Stability of difference equations and applications to wave propagation on networks

Guilherme Mazanti joint work with Yacine Chitour and Mario Sigalotti

Partial differential equations, optimal design and numerics Benasque – August 31st, 2015

CMAP, École Polytechnique Team GECO, Inria Saclay France

Outline

Introduction

- Linear difference equations
- Motivation

2 Main result and applications

- Main result
- Application to wave propagation on networks

3 Proof of the main result

- Explicit solution
- Exponential type
- Arbitrary time-dependence
- Arbitrary switching

Introduction ●○○○○○ Proof of the main result 000000

Introduction Linear difference equations

$$\Sigma_{\delta}(L,A):$$
 $u(t)=\sum_{j=1}^{N}A_{j}(t)u(t-L_{j}),$ $t\geq 0$

- L_1, \ldots, L_N : (rationally independent) positive delays.
- $A_1(t), \ldots, A_N(t)$: time-dependent $d \times d$ matrices.
- $u(t) \in \mathbb{C}^d$.
- Notation: $L_{\min} = \min_j L_j$, $L_{\max} = \max_j L_j$.

Introduction	
00000	

Proof of the main result 000000

Introduction Linear difference equations

$$\Sigma_{\delta}(L,A):$$
 $u(t)=\sum_{j=1}^{N}A_{j}(t)u(t-L_{j}),$ $t\geq 0$

- L_1, \ldots, L_N : (rationally independent) positive delays.
- $A_1(t), \ldots, A_N(t)$: time-dependent $d \times d$ matrices.
- $u(t) \in \mathbb{C}^d$.
- Notation: $L_{\min} = \min_j L_j$, $L_{\max} = \max_j L_j$.

Motivation:

- Applications to transport and wave propagation.
- Generalization of simpler cases: N = 1, autonomous.

Introduction ○●0000	Main result and applications	Proof of the main result
Introduction		

Hyperbolic PDEs \rightarrow difference equations: [Cooke, Krumme, 1968], [Slemrod, 1971], [Greenberg, Li, 1984], [Coron, Bastin, d'Andréa Novel, 2008], [Fridman, Mondié, Saldivar, 2010], [Gugat, Sigalotti, 2010]...

Motivation: transport systems

Introduction ○●○○○○	Main result and applications	Proof of the main result
Introduction Motivation: transport system	15	

 $\begin{array}{l} \mbox{Hyperbolic PDEs} \rightarrow \mbox{difference equations: [Cooke, Krumme, 1968],} \\ \mbox{[Slemrod, 1971], [Greenberg, Li, 1984], [Coron, Bastin, d'Andréa Novel,} \\ 2008], [Fridman, Mondié, Saldivar, 2010], [Gugat, Sigalotti, 2010]... \end{array}$

$$\begin{cases} \partial_t u_i(t,x) + \partial_x u_i(t,x) \\ + \alpha_i(t,x)u_i(t,x) = 0, \quad t \in \mathbb{R}_+, \ x \in [0,L_i], \ i \in \llbracket 1,N \rrbracket, \\ u_i(t,0) = \sum_{j=1}^N m_{ij}(t)u_j(t,L_j), \quad t \in \mathbb{R}_+, \ i \in \llbracket 1,N \rrbracket. \end{cases}$$

Introduction ○●0000	Main result and applications	Proof of the main result
Introduction		

 $\begin{array}{l} \mbox{Hyperbolic PDEs} \rightarrow \mbox{difference equations: [Cooke, Krumme, 1968],} \\ \mbox{[Slemrod, 1971], [Greenberg, Li, 1984], [Coron, Bastin, d'Andréa Novel, 2008], [Fridman, Mondié, Saldivar, 2010], [Gugat, Sigalotti, 2010]... \end{array}$

$$\begin{cases} \partial_t u_i(t,x) + \partial_x u_i(t,x) \\ + \alpha_i(t,x)u_i(t,x) = 0, \quad t \in \mathbb{R}_+, \ x \in [0,L_i], \ i \in \llbracket 1,N \rrbracket, \\ u_i(t,0) = \sum_{j=1}^N m_{ij}(t)u_j(t,L_j), \quad t \in \mathbb{R}_+, \ i \in \llbracket 1,N \rrbracket. \end{cases}$$

Method of characteristics: for $t \ge \max_i L_i$,

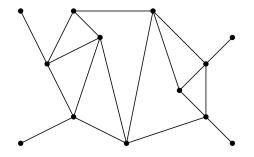
Motivation: transport systems

$$u_i(t,0) = \sum_{j=1}^N m_{ij}(t)u_j(t,L_j) = \sum_{j=1}^N m_{ij}(t)e^{-\int_0^{L_j} \alpha_j(t-s,L_j-s)ds}u_j(t-L_j,0).$$

Set $v(t) = (u_i(t, 0))_{i \in [\![1,N]\!]}$. Then v satisfies a difference equation.

Proof of the main result 000000

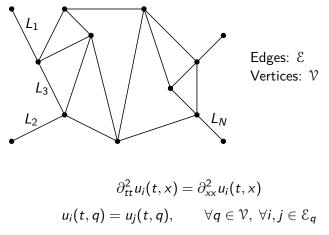
Introduction Motivation: wave propagation on networks



Introduction
000000

Proof of the main result 000000

Introduction Motivation: wave propagation on networks



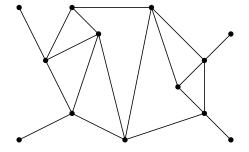
+ conditions on vertices.

Introduction	
000000	

Main result and applications

Proof of the main result 000000

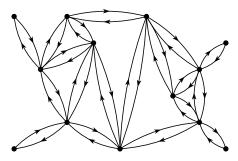
Introduction Motivation: wave propagation on networks



Proof of the main result 000000

Introduction Motivation: wave propagation on networks

D'Alembert decomposition on travelling waves:

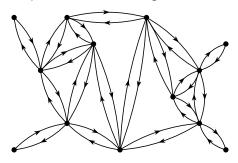


 $\begin{array}{l} \text{Main result and applications} \\ \text{000000} \end{array}$

Proof of the main result 000000

Introduction Motivation: wave propagation on networks

D'Alembert decomposition on travelling waves:



System of 2N transport equations. Can be reduced to a system of difference equations.

Introduction ○000€0	Main result and applications	Proof of the main result
Introduction Motivation: case $N = 1$		

- When N = 1: u(t) = A(t)u(t L).
- Can be reduced to $u_n = A_n u_{n-1}$.

Introduction	
000000	

Main result and applications 000000

Proof of the main result 000000

Introduction Motivation: case N = 1

- When N = 1: u(t) = A(t)u(t L).
- Can be reduced to $u_n = A_n u_{n-1}$.

Autonomous system

$$u_n = A u_{n-1}$$

$$A \in \mathcal{M}_d(\mathbb{C})$$

Exponential stability

 $\iff \rho(A) < 1$

$$\rho(A) = \lim_{n \to +\infty} |A^n|^{\frac{1}{n}}$$
$$= \max_{\lambda \in \sigma(A)} |\lambda|$$

Introduction ○○○○●○		n result and applications	Proof of the main result
Introduction Motivation: cas			
• Can	en $N = 1$: $u(t)$ be reduced to nous system	= A(t)u(t - L). $u_n = A_n u_{n-1}.$ Arbitrary switching	
и	$a_n = Au_{n-1}$	$u_n=A_nu_{n-1}$	
A	$A \in \mathcal{M}_d(\mathbb{C})$	$A_n \in \mathfrak{B} \subset \mathfrak{M}_d(\mathbb{C})$	
$\begin{array}{l} Exponen \\ \Longleftrightarrow & \rho(\mathbf{z}) \end{array}$	tial stability A) < 1	$\begin{array}{l} Uniform\ exponential\ stability\\ \Longleftrightarrow \ \rho_{J}(\mathfrak{B}) < 1\end{array}$	

 $\rho(A) = \lim_{n \to +\infty} |A^{n}|^{\frac{1}{n}} \quad \rho_{\mathsf{J}}(\mathfrak{B}) = \lim_{n \to +\infty} \sup_{A_{1}, \dots, A_{n} \in \mathfrak{B}} |A_{1}A_{2} \cdots A_{n}|^{\frac{1}{n}}$ $= \max_{\lambda \in \sigma(A)} |\lambda| \quad (\text{cf. [Jungers, 2009]})$

Stability of difference equations and applications to wave propagation on networks

Motivation: autonomous [Cruz, Hale, 1970], [Henry, 1974], [Michiels et al., 2009]

$$\Sigma^{\mathrm{aut}}_{\delta}(L,A):$$
 $u(t) = \sum_{j=1}^{N} A_j u(t-L_j),$ $t \ge 0$

• Stability for rationally independent L_1, \ldots, L_N characterized by $\rho_{\text{HS}}(A) = \max_{(\theta_1, \ldots, \theta_N) \in [0, 2\pi]^N} \rho\left(\sum_{j=1}^N A_j e^{i\theta_j}\right)$.

Theorem (Hale, 1975; Silkowski, 1976)

The following are equivalent:

- ρ_{HS}(A) < 1;

- $\Sigma_{\delta}^{aut}(L, A)$ is exponentially stable for some $L \in (0, +\infty)^N$ with rationally independent components;
- $\Sigma^{\mathsf{aut}}_{\delta}(L,A)$ is exponentially stable for every $L \in (0,+\infty)^N$.

Main result and applications $\bullet \circ \circ \circ \circ \circ \circ$

Proof of the main result 000000

Main result and applications Main result

$$\Sigma_{\delta}(L,A):$$
 $u(t)=\sum_{j=1}^{N}A_{j}(t)u(t-L_{j}),$ $t\geq 0$

•
$$\mathsf{X}^{\delta}_{p} = L^{p}([-L_{\max}, 0], \mathbb{C}^{d}), \ p \in [1, +\infty].$$

- Exponential stability of $\Sigma_{\delta}(L, A)$ uniformly with respect to a given set \mathcal{A} of functions $A : \mathbb{R} \to \mathcal{M}_d(\mathbb{C})^N$.
- $\Sigma_{\delta}(L, \mathcal{A})$: family of systems $\Sigma_{\delta}(L, \mathcal{A})$ for $\mathcal{A} \in \mathcal{A}$.
- RI: set of all $L = (L_1, ..., L_N) \in (0, +\infty)^N$ with rationally independent components.

Main result and applications 000000

Proof of the main result 000000

$\underset{\text{Main result}}{\text{Main result}} \text{ and applications}$

Theorem (Chitour, M., Sigalotti)

Let $\mathfrak{B} \subset \mathfrak{M}_d(\mathbb{C})^N$ bounded and $\mathcal{A} = L^{\infty}(\mathbb{R}, \mathfrak{B})$. The following statements are equivalent:

- $\mu(L, \mathfrak{B}) < 1;$
- $\Sigma_{\delta}(L, \mathcal{A})$ is exponentially stable in X_p^{δ} for some $p \in [1, +\infty]$ and $L \in RI$;
- $\Sigma_{\delta}(L, \mathcal{A})$ is exponentially stable in X_p^{δ} for every $p \in [1, +\infty]$ and $L \in (0, +\infty)^N$.

Main result and applications 000000

Proof of the main result 000000

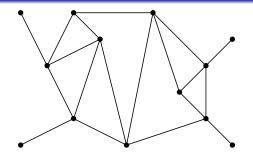
$\underset{\text{Main result}}{\text{Main result}} \text{ and applications}$

Theorem (Chitour, M., Sigalotti)

Let $\mathfrak{B} \subset \mathfrak{M}_d(\mathbb{C})^N$ bounded and $\mathcal{A} = L^{\infty}(\mathbb{R}, \mathfrak{B})$. The following statements are equivalent:

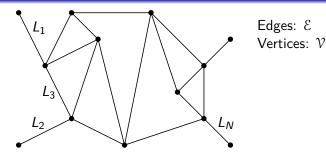
- $\mu(L, \mathfrak{B}) < 1;$
- $\Sigma_{\delta}(L, \mathcal{A})$ is exponentially stable in X_p^{δ} for some $p \in [1, +\infty]$ and $L \in \mathbb{R}$;
- $\Sigma_{\delta}(L, \mathcal{A})$ is exponentially stable in X_p^{δ} for every $p \in [1, +\infty]$ and $L \in (0, +\infty)^N$.

Proof of the main result 000000



Proof of the main result 000000

Main result and applications Application to wave propagation on networks

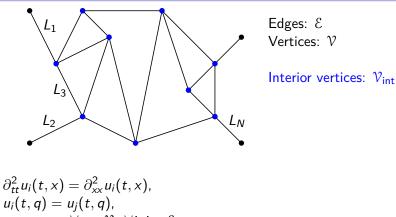


$$\partial_{tt}^2 u_i(t,x) = \partial_{xx}^2 u_i(t,x),$$

 $u_i(t,q) = u_j(t,q),$
 $\forall q \in \mathcal{V}, \ \forall i, j \in \mathcal{E}_q,$

Stability of difference equations and applications to wave propagation on networks

Proof of the main result 000000



$$u_{i}(t,q) = u_{j}(t,q),$$

$$\forall q \in \mathcal{V}, \forall i, j \in \mathcal{E}_{q},$$

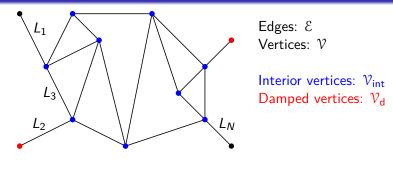
$$\sum_{i \in \mathcal{E}_{q}} \partial_{n} u_{i}(t,q) = 0,$$

$$\forall q \in \mathcal{V}_{int},$$

Main result and applications $\circ \circ \circ \circ \circ \circ \circ$

Proof of the main result 000000

Main result and applications Application to wave propagation on networks



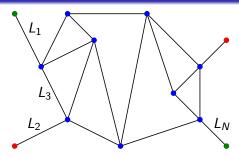
$$\begin{aligned} \partial_{tt}^{2} u_{i}(t,x) &= \partial_{xx}^{2} u_{i}(t,x), \\ u_{i}(t,q) &= u_{j}(t,q), \\ \forall q \in \mathcal{V}, \ \forall i,j \in \mathcal{E}_{q}, \\ \sum_{i \in \mathcal{E}_{q}} \partial_{n} u_{i}(t,q) &= 0, \\ \forall q \in \mathcal{V}_{\text{int}}, \end{aligned}$$

 $\partial_t u_i(t,q) = -\eta_q(t)\partial_n u_i(t,q), \ orall q \in \mathcal{V}_d,$

Main result and applications 000000

Proof of the main result 000000

Main result and applications Application to wave propagation on networks



 $\begin{array}{l} \mathsf{Edges:} \ \mathcal{E} \\ \mathsf{Vertices:} \ \mathcal{V} \\ \mathcal{V} = \mathcal{V}_{\mathsf{int}} \cup \mathcal{V}_{\mathsf{d}} \cup \mathcal{V}_{\mathsf{u}} \\ \mathsf{Interior vertices:} \ \mathcal{V}_{\mathsf{int}} \\ \mathsf{Damped vertices:} \ \mathcal{V}_{\mathsf{d}} \\ \mathsf{Undamped vertices:} \ \mathcal{V}_{\mathsf{u}} \end{array}$

$$\begin{aligned} \partial_{tt}^{2} u_{i}(t, x) &= \partial_{xx}^{2} u_{i}(t, x), \\ u_{i}(t, q) &= u_{j}(t, q), \\ \forall q \in \mathcal{V}, \ \forall i, j \in \mathcal{E}_{q}, \\ \sum_{i \in \mathcal{E}_{q}} \partial_{n} u_{i}(t, q) &= 0, \\ \forall q \in \mathcal{V}_{\text{int}}, \end{aligned}$$

 $\partial_t u_i(t,q) = -\eta_q(t) \partial_n u_i(t,q), \ orall q \in \mathcal{V}_d, \ u_i(t,q) = 0, \ orall q \in \mathcal{V}_u.$

Main result and applications 000000

Proof of the main result 000000

Main result and applications Application to wave propagation on networks

- System: $\Sigma_{\omega}(\mathfrak{G}, L, \mathfrak{D})$, where $\mathfrak{G} = (\mathcal{E}, \mathcal{V})$, $(\eta_q)_{q \in \mathcal{V}_d} \in \mathfrak{D}$.
- $((u_i)_{i \in \mathcal{E}}, (\partial_t u_i)_{i \in \mathcal{E}}) \in X_p^{\omega} = W_0^{1,p}(\mathfrak{G}, L) \times L^p(\mathfrak{G}, L)$, where $W_0^{1,p}(\mathfrak{G}, L)$: $W^{1,p}$ on each edge, continuous at all vertices, equal to 0 on $q \in \mathcal{V}_u$.

Theorem

Suppose that $\mathcal{D} = L^{\infty}(\mathbb{R}, \mathfrak{D})$ for some $\mathfrak{D} \subset \mathbb{R}^{d}_{+}$, $d = \#\mathcal{V}_{d}$. The following statements are equivalent:

- $\Sigma_{\omega}(\mathfrak{G}, L, \mathfrak{D})$ is exponentially stable in X_{p}^{ω} for some $p \in [1, +\infty]$ and $L \in \mathsf{RI}$;
- $\Sigma_{\omega}(\mathfrak{G}, L, \mathfrak{D})$ is exponentially stable in X_{p}^{ω} for every $p \in [1, +\infty]$ and $L \in (0, +\infty)^{N}$.

Main result and applications 000000

Proof of the main result 000000

Main result and applications Application to wave propagation on networks

Topological characterization of exponential stability:

Theorem

Let $\mathfrak{D} \subset \mathbb{R}^d_+$ be bounded, $\mathfrak{D} = L^{\infty}(\mathbb{R}, \mathfrak{D})$. Then $\Sigma_{\omega}(\mathfrak{G}, L, \mathfrak{D})$ is exponentially stable in X^{ω}_p for some p if and only if \mathfrak{G} is a tree, \mathcal{V}_u contains only one point, and $\overline{\mathfrak{D}} \subset (0, +\infty)^d$.

Main result and applications 000000

Proof of the main result 000000

Main result and applications Application to wave propagation on networks

Topological characterization of exponential stability:

Theorem

Let $\mathfrak{D} \subset \mathbb{R}^d_+$ be bounded, $\mathfrak{D} = L^{\infty}(\mathbb{R}, \mathfrak{D})$. Then $\Sigma_{\omega}(\mathfrak{G}, L, \mathfrak{D})$ is exponentially stable in X^{ω}_p for some p if and only if \mathfrak{G} is a tree, \mathcal{V}_u contains only one point, and $\overline{\mathfrak{D}} \subset (0, +\infty)^d$.

 \Leftarrow : classical methods (see e.g. [Dáger, Zuazua, 2006]). One has that, for every $t,s\geq$ 0,

$$\left\|u(t+s)\right\|_{\mathsf{X}_{2}^{\omega}}^{2}=\left\|u(t)\right\|_{\mathsf{X}_{2}^{\omega}}^{2}-\sum_{q\in\mathcal{V}_{d}}\sum_{i\in\mathcal{E}_{q}}\int_{t}^{t+s}2\eta_{q}(\tau)\left|\frac{\partial u_{i}}{\partial x}(\tau,0)\right|^{2}d\tau$$

and, since $\eta_q(\tau) \geq \eta_{\min}$, it suffices to show that $\exists c, \ell > 0$ s.t.

$$\sum_{q\in\mathcal{V}_{d}}\sum_{i\in\mathcal{E}_{q}}\int_{t}^{t+\ell}\left|\frac{\partial u_{i}}{\partial x}(\tau,0)\right|^{2}d\tau\geq c\,\|u(t)\|_{\mathsf{X}_{2}^{\omega}}^{2}\,.$$

Main result and applications $\circ \circ \circ \circ \circ \bullet$

Proof of the main result 000000

- \implies : (only for the case $L \in \mathsf{RI}$)
 - Exponential stability for $L \in \mathsf{RI} \iff$ exponential stability for every L.

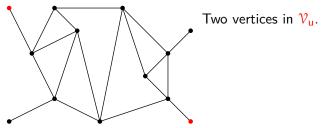
Introd	
0000	00

Main result and applications $\circ\circ\circ\circ\circ\bullet$

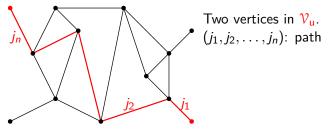
Proof of the main result 000000

- \implies : (only for the case $L \in \mathsf{RI}$)
 - Exponential stability for $L \in \mathsf{RI} \iff$ exponential stability for every L.
 - Take L' = (1, 1, ..., 1).

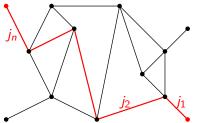
- \implies : (only for the case $L \in \mathsf{RI}$)
 - Exponential stability for $L \in \mathsf{RI} \iff$ exponential stability for every L.
 - Take L' = (1, 1, ..., 1).
 - If the graph is not a tree, or if \mathcal{V}_u contains two or more points, or if $\overline{\mathfrak{D}}$ has a point with one coordinate zero:



- \implies : (only for the case $L \in \mathsf{RI}$)
 - Exponential stability for $L \in \mathsf{RI} \iff$ exponential stability for every L.
 - Take L' = (1, 1, ..., 1).
 - If the graph is not a tree, or if \mathcal{V}_u contains two or more points, or if $\overline{\mathfrak{D}}$ has a point with one coordinate zero:

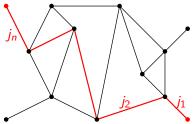


- \implies : (only for the case $L \in \mathsf{RI}$)
 - Exponential stability for $L \in \mathsf{RI} \iff$ exponential stability for every L.
 - Take L' = (1, 1, ..., 1).
 - If the graph is not a tree, or if \mathcal{V}_u contains two or more points, or if $\overline{\mathfrak{D}}$ has a point with one coordinate zero:



Two vertices in \mathcal{V}_{u} . $(j_{1}, j_{2}, \dots, j_{n})$: path $u_{j_{i}}(t, x) = \pm \sin(2\pi t) \sin(2\pi x)$: periodic solution

- \implies : (only for the case $L \in \mathsf{RI}$)
 - Exponential stability for $L \in \mathsf{RI} \iff$ exponential stability for every L.
 - Take L' = (1, 1, ..., 1).
 - If the graph is not a tree, or if \mathcal{V}_u contains two or more points, or if $\overline{\mathfrak{D}}$ has a point with one coordinate zero:



Two vertices in \mathcal{V}_{u} . (j_1, j_2, \dots, j_n) : path $u_{j_i}(t, x) = \pm \sin(2\pi t) \sin(2\pi x)$: periodic solution No exponential stability for L', then no exponential stability for L.

Main result and applications 000000

Proof of the main result

Proof of the main result Explicit solution

.

$$\Sigma_{\delta}(L,A): \qquad u(t) = \sum_{j=1}^{N} A_j(t)u(t-L_j), \qquad t \geq 0$$

Lemma

Let
$$L \in (0, +\infty)^N$$
, $A : \mathbb{R} \to \mathcal{M}_d(\mathbb{C})^N$, and $u_0 : [-L_{\max}, 0) \to \mathbb{C}^d$.
The solution $u : [-L_{\max}, +\infty) \to \mathbb{C}^d$ of $\Sigma_{\delta}(L, A)$ is, for $t \ge 0$,

$$u(t) = \sum_{\substack{\mathbf{n} \in \mathbb{N}^N \\ t < L \cdot \mathbf{n} \le t + L_{\max}}} \sum_{\substack{j \in [\![1,N]\!] \\ L \cdot \mathbf{n} - L_j \le t}} \Xi_{\mathbf{n} - e_j, t}^{L,A} A_j(t - L \cdot \mathbf{n} + L_j) u_0(t - L \cdot \mathbf{n}),$$

where the matrices $\Xi_{\mathbf{n},t}^{L,A}$ are defined inductively by

$$\Xi_{\mathbf{n},t}^{L,A} = \sum_{\substack{k=1\\n_k \ge 1}}^{N} A_k(t) \Xi_{\mathbf{n}-e_k,t-L_k}^{L,A}, \qquad \Xi_{0,t}^{L,A} = \mathsf{Id}_d.$$

Main result and applications 000000

Proof of the main result

Proof of the main result Explicit solution

$$\Sigma_{\delta}(L,A): \qquad u(t) = \sum_{j=1}^{N} A_j(t)u(t-L_j), \qquad t \geq 0$$

Lemma

Let
$$L \in (0, +\infty)^N$$
, $A : \mathbb{R} \to \mathcal{M}_d(\mathbb{C})^N$, and $u_0 : [-L_{\max}, 0) \to \mathbb{C}^d$.
The solution $u : [-L_{\max}, +\infty) \to \mathbb{C}^d$ of $\Sigma_{\delta}(L, A)$ is, for $t \ge 0$,

$$u(t) = \sum_{\substack{\mathbf{n} \in \mathbb{N}^N \\ t < L \cdot \mathbf{n} \le t + L_{\max}}} \sum_{\substack{j \in \llbracket 1, N \rrbracket \\ L \cdot \mathbf{n} - L_j \le t}} \Xi_{\mathbf{n} - e_j, t}^{L, A} A_j(t - L \cdot \mathbf{n} + L_j) u_0(t - L \cdot \mathbf{n}),$$

where the matrices $\Xi_{\mathbf{n},t}^{L,A}$ are defined inductively by

$$\Xi_{\mathbf{n},t}^{L,A} = \sum_{\substack{k=1\\n_k \ge 1}}^{N} A_k(t) \Xi_{\mathbf{n}-e_k,t-L_k}^{L,A}, \qquad \Xi_{0,t}^{L,A} = \mathsf{Id}_d.$$

Main result and applications 000000

Proof of the main result ••••••

Proof of the main result Explicit solution

$$\Sigma_{\delta}(L,A): \qquad u(t) = \sum_{j=1}^{N} A_j(t)u(t-L_j), \qquad t \geq 0$$

Lemma

Let $L \in (0, +\infty)^N$, $A : \mathbb{R} \to \mathcal{M}_d(\mathbb{C})^N$, and $u_0 : [-L_{\max}, 0) \to \mathbb{C}^d$. The solution $u : [-L_{\max}, +\infty) \to \mathbb{C}^d$ of $\Sigma_{\delta}(L, A)$ is, for $t \ge 0$,

$$u(t) = \sum_{\substack{\mathbf{n} \in \mathbb{N}^{N} \\ t < L \cdot \mathbf{n} \le t + L_{\max}}} \Theta_{\mathbf{n},t}^{L,A} u_{0}(t - L \cdot \mathbf{n}),$$

where the matrices $\Xi_{\mathbf{n},t}^{L,A}$ are defined inductively by

$$\Xi_{\mathbf{n},t}^{L,A} = \sum_{\substack{k=1\\n_k \ge 1}}^{N} A_k(t) \Xi_{\mathbf{n}-e_k,t-L_k}^{L,A}, \qquad \Xi_{0,t}^{L,A} = \mathsf{Id}_d.$$

Proof of the main result 00000

Proof of the main result Exponential type

 $\mathcal{A}\colon$ set of uniformly locally bounded functions taking values in $\mathcal{M}_d(\mathbb{C})^N.$

Definition

 $\Sigma_{\delta}(L, \mathcal{A})$ is of:

• exponential type γ in X_p^{δ} if $\forall \varepsilon > 0 \; \exists K > 0 \; \text{s.t.} \; \forall A \in \mathcal{A}$,

 $\forall u_0 \in \mathsf{X}^{\delta}_p$, the solution u satisfies $\|u_t\|_{\mathsf{X}^{\delta}_p} \leq Ke^{(\gamma+\varepsilon)t} \|u_0\|_{\mathsf{X}^{\delta}_p}$;

• Θ -exponential type γ if $\forall \varepsilon > 0 \ \exists K > 0 \ s.t. \ \forall A \in A$, $\forall \mathbf{n} \in \mathbb{N}^N$, a.e. $t \in (L \cdot \mathbf{n} - L_{\max}, L \cdot \mathbf{n})$, one has $\left|\Theta_{\mathbf{n},t}^{L,A}\right| \leq K e^{(\gamma + \varepsilon)t}$;

Exponential stability: exponential type $\gamma < 0$.

Main result and applications 000000

Proof of the main result $\circ \circ \circ \circ \circ \circ$

Proof of the main result Exponential type

Definition

The maximal Lyapunov exponent of $\Sigma_{\delta}(L, \mathcal{A})$ in X_{p}^{δ} is

$$\lambda_{\rho}(L,\mathcal{A}) = \limsup_{t \to +\infty} \sup_{A \in \mathcal{A}} \sup_{\substack{u_0 \in \mathsf{X}_{\rho}^{\delta} \\ \|u_0\|_{\mathsf{X}_{\rho}^{\delta}} = 1}} \frac{\ln \|u_t\|_{\mathsf{X}_{\rho}^{\delta}}}{t}.$$

Main result and applications 000000

Proof of the main result $\circ \circ \circ \circ \circ \circ$

Proof of the main result Exponential type

Definition

The maximal Lyapunov exponent of $\Sigma_{\delta}(L, \mathcal{A})$ in X_{p}^{δ} is

$$\lambda_{
ho}(L,\mathcal{A}) = \limsup_{t o +\infty} \sup_{A \in \mathcal{A}} \sup_{\substack{u_0 \in \mathsf{X}^{\delta}_{
ho} \\ \|u_0\|_{\mathsf{X}^{\delta}_{
ho}} = 1}} rac{\ln \|u_t\|_{\mathsf{X}^{\delta}_{
ho}}}{t}.$$

Proposition

 $\lambda_p(L, A) = \inf\{\gamma \in \mathbb{R} \mid \Sigma_{\delta}(L, A) \text{ is of exponential type } \gamma \text{ in } X_p^{\delta}\}.$ In particular,

 $\Sigma_{\delta}(L, \mathcal{A})$ exponentially stable $\iff \lambda_{p}(L, \mathcal{A}) < 0.$

Main result and applications 000000

Proof of the main result $\circ \circ \circ \bullet \circ \circ$

Proof of the main result Arbitrary time-dependence

Let $\ensuremath{\mathcal{A}}$ be uniformly locally bounded. Recall that

$$u(t) = \sum_{\substack{\mathbf{n} \in \mathbb{N}^{N} \\ t < L \cdot \mathbf{n} \le t + L_{\max}}} \Theta_{\mathbf{n},t}^{L,A} u_{0}(t - L \cdot \mathbf{n}), \qquad t \ge 0.$$

Main result and applications 000000

Proof of the main result $\circ \circ \circ \bullet \circ \circ$

Proof of the main result Arbitrary time-dependence

Let $\ensuremath{\mathcal{A}}$ be uniformly locally bounded. Recall that

$$u(t) = \sum_{\substack{\mathbf{n} \in \mathbb{N}^{N} \\ t < L \cdot \mathbf{n} \le t + L_{\max}}} \Theta_{\mathbf{n},t}^{L,A} u_{0}(t - L \cdot \mathbf{n}), \qquad t \ge 0.$$

Theorem

- Let L ∈ (0, +∞)^N. If Σ_δ(L, A) is of Θ-exponential type γ then ∀p ∈ [1, +∞] it is of exponential type γ in X^δ_p.
- Let L ∈ RI. If ∃p ∈ [1, +∞] s.t. Σ_δ(L, A) is of exponential type γ in X^δ_p, then it is of Θ-exponential type γ.

Main result and applications 000000

Proof of the main result 000000

Proof of the main result Arbitrary switching

Case of $\mathcal{A} = L^{\infty}(\mathbb{R}, \mathfrak{B})$ with $\mathfrak{B} \subset \mathcal{M}_{d}(\mathbb{C})^{N}$ bounded. An explicit formula for the coefficients $\Theta_{\mathbf{n},t}^{L,A}$ and $\Xi_{\mathbf{n},t}^{L,A}$ motivates the following definition.

Definition

$$\mu(L,\mathfrak{B}) = \limsup_{|\mathbf{n}|_1 \to +\infty} \sup_{\substack{B' \in \mathfrak{B} \\ \text{for } r \in \mathcal{L}_{\mathbf{n}}(L)}} \left| \sum_{\mathbf{v} \in V_{\mathbf{n}}} \prod_{k=1}^{|\mathbf{n}|_1} B_{\mathbf{v}_k}^{L_{\mathbf{v}_1} + \ldots + L_{\mathbf{v}_{k-1}}} \right|^{\frac{1}{x}},$$

where $\mathcal{L}_{\mathbf{n}}(L) = \{L \cdot \mathbf{k} \mid \mathbf{k} \in \mathbb{N}^{N}, \ L \cdot \mathbf{k} < L \cdot \mathbf{n}\}.$

 $V_{\mathbf{n}}$: set of all permutations of $(\underbrace{1,\ldots,1}_{n_1 \text{ times}},\underbrace{2,\ldots,2}_{n_2 \text{ times}},\ldots,\underbrace{N,\ldots,N}_{n_N \text{ times}})$.

Main result and applications 000000

Proof of the main result $\circ \circ \circ \circ \circ \circ$

Proof of the main result Arbitrary switching

Theorem

•
$$\lambda_p(L, \mathcal{A}) = \ln \mu(L, \mathfrak{B});$$

Stability of difference equations and applications to wave propagation on networks

Main result and applications 000000

Proof of the main result ○○○○○●

Proof of the main result Arbitrary switching

Theorem

- $\lambda_p(L, \mathcal{A}) = \ln \mu(L, \mathfrak{B});$
- for every $L \in \mathsf{RI}$ and $L' \in (0, +\infty)^N$, $\lambda_p(L', \mathcal{A}) \leq m_1 \ln \mu(L, \mathfrak{B});$
- for every $L, L' \in \mathsf{RI}$, $m_2\lambda_p(L, \mathcal{A}) \leq \lambda_p(L', \mathcal{A}) \leq m_1\lambda_p(L, \mathcal{A})$.

Here,
$$\{m_1, m_2\} = \left\{\min_{j \in \llbracket 1, N \rrbracket} \frac{L_j}{L'_j}, \max_{j \in \llbracket 1, N \rrbracket} \frac{L_j}{L'_j}\right\}.$$

Main result and applications 000000

Proof of the main result ○○○○○●

Proof of the main result Arbitrary switching

Theorem

- $\lambda_p(L, \mathcal{A}) = \ln \mu(L, \mathfrak{B});$
- for every $L \in \mathsf{RI}$ and $L' \in (0, +\infty)^N$, $\lambda_p(L', \mathcal{A}) \leq m_1 \ln \mu(L, \mathfrak{B});$
- for every $L, L' \in \mathsf{RI}$, $m_2\lambda_p(L, \mathcal{A}) \leq \lambda_p(L', \mathcal{A}) \leq m_1\lambda_p(L, \mathcal{A})$.

Here,
$$\{m_1, m_2\} = \left\{\min_{j \in [\![1,N]\!]} \frac{L_j}{L'_j}, \max_{j \in [\![1,N]\!]} \frac{L_j}{L'_j}\right\}$$
.
This theorem implies immediately our main result.