
Existence of localizable solutions
Calderón-Zygmund estimates

Pointwise estimates for the gradient

Localizable solutions to nonlinear evolution
problems with irregular obstacles:

Existence and regularity

Christoph Scheven
University of Duisburg-Essen, Germany

Partial differential equations, optimal design and numerics

Benasque 2015

Christoph Scheven (Duisburg-Essen) Localizable solutions to parabolic obstacle problems



Existence of localizable solutions
Calderón-Zygmund estimates

Pointwise estimates for the gradient

Formulation of the problem
Existence of solutions

The obstacle-free case

Model case of equations:

∂tu−div (|Du|p−2Du) = f−div (|F |p−2F ) on ΩT := Ω×(0,T )

for an unknown function u : ΩT → R, where:

Ω ⊂ Rn is a bounded domain;

p> 2n
n+2 ;

f ∈ Lp′(ΩT ) and F ∈ Lp(ΩT ,R
n) are given (p′ := p

p−1 )

This implies

f − div (|F |p−2F ) ∈ Lp′(0,T ; W−1,p′(Ω)) =
[
Lp(0,T ; W 1,p

0 (Ω))
]′
.
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The obstacle

More generally, we consider equations

∂tu− div a(x , t,Du) = f − div (|F |p−2F ) on ΩT := Ω× (0,T ),

where the vector field a : ΩT ×Rn → Rn satisfies standard
p-growth conditions.

For p > 2n
n+2 , classical theory yields solutions

u ∈ Lp(0,T ; W 1,p(Ω)) ∩ C 0([0,T ]; L2(Ω))

As a consequence of the equation, we get

∂tu ∈ Lp′(0,T ; W−1,p′(Ω))

We now impose an obstacle constraint u ≥ ψ a. e. for a given
obstacle with the same regularity, i.e.

ψ ∈ Lp- W 1,p ∩ C 0- L2 with ∂tψ ∈ Lp′- W−1,p′ .
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Formulation of the obstacle problem

For given boundary values g , the solution space is

Kg (ΩT ) := {u ∈ g+Lp(0,T ; W 1,p
0 (Ω))∩C 0([0,T ]; L2(Ω)) : u ≥ ψ}

A function u ∈ Kg (ΩT ) is called a weak solution to the obstacle
problem OP(ψ; f ,F ) iff it solves the variational inequality∫ T

0
〈, v−u〉 dt +

∫
ΩT

a(z ,Du) · (Dv−Du) dz

+ 1
2

∫
Ω×{0}

|v−u|2 dx

≥
∫

ΩT

f (v−u) + |F |p−2F · (Dv−Du) dz

for all comparison maps v in the class

K ′g (ΩT ) := {v ∈ Kg (ΩT ) : ∂tv ∈ Lp′(0,T ; W−1,p′(Ω))}.
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Existence of localizable solutions
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Formulation of the problem
Existence of solutions

Known results

Existence and regularity results for such problems so far were only
known under additional assumptions on the obstacle, e.g. for

time independent obstacles: Lions & Stampacchia (1967),
Brezis (1972);

non-increasing obstacles with respect to time: Lions (1969),
Naumann (1984);
(Advantage: Mollification in time preserves obstacle
constraint)

continuous obstacles: Brezis (1972), Struwe & Vivaldi (1985);

bounded obstacles: Alt & Luckhaus (1983);

obstacles with weak time derivative ∂tψ ∈ Lp′(ΩT ):
Bögelein & Duzaar & Mingione (2011).
(Construction via mollification in time and maximum
construction)
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Irregular obstacles with ∂tψ ∈ Lp′
(0,T ;W−1,p′

(Ω))

Construction of comparison maps by a maximum construction is
not possible since

∂tv , ∂tψ ∈ Lp′- W−1,p′ 6=⇒ ∂t(max{v , ψ}) ∈ Lp′- W−1,p′ .

Problem I (Localizability of solutions):

For a solution u of an obstacle problem, is the restriction u|OI
on a

subset OI := O × (t1, t2) b ΩT again a solution?

Since the answer was unknown so far, previous regularity results in
the interior relied on unnatural assumptions on the boundary
data.
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Problem I (Localizability of solutions):

For a solution u of an obstacle problem, is the restriction u|OI
on a

subset OI := O × (t1, t2) b ΩT again a solution?

It is not even clear if the space of comparison maps on a
subdomain OI is non-empty:

Problem II (Extension property of solutions):

Is there an extension v ∈ K ′u(OI ), i.e. with

v = u on ∂O × (t1, t2) and

∂tv ∈ Lp′(t1, t2; W−1,p′(O))?

Christoph Scheven (Duisburg-Essen) Localizable solutions to parabolic obstacle problems



Existence of localizable solutions
Calderón-Zygmund estimates

Pointwise estimates for the gradient

Formulation of the problem
Existence of solutions

Irregular obstacles with ∂tψ ∈ Lp′
(0,T ;W−1,p′

(Ω))

Problem I (Localizability of solutions):

For a solution u of an obstacle problem, is the restriction u|OI
on a

subset OI := O × (t1, t2) b ΩT again a solution?

It is not even clear if the space of comparison maps on a
subdomain OI is non-empty:

Problem II (Extension property of solutions):

Is there an extension v ∈ K ′u(OI ), i.e. with

v = u on ∂O × (t1, t2) and

∂tv ∈ Lp′(t1, t2; W−1,p′(O))?

Christoph Scheven (Duisburg-Essen) Localizable solutions to parabolic obstacle problems



Existence of localizable solutions
Calderón-Zygmund estimates

Pointwise estimates for the gradient

Formulation of the problem
Existence of solutions

Irregular obstacles with ∂tψ ∈ Lp′
(0,T ;W−1,p′

(Ω))

Problem I (Localizability of solutions):

For a solution u of an obstacle problem, is the restriction u|OI
on a

subset OI := O × (t1, t2) b ΩT again a solution?

It is not even clear if the space of comparison maps on a
subdomain OI is non-empty:

Problem II (Extension property of solutions):

Is there an extension v ∈ K ′u(OI ), i.e. with

v = u on ∂O × (t1, t2) and

∂tv ∈ Lp′(t1, t2; W−1,p′(O))?

Christoph Scheven (Duisburg-Essen) Localizable solutions to parabolic obstacle problems



Existence of localizable solutions
Calderón-Zygmund estimates

Pointwise estimates for the gradient

Formulation of the problem
Existence of solutions

Irregular obstacles with ∂tψ ∈ Lp′
(0,T ;W−1,p′

(Ω))

Problem I (Localizability of solutions):

For a solution u of an obstacle problem, is the restriction u|OI
on a

subset OI := O × (t1, t2) b ΩT again a solution?

It is not even clear if the space of comparison maps on a
subdomain OI is non-empty:

Problem II (Extension property of solutions):

Is there an extension v ∈ K ′u(OI ), i.e. with

v = u on ∂O × (t1, t2) and

∂tv ∈ Lp′(t1, t2; W−1,p′(O))?

Christoph Scheven (Duisburg-Essen) Localizable solutions to parabolic obstacle problems



Existence of localizable solutions
Calderón-Zygmund estimates

Pointwise estimates for the gradient

Formulation of the problem
Existence of solutions

Irregular obstacles with ∂tψ ∈ Lp′
(0,T ;W−1,p′

(Ω))

Problem I (Localizability of solutions):

For a solution u of an obstacle problem, is the restriction u|OI
on a

subset OI := O × (t1, t2) b ΩT again a solution?

It is not even clear if the space of comparison maps on a
subdomain OI is non-empty:

Problem II (Extension property of solutions):

Is there an extension v ∈ K ′u(OI ), i.e. with

v = u on ∂O × (t1, t2) and

∂tv ∈ Lp′(t1, t2; W−1,p′(O))?

Christoph Scheven (Duisburg-Essen) Localizable solutions to parabolic obstacle problems



Existence of localizable solutions
Calderón-Zygmund estimates

Pointwise estimates for the gradient

Formulation of the problem
Existence of solutions

Existence of localizable solutions

For an arbitrary obstacle with ∂tψ ∈ Lp′- W−1,p′ there holds

Theorem (S., 2011)

The obstacle problem OP(ψ; f ,F ) has a localizable solution
u : ΩT → R with u ≥ ψ a. e.

, in the following sense:
for every Lipschitz regular domain OI := O × (t1, t2) b ΩT the
restriction u|OI

∈ Ku(OI ) solves the localized variational inequality∫ t2

t1

〈∂tv , v−u〉dt +

∫
OI

a(z ,Du)·(Dv−Du)dz + 1
2

∫
O×{t1}

|v−u|2dx

≥
∫
OI

f (v−u) + |F |p−2F ·(Dv−Du)dz

for all v ∈ K ′u(OI ).
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Existence of localizable solutions
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Pointwise estimates for the gradient

Formulation of the problem
Existence of solutions

Remarks

This Theorem for the first time yields localizable solutions;
the localized formulation of the problem is in particular the
natural one for the proof of local properties such as regularity.

The existence result holds for arbitrarily irregular domains
Ω ⊂ Rn, provided they are bounded.

Under weak assumptions on ∂Ω (Lipschitz suffices), the
solution u also solves on subdomains OI touching the
boundary.

In the latter case, solutions are unique for given initial and
boundary values.
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Calderón-Zygmund estimates

Pointwise estimates for the gradient
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Calderón-Zygmund estimates in obstacle problems

Theorem (S., 2011)

Let u∈Kg (C2R) be a localizable solution to the obstacle problem

OP(ψ; f ,F ) and Ψ := |Dψ|+ |∂tψ|
1

p−1 + |F |+ |f |
1

p−1 . Then we
have

Ψ ∈ Lq
loc(ΩT ) =⇒ |Du| ∈ Lq

loc(ΩT )

for all q > p, together with a local estimate of the form

−
∫
CR

|Du|q dz ≤ c

([
−
∫
C2R

|Du|p dz
] 1

p
+
[
−
∫
C2R

Ψq dz
] 1

q
+ 1

)p+d(q−p)

,

where the scaling deficit is defined by

d ≡

{ p
2 if p ≥ 2 ,

2p
p(n+2)−2n if 2n

n+2 < p < 2 .
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Existence of localizable solutions
Calderón-Zygmund estimates

Pointwise estimates for the gradient

Known results for elliptic equations
Results for parabolic obstacle problems

Potential estimates for elliptic equations

Kilpeläinen & Malý (1994): non-negative functions
u : BR(x0)→ R with −∆pu = µ ≥ 0 satisfy the pointwise
bound

u(x0) ≤ c‖u‖Lp + cWµ
1,p(x0,R)

with the non-linear Wolff-Potential

Wµ
β,p(x0, r) :=

∫ R

0

[
|µ|(B%(x0))

%n−βp

] 1
p−1 d%

%
.

Duzaar & Mingione (2010): analogous estimates on the level
of the gradient:

|Du(x0)| ≤ c‖Du‖L1 + cWµ
1
p
,p

(x0,R).
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Parabolic obstacle problems

For p = 2 and vector fields a(x , t,Du) ≡ a(Du) without x- and
t-dependence we have:

Theorem (S., 2011)

Let u ∈ Kg (CR(z0)) be a localizable solution to the obstacle
problem OP(ψ; f ,F =0) (without divergence term).
Then there holds a pointwise bound of the form

|Du(z0)| ≤ 1 + c‖Du‖L2 + c

∫ R

0

[
%−n

∫
C%(z0)

Ψ2 dz

] 1
2 d%

%

≤ 1 + c‖Du‖L2 + c IP2/3

(
[IP2/3(Ψ2)]1/2

)

where Ψ := |f |+ |∂tψ|+ |D2ψ|,

and IP2/3 denotes the classical
parabolic Riesz potential.
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Existence of localizable solutions
Calderón-Zygmund estimates

Pointwise estimates for the gradient

Known results for elliptic equations
Results for parabolic obstacle problems

Applications

The methods yield in particular criteria for

Lorentz regularity:

f , ∂tψ, |D2ψ| ∈ L(r , s) =⇒ |Du| ∈ Lloc( Nr
N−r , s),

for all 2 < r < N := n + 2 and 1 ≤ s ≤ ∞.

Continuity of the spatial gradient:

f , ∂tψ, |D2ψ| ∈ L(n + 2, 1) =⇒ Du ∈ C 0
loc(ΩT ,R

n).

C 1,α-Regularity: the Morrey-type condition

sup
z0∈OI

sup
0<%<1

%2−2γ−
∫
C%(z0)∩ΩT

|f |2+|∂tψ|2+|D2ψ|2 dz <∞

for every subset OI b ΩT and some γ ∈ (0, 1) implies Hölder
continuity of Du.
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Known results for elliptic equations
Results for parabolic obstacle problems

Extensions

Similar results hold for coefficients with x- and t-dependence
if x 7→ a(x , t, ξ) is Dini-continuous.

Analogous results hold for the solution u itself instead of the
gradient Du.

In the elliptic case, the estimates hold much more generally
with measure valued right-hand sides and arbitrary growth
exponents p > 2− 1

n . This yields estimates by non-linear
Wolff-potentials.
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Existence of localizable solutions
Calderón-Zygmund estimates

Pointwise estimates for the gradient

Known results for elliptic equations
Results for parabolic obstacle problems

Construction of localizable solutions I: Regularization

Strategy of proof for regular Ω ⊂ Rn (Lipschitz suffices)

Approximate g , ψ,F by regularized data gε, ψε,Fε with

∂tψε − div [a(·,Dψε)] ∈ Lp′(ΩT ),

div (|Fε|p−2Fε) ∈ Lp′(ΩT ).

Consider solutions uε ∈ K ′gε(ΩT ) to the regularized obstacle
problems OP(ψε; f ,Fε).

For data as above, these solutions satisfy

∂tuε ∈ Lp′(0,T ; W−1,p′(Ω)).

(Bögelein & Duzaar & Mingione (2011)).
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Existence of localizable solutions
Calderón-Zygmund estimates

Pointwise estimates for the gradient

Known results for elliptic equations
Results for parabolic obstacle problems

Construction of localizable solutions II: Passing to the limit

As ε↘ 0, there holds subconvergence uε → u strongly in
Lp(0,T ; W 1,p(Ω)), but in general ∂tu 6∈ Lp′(0,T ; W−1,p′(Ω)).

Define extensions vε of uε on a subdomain OI b ΩT as
solutions to{

∂tvε − div a(z ,Dvε) = ∂tψε − div a(z ,Dψε) on OI ,
vε = uε on ∂POI .

These extensions subconverge in the sense{
vε ⇁ v weakly in Lp(t1, t2; W 1,p(Ω)),

∂tvε ⇁ ∂tv weakly in Lp′(t1, t2; W−1,p′(Ω)).

The limit v is the desired extension v ∈ K ′u(OI ), and u solves
the obstacle problem OP(ψ; f ,F ) locally.
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