The Obstacle Problem for the Total Variation

Thomas Schmidt Department Mathematik, FAU Erlangen-Nürnberg

(joint work with Christoph Scheven, Universität Duisburg-Essen)

Benasque, August 31, 2015

The ${\bf TV}$ obstacle problem The generalized ${\rm TV}$ obstacle problem Existence and duality for ${\rm W}^{1,1}$ obstacles

The TV obstacle problem

Consider

- a bounded open set Ω in \mathbb{R}^n , *n* positive integer,
- an obstacle $\psi \colon \overline{\Omega} \to \mathbb{R}$ with $\psi \leq 0$ on $\partial \Omega$.

Obstacle problem: Minimize the total variation (TV)

$$\int_{\Omega} |\nabla u| \, \mathrm{d} x$$

among functions $u\colon\overline\Omega\to\mathbb{R}$ with

 $u \equiv 0 \text{ on } \partial \Omega$ and $u \geq \psi \text{ on } \Omega$.

 $\begin{array}{c} \mbox{The (generalized) TV obstacle problem} \\ \mbox{Pairings of L^{∞ functions and gradient measures} \\ \mbox{Duality for BV obstacles and BV optimality conditions} \\ \mbox{Outlook} \end{array}$

The ${\rm TV}$ obstacle problem The generalized ${\rm TV}$ obstacle problem Existence and duality for ${\rm W}^{1,1}$ obstacles

The generalized TV obstacle problem

Natural space for existence results (thanks to weak* compactness):

 $\mathrm{BV}_0(\overline{\Omega}) := \left\{ u \in \mathrm{L}^1(\mathbb{R}^n) \ : \ \begin{array}{c} \text{gradient } \mathrm{D}u \text{ is finite measure on } \mathbb{R}^n \\ \text{and } u \equiv 0 \text{ a.e. on } \mathbb{R}^n \setminus \Omega \end{array} \right\}$

(contains $W_{(0)}^{1,1}(\Omega)$, but also *u* with jumps along hypersurfaces in $\overline{\Omega}$).

 $\begin{array}{c} \mbox{The (generalized) TV obstacle problem} \\ \mbox{Pairings of } L^{\infty} \mbox{ functions and gradient measures} \\ \mbox{Duality for BV obstacles and BV optimality conditions} \\ \mbox{Outlook} \end{array}$

The generalized TV obstacle problem

Natural space for existence results (thanks to weak* compactness):

 $\mathrm{BV}_0(\overline{\Omega}) := \left\{ u \in \mathrm{L}^1(\mathbb{R}^n) \ : \ \begin{array}{c} \text{gradient } \mathrm{D}u \text{ is finite measure on } \mathbb{R}^n \\ \text{and } u \equiv 0 \text{ a.e. on } \mathbb{R}^n \setminus \Omega \end{array} \right\}$

(contains $W_{(0)}^{1,1}(\Omega)$, but also *u* with jumps along hypersurfaces in $\overline{\Omega}$).

Generalized obstacle problem: Minimize the total mass of Du

$$|\mathrm{D}u|(\overline{\Omega}) = |\mathrm{D}u|(\Omega) + \underbrace{|\mathrm{D}u|(\partial\Omega)}_{\approx \|\mathrm{int\,trace}(u)\|_{\mathrm{L}^{1}(\partial\Omega)}}$$

among

$$u \in \mathrm{BV}_0(\overline{\Omega})$$
 with $u \ge \psi$ a.e. on Ω .

The ${\rm TV}$ obstacle problem The generalized ${\rm TV}$ obstacle problem Existence and duality for $W^{1,1}$ obstacles

Existence and duality for $W^{1,1}$ obstacles

Basic results:

 ${\scriptstyle \bullet}\,$ The generalized ${\rm TV}$ obstacle problem has a minimizer.

The ${\rm TV}$ obstacle problem The generalized ${\rm TV}$ obstacle problem Existence and duality for $W^{1,1}$ obstacles

Existence and duality for $W^{1,1}$ obstacles

Basic results:

- ${\scriptstyle \bullet}\,$ The generalized ${\rm TV}$ obstacle problem has a minimizer.
- For $\partial \Omega$ Lipschitz, $\psi \in W_0^{1,1}(\Omega)$, one has the duality formula

$$\min\{|\mathrm{D}u|(\overline{\Omega}) : u \in \mathrm{BV}_0(\overline{\Omega}), u \ge \psi \text{ a.e. on } \Omega\} \\ = \max\left\{\int_{\Omega} \sigma \cdot \nabla \psi \, \mathrm{d}x : \sigma \in \underbrace{S^{\infty}(\Omega, \mathbb{R}^n)}_{\text{sub-unit vector fields}}, \operatorname{div} \sigma \le 0 \text{ in } \mathscr{D}'(\Omega)\right\}.$$

The ${\rm TV}$ obstacle problem The generalized ${\rm TV}$ obstacle problem Existence and duality for $W^{1,1}$ obstacles

Existence and duality for $W^{1,1}$ obstacles

Basic results:

- ${\scriptstyle \bullet}\,$ The generalized ${\rm TV}$ obstacle problem has a minimizer.
- For $\partial \Omega$ Lipschitz, $\psi \in W_0^{1,1}(\Omega)$, one has the duality formula

$$\min\{|\mathrm{D} u|(\overline{\Omega}) : u \in \mathrm{BV}_{0}(\overline{\Omega}), u \ge \psi \text{ a.e. on } \Omega\} \\ = \max\left\{\int_{\Omega} \sigma \cdot \nabla \psi \, \mathrm{d} x : \sigma \in \underbrace{S^{\infty}(\Omega, \mathbb{R}^{n})}_{\text{sub-unit vector fields}}, \operatorname{div} \sigma \le 0 \text{ in } \mathscr{D}'(\Omega)\right\}.$$

 \sim to say more, need products $\sigma \cdot D\psi$ and $\sigma \cdot Du$ if merely $\psi, u \in BV$ (e.g. if ψ is a characteristic function).

The Anzellotti pairing A pairing for divergence-measure fields Properties of the pairing

The Anzellotti pairing

Consider:

- $u \in BV_{loc}(\Omega)$,
- a vector field $\sigma \in L^{\infty}_{loc}(\Omega, \mathbb{R}^n)$ (w.r.t. Lebesgue measure dx).
- Can one define a product $\llbracket \sigma, \mathrm{D}u \rrbracket$?

The Anzellotti pairing A pairing for divergence-measure fields Properties of the pairing

The Anzellotti pairing

Consider:

- $u \in BV_{loc}(\Omega)$,
- a vector field $\sigma \in L^{\infty}_{loc}(\Omega, \mathbb{R}^n)$ (w.r.t. Lebesgue measure dx).

Can one define a product $[\![\sigma,\mathrm{D} u]\!]?$ If $\operatorname{div} \sigma$ is suitably good, yes:

Definition (Kohn & Temam '82/'83, Anzellotti '83, ...)

For u, σ as above, the distribution

$$\llbracket \sigma, \mathrm{D} u \rrbracket := \operatorname{div}(\sigma u) - u \operatorname{div} \sigma \in \mathscr{D}'(\Omega).$$

makes sense (and behaves reasonably) if ...

- ... either $u \in L^{\infty}_{loc}(\Omega)$, div $\sigma \in L^{1}_{loc}(\Omega)$
- ... or $\operatorname{div} \sigma \in \mathrm{L}^n_{\mathrm{loc}}(\Omega)$ (then uses Sobolev's embedding).

The Anzellotti pairing A pairing for divergence-measure fields Properties of the pairing

A pairing for divergence-measure fields

But even if $\operatorname{div} \sigma \notin \mathrm{L}^1_{\mathrm{loc}}(\Omega)$, we still have:

Definition (a new Anzellotti type pairing, Scheven & S.)

For $u \in BV_{loc}(\Omega) \cap L^{\infty}_{loc}(\Omega)$ and $\sigma \in L^{\infty}_{loc}(\Omega, \mathbb{R}^n)$ such that $\operatorname{div} \sigma$ is Radon measure (in particular if $\operatorname{div} \sigma \leq 0$ in $\mathscr{D}'(\Omega)$), we define

$$\llbracket \sigma, \mathrm{D} u^+ \rrbracket := \operatorname{div}(\sigma u) - u^+ \operatorname{div} \sigma \in \mathscr{D}'(\Omega).$$

The Anzellotti pairing A pairing for divergence-measure fields Properties of the pairing

A pairing for divergence-measure fields

But even if $\operatorname{div} \sigma \notin \mathrm{L}^1_{\mathrm{loc}}(\Omega)$, we still have:

Definition (a new Anzellotti type pairing, Scheven & S.)

For $u \in BV_{loc}(\Omega) \cap L^{\infty}_{loc}(\Omega)$ and $\sigma \in L^{\infty}_{loc}(\Omega, \mathbb{R}^n)$ such that $\operatorname{div} \sigma$ is Radon measure (in particular if $\operatorname{div} \sigma \leq 0$ in $\mathscr{D}'(\Omega)$), we define

$$\llbracket \sigma, \mathrm{D} u^+ \rrbracket := \operatorname{div}(\sigma u) - u^+ \operatorname{div} \sigma \in \mathscr{D}'(\Omega).$$

• makes sense because

- div σ vanishes on \mathcal{H}^{n-1} -negligible sets (Chen & Frid '99),
- u has Hⁿ⁻¹-a.e. defined representatives u[±] s.t., for Hⁿ⁻¹-a.e. x, either u⁺(x) = u[−](x) is the Lebesgue value of u at x or u[−](x) < u⁺(x) are the approximate jump values of u at x.
- pairing [[σ, Du^{*}]] with representative u^{*} := u⁺+u⁻/2 already used by Mercaldo & Segura de León & Trombetti '09.

The Anzellotti pairing A pairing for divergence-measure fields **Properties of the pairing**

Properties of the pairing

Theorem (properties of $[\![\sigma, Du^+]\!]$, Scheven & S.)

For $u \in BV_{loc}(\Omega)$ and $\sigma \in L^{\infty}(\Omega, \mathbb{R}^n)$ with $\operatorname{div} \sigma \leq 0$ in $\mathscr{D}'(\Omega)$,

- $\llbracket \sigma, \mathrm{D}u^+ \rrbracket$ is a Radon measure with product estimate $|\llbracket \sigma, \mathrm{D}u^+ \rrbracket| \le \|\sigma\|_{\mathrm{L}^{\infty}(\Omega, \mathbb{R}^n)} |\mathrm{D}u|$ on Ω ,
- and its absolutely continuous part is the pointwise product, i.e. $\llbracket \sigma, \mathrm{D} u^+ \rrbracket^\mathrm{a} = (\sigma \cdot \nabla^\mathrm{a} u) \mathrm{d} x \qquad \text{on } \Omega \,.$

• In particular, $\llbracket \sigma, \mathrm{D}u^+ \rrbracket = (\sigma \cdot \nabla u) \mathrm{d}x$ trivializes for $u \in \mathrm{W}^{1,1}_{\mathrm{loc}}(\Omega)$.

The Anzellotti pairing A pairing for divergence-measure fields **Properties of the pairing**

Properties of the pairing

Theorem (properties of $[\![\sigma, Du^+]\!]$, Scheven & S.)

For $u \in BV_{loc}(\Omega)$ and $\sigma \in L^{\infty}(\Omega, \mathbb{R}^n)$ with $\operatorname{div} \sigma \leq 0$ in $\mathscr{D}'(\Omega)$,

- $\llbracket \sigma, \mathrm{D} u^+ \rrbracket$ is a Radon measure with product estimate $|\llbracket \sigma, \mathrm{D} u^+ \rrbracket| \le \|\sigma\|_{\mathrm{L}^{\infty}(\Omega, \mathbb{R}^n)} |\mathrm{D} u|$ on Ω ,
- and its absolutely continuous part is the pointwise product, i.e. $\llbracket \sigma, \mathrm{D} u^+ \rrbracket^\mathrm{a} = (\sigma \cdot \nabla^\mathrm{a} u) \mathrm{d} x \qquad \text{on } \Omega \,.$
- In particular, $\llbracket \sigma, \mathrm{D}u^+ \rrbracket = (\sigma \cdot \nabla u) \mathrm{d}x$ trivializes for $u \in \mathrm{W}^{1,1}_{\mathrm{loc}}(\Omega)$.
- Proofs based on fine (semi)continuity and capacity methods (e.g., since u⁺ is not the limit of standard mollifications, need one-sided approximations of Carriero-Dal Maso-Leaci-Pascali '88).

The Anzellotti pairing A pairing for divergence-measure fields **Properties of the pairing**

Properties of the pairing

Theorem (properties of $[\![\sigma, \mathrm{D} u^+]\!]$, Scheven & S.)

For $u \in BV_{loc}(\Omega)$ and $\sigma \in L^{\infty}(\Omega, \mathbb{R}^n)$ with $\operatorname{div} \sigma \leq 0$ in $\mathscr{D}'(\Omega)$,

- $\llbracket \sigma, \mathrm{D}u^+ \rrbracket$ is a Radon measure with product estimate $|\llbracket \sigma, \mathrm{D}u^+ \rrbracket| \le \|\sigma\|_{\mathrm{L}^{\infty}(\Omega, \mathbb{R}^n)} |\mathrm{D}u|$ on Ω ,
- and its absolutely continuous part is the pointwise product, i.e. $\llbracket \sigma, \mathrm{D} u^+ \rrbracket^\mathrm{a} = (\sigma \cdot \nabla^\mathrm{a} u) \mathrm{d} x \qquad \text{on } \Omega \,.$
- In particular, $\llbracket \sigma, \mathrm{D}u^+ \rrbracket = (\sigma \cdot \nabla u) \mathrm{d}x$ trivializes for $u \in \mathrm{W}^{1,1}_{\mathrm{loc}}(\Omega)$.
- Proofs based on fine (semi)continuity and capacity methods (e.g., since u⁺ is not the limit of standard mollifications, need one-sided approximations of Carriero-Dal Maso-Leaci-Pascali '88).
- Up-to-the-boundary pairing [[σ, Du⁺]]₀ on Ω accounts for zero Dirichlet datum (on mildly regular ∂Ω; cf. S. '15, Beck & S. '15).

 $\begin{array}{c} \mbox{The (generalized) TV obstacle problem} \\ \mbox{Pairings of L^{∞} functions and gradient measures} \\ \mbox{Duality for BV obstacles and BV optimality conditions} \\ \mbox{Outlook} \end{array}$

Duality for BV obstacles BV optimality conditions

Duality for BV obstacles

Theorem (duality for the TV obstacle problem, Scheven & S.) For mildly regular $\partial\Omega$, $\psi \in BV_0(\overline{\Omega}) \cap L^{\infty}(\Omega)$ with $|D\psi|(\partial\Omega) = 0$: $\min\{|Du|(\overline{\Omega}) : u \in BV_0(\overline{\Omega}), u \ge \psi \text{ a.e. on } \Omega\}$ $= \max\{[\sigma, D\psi^+]](\Omega) : \sigma \in S^{\infty}(\Omega, \mathbb{R}^n), \operatorname{div} \sigma \le 0 \text{ in } \mathscr{D}'(\Omega)\}.$ $\begin{array}{c} \mbox{The (generalized) TV obstacle problem} \\ \mbox{Pairings of L^{∞} functions and gradient measures} \\ \mbox{Duality for BV obstacles and BV optimality conditions} \\ \mbox{Outlook} \end{array}$

 $\begin{array}{c} \mbox{Duality for } BV \mbox{ obstacles} \\ BV \mbox{ optimality conditions} \end{array}$

Duality for BV obstacles

Theorem (duality for the TV obstacle problem, Scheven & S.) For mildly regular $\partial\Omega$, $\psi \in BV_0(\overline{\Omega}) \cap L^{\infty}(\Omega)$ with $|D\psi|(\partial\Omega) = 0$: $\min\{|Du|(\overline{\Omega}) : u \in BV_0(\overline{\Omega}), u \ge \psi \text{ a.e. on } \Omega\}$

 $= \max\{\llbracket \sigma, \mathrm{D}\psi^+ \rrbracket(\Omega) \, : \, \sigma \in \mathcal{S}^{\infty}(\Omega, \mathbb{R}^n) \, , \, \mathrm{div} \, \sigma \leq 0 \, \text{ in } \, \mathscr{D}'(\Omega) \} \, .$

Two methods of proof (both rely on the properties of the pairing):

Either look at obstacle problems for the *p*-Laplace in W₀^{1,p} and pass *p* ∖ 1 (this way, if ψ ∈ W₀^{1,1+ε}, also get a convergence result for minimizers when *p* ∖ 1),

 $\begin{array}{c} \mbox{The (generalized) TV obstacle problem} \\ \mbox{Pairings of } L^{\infty} \mbox{ functions and gradient measures} \\ \mbox{Duality for BV obstacles and BV optimality conditions} \\ \mbox{Outlook} \end{array}$

 $\begin{array}{c} \mbox{Duality for } BV \mbox{ obstacles} \\ BV \mbox{ optimality conditions} \end{array}$

Duality for BV obstacles

Theorem (duality for the TV obstacle problem, Scheven & S.)

For mildly regular $\partial \Omega$, $\psi \in BV_0(\overline{\Omega}) \cap L^{\infty}(\Omega)$ with $|D\psi|(\partial \Omega) = 0$:

$$\min\{|\mathrm{D} u|(\overline{\Omega}) : u \in \mathrm{BV}_0(\overline{\Omega}), u \ge \psi \text{ a.e. on } \Omega\}$$

 $= \max\{\llbracket \sigma, \mathrm{D}\psi^+ \rrbracket(\Omega) \, : \, \sigma \in S^{\infty}(\Omega, \mathbb{R}^n) \, , \, \mathrm{div} \, \sigma \leq 0 \, \text{ in } \, \mathscr{D}'(\Omega) \} \, .$

Two methods of proof (both rely on the properties of the pairing):

- Either look at obstacle problems for the *p*-Laplace in W₀^{1,p} and pass *p* ∖ 1 (this way, if ψ ∈ W₀^{1,1+ε}, also get a convergence result for minimizers when *p* ∖ 1),
- or deduce it from (abstract) convex duality.

 $\begin{array}{l} \mbox{Duality for } BV \mbox{ obstacles} \\ BV \mbox{ optimality conditions} \end{array}$

BV optimality conditions

Heuristically, minimizers u should satisfy

$$\operatorname{div}\frac{\nabla u}{|\nabla u|} \leq 0\,,$$

and we can now make this precise:

Corollary (optimality conditions for the TV obstacle problem)

Every minimizer $u \in BV_0(\overline{\Omega})$ is super-1-harmonic on Ω in the sense that there exists some $\sigma \in S^{\infty}(\Omega, \mathbb{R}^n)$ with

 $\underbrace{\llbracket \sigma, \mathrm{D} u^+ \rrbracket_0}_{\mathrm{BV-way of saying } \sigma = \frac{\nabla u}{|\nabla u|}} \qquad \text{and} \qquad \operatorname{div} \sigma \leq 0 \text{ in } \mathscr{D}'(\Omega) \,.$

 $\begin{array}{l} \mbox{Duality for } BV \mbox{ obstacles} \\ BV \mbox{ optimality conditions} \end{array}$

BV optimality conditions

Heuristically, minimizers u should satisfy

$$\operatorname{div}\frac{\nabla u}{|\nabla u|} \leq 0\,,$$

and we can now make this precise:

Corollary (optimality conditions for the TV obstacle problem)

Every minimizer $u \in BV_0(\overline{\Omega})$ is super-1-harmonic on Ω in the sense that there exists some $\sigma \in S^{\infty}(\Omega, \mathbb{R}^n)$ with

Extensions Related topics

Extensions

We can also treat ...

- (much) more general obstacles:
 - thin and, most generally, quasi upper semicontinuous obstacles (then need additional tools: relaxation, De Giorgi's measure, ...),
 - obstacles which are positive up to $\partial \Omega$ (then need modified pairing),

Extensions Related topics

Extensions

We can also treat ...

- (much) more general obstacles:
 - thin and, most generally, quasi upper semicontinuous obstacles (then need additional tools: relaxation, De Giorgi's measure, ...),
 - obstacles which are positive up to $\partial \Omega$ (then need modified pairing),
- the non-parametric area $\int_\Omega \sqrt{1\!+\!|
 abla u|^2}\,\mathrm{d}x$ and similar functionals,

Extensions Related topics

Extensions

We can also treat ...

- (much) more general obstacles:
 - thin and, most generally, quasi upper semicontinuous obstacles (then need additional tools: relaxation, De Giorgi's measure, ...),
 - obstacles which are positive up to $\partial \Omega$ (then need modified pairing),
- the non-parametric area $\int_\Omega \sqrt{1\!+\!|
 abla u|^2}\,\mathrm{d}x$ and similar functionals,
- general boundary values.

Extensions Related topics

Related topics

Related work in progress concerns

- BV *supersolutions* to 1-Laplace and minimal surface equations, in particular:
 - compactness results,
 - the question if simultaneous super- and sub-solutions are solutions (for the 1-Laplace surprisingly non-trivial, since σ is not unique \sim duality argument of possible interest; cf. Yan '11),

Extensions Related topics

Related topics

Related work in progress concerns

- BV *supersolutions* to 1-Laplace and minimal surface equations, in particular:
 - compactness results,
 - the question if simultaneous super- and sub-solutions are solutions (for the 1-Laplace surprisingly non-trivial, since σ is not unique \sim duality argument of possible interest; cf. Yan '11),
- variational existence results for measure data problems to the 1-Laplace equation and the prescribed mean curvature equation (parametric or non-parametric; in the last case yields an alternative to the approach of Dai & Trudinger & Wang '12).