t+s

t
2ηq(τ)

∣∣∣∣∂ui
∂x (τ, 0)

∣∣∣∣2 dτ
and, since ηq(τ) ≥ ηmin, it suffices to show that ∃c, ` > 0 s.t.∑

q∈Vd

∑
i∈Eq

w t+`

t

∣∣∣∣∂ui
∂x (τ, 0)

∣∣∣∣2 dτ ≥ c ‖u(t)‖2Xω
2
.
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Main result and applications
Application to wave propagation on networks

=⇒: (only for the case L ∈ RI)

Exponential stability for L ∈ RI ⇐⇒ exponential stability for
every L.

Take L′ = (1, 1, . . . , 1).
If the graph is not a tree, or if Vu contains two or more
points, or if D has a point with one coordinate zero:

j1j2

jn

Two vertices in Vu.

(j1, j2, . . . , jn): path
uji (t, x) = ± sin(2πt) sin(2πx):
periodic solution
No exponential stability for L′,
then no exponential stability for L.
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Proof of the main result
Explicit solution

Σδ(L,A) : u(t) =
∑N

j=1 Aj(t)u(t − Lj), t ≥ 0

Lemma
Let L ∈ (0,+∞)N , A : R→Md (C)N , and u0 : [−Lmax, 0)→ Cd .
The solution u : [−Lmax,+∞)→ Cd of Σδ(L,A) is, for t ≥ 0,

u(t) =
∑

n∈NN
t<L·n≤t+Lmax

∑
j∈J1,NK

L·n−Lj≤t

ΞL,A
n−ej ,tAj(t − L · n + Lj)u0(t − L · n),

where the matrices ΞL,A
n,t are defined inductively by

ΞL,A
n,t =

N∑
k=1
nk≥1

Ak(t)ΞL,A
n−ek ,t−Lk

, ΞL,A
0,t = Idd .
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Proof of the main result
Exponential type

A: set of uniformly locally bounded functions taking values in
Md (C)N .

Definition
Σδ(L,A) is of:

exponential type γ in Xδp if ∀ε > 0 ∃K > 0 s.t. ∀A ∈ A,
∀u0 ∈ Xδp, the solution u satisfies ‖ut‖Xδ

p
≤ Ke(γ+ε)t ‖u0‖Xδ

p
;

Θ-exponential type γ if ∀ε > 0 ∃K > 0 s.t. ∀A ∈ A,
∀n ∈ NN , a.e. t ∈ (L · n− Lmax, L · n), one has∣∣∣ΘL,A

n,t

∣∣∣ ≤ Ke(γ+ε)t ;

Exponential stability: exponential type γ < 0.
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Proof of the main result
Exponential type

Definition
The maximal Lyapunov exponent of Σδ(L,A) in Xδp is

λp(L,A) = lim sup
t→+∞

sup
A∈A

sup
u0∈Xδ

p
‖u0‖Xδ

p
=1

ln ‖ut‖Xδ
p

t .

Proposition
λp(L,A) = inf{γ ∈ R | Σδ(L,A) is of exponential type γ in Xδp}.
In particular,

Σδ(L,A) exponentially stable ⇐⇒ λp(L,A) < 0.
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Proof of the main result
Arbitrary time-dependence

Let A be uniformly locally bounded. Recall that

u(t) =
∑

n∈NN
t<L·n≤t+Lmax

ΘL,A
n,t u0(t − L · n), t ≥ 0.

Theorem
Let L ∈ (0,+∞)N . If Σδ(L,A) is of Θ-exponential type γ
then ∀p ∈ [1,+∞] it is of exponential type γ in Xδp.
Let L ∈ RI. If ∃p ∈ [1,+∞] s.t. Σδ(L,A) is of exponential
type γ in Xδp, then it is of Θ-exponential type γ.
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Proof of the main result
Arbitrary switching

Case of A = L∞(R,B) with B ⊂Md (C)N bounded.
An explicit formula for the coefficients ΘL,A

n,t and ΞL,A
n,t motivates

the following definition.

Definition

µ(L,B) = lim sup
|n|1→+∞

sup
Br∈B

for r∈Ln(L)

∣∣∣∣∣∣
∑

v∈Vn

|n|1∏
k=1

B
Lv1+...+Lvk−1
vk

∣∣∣∣∣∣
1
x

,

where Ln(L) = {L · k | k ∈ NN , L · k < L · n}.

Vn: set of all permutations of (1, . . . , 1︸ ︷︷ ︸
n1 times

, 2, . . . , 2︸ ︷︷ ︸
n2 times

, . . . ,N, . . . ,N︸ ︷︷ ︸
nN times

).

Stability of difference equations and applications to wave propagation on networks Guilherme Mazanti



Introduction Main result and applications Proof of the main result

Proof of the main result
Arbitrary switching

Theorem
λp(L,A) = lnµ(L,B);

for every L ∈ RI and L′ ∈ (0,+∞)N ,
λp(L′,A) ≤ m1 lnµ(L,B);
for every L, L′ ∈ RI, m2λp(L,A) ≤ λp(L′,A) ≤ m1λp(L,A).

Here, {m1,m2} =
{
minj∈J1,NK

Lj
L′j
,maxj∈J1,NK

Lj
L′j

}
.

This theorem implies immediately our main result.
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