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Probabilistic approach

In the classical probabilistic approach, Neumann problems are
associated to stochastic processes being re�ected on the boundary.

Linked to the Skorohod problem: solving a stochastic di�erential
equation with a re�ecting boundary condition
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Classical (local) Neumann problem

Key result:

For a PDE with Neumann or oblique boundary conditions, there is a
unique underlying re�ection process

Any consistent approximation converge to it in the limit (Lions-Snitzman,
Barles-Lions).

This relies on the underlying stochastic processes being continuous (at
least in the case of normal re�ections)
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More general: Lévy processes

Càdlàg:

� Right continuous, limits on the left

� Stationary independent increments
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Generator of a stochastic process

Infinitesimal generator

of a stochastic process is a partial di�erential operator that encodes a
great amount of information about the process

Example:
Brownian motion Wt −→ Laplacian:

L[u](x) = 4u(x) =

N∑
i=1

∂2u

∂x2
i

(x)

We adopt an analytical approach: we keep in mind the idea of having
a re�ecting process but we don't de�ne it precisely or prove its
existence.

We work with the generators of the processes.
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Generators

� Lévy process jumping from x to x+ z with a certain intensity,
−→ nonlocal operator

I[u] = P.V.

∫
RN

[u(x+ z)− u(x)]dµ(z),

where µ is a Lévy measure, i.e. a positive Borel measures (under
some integrability condition)

� I is a P.V. (principal value) integral, i.e.

I[u] = lim
δ→0+

∫
|z|>δ

[u(x+ z)− u(x)]dµ(z)
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Lévy measures

The measure µ satis�es a quite general integrability condition at
z = 0 and at in�nity: ∫

(|z|2 ∧ 1)dµ(z) <∞ (1)

� Take for example I[φ] with φ bounded and C1 and

dµ(z) =
dz

|z|N+σ
σ ∈ (0, 1) (2)

In particular ∫
(|z| ∧ 1)dµ(z) <∞

� If µ is as in (2) with σ ∈ (0, 2) and satis�es (1), we have to
consider φ ∈ C2 and add and substract a compensator term.
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Neumann boundary condition

In the case of a jump process, there are several ways to keep the
process inside the domain. For example.. (take Ω ="halfspace")
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Linear PIDE-BCGJ

G. Barles, E.Chasseigne, C. Georgeline, E. R. Jacobsen, 2014, On
neumann type problems for non-local equations set in a half space

� simple linear equations: u(x)− I[u](x) + f(x) = 0 + Neumann BC

� domains with �at boundary

They considered a nonlocal di�usion I which can be of di�erent
types: they proposed at least the previous 4 di�erent and coherent
(w.r.t the classical case) models.
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Mirror re�ection
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Normal projection, Lions-Sznitman

Problem investigated by Barles, Georgelin, Jakobsen 2013 in the
framework of fully non-linear equations in general domains.

Neumann problems for nonlocal equations



Stick on the wall, �eas on the window

Outwards jumps are stopped where the jump path hits the boundary,
and then the process is restarted there.
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� To the best of our knowledge, processes with generators of
"Mirror Re�ection" and "Fleas on the Window" have not been
considered yet.

� Natural ways to de�ne "re�ections" (in particular mirror
re�ection).

� It could be problematic to work with in general domains due to
the possibility of multiple re�ections
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Don't jump, censored

We focus on the so-called censored process

Any outwards jump is cancelled (censored) and the process is
restarted (resurrected) at the origin of that jump.
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The censored process

Actually we don't jump outside: we never reach the point x+ z:

I[u](x) = P.V.

∫
x+z∈Ω̄

[u(x+ z))− u(x)]dµ(z)

� Notice that (part of the) Neumann condition is included in the
de�nition of the nonlocal operator. The Neumann condition
in�uences the equation inside the domain.

� Boundary value problem inside Ω̄. No need for conditions on Ωc.

� Notice the bad dependence on x in the domain of integration,
this gives the main problems in the proof of comparison
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Underlying process-probabilistic
references

Question: is it realized by a concrete Markov process, i.e., does it
corresponds to the generator of such a process?
The process can be constructed via some probabilistic methods: K.
Bogdan, K. Burdzy and Z. Chen. 2003
Q.Y. Guan. and Z.M. Ma. 2006
M. Fukushima, Y. Oshima and M. Takeda. 1994
N. Jacob 2005
In particular, the underlying processes are related to the censored
stable processes of Bogdan et al. and the re�ected α-stable process of
Guan and Ma.
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We consider

dµ(z) =
dz

|z|N+σ
, σ ∈ (0, 2). (3)

Two main cases:

(i) not too singular measures σ < 1

(ii) strong singuarity σ ∈ (0, 2)

(i) Strong singularity:
Interesting (but di�cult) case...
We don't know! Even in the simple case of linear equations the
results are not completely satisfactory.

(ii) σ ∈ (0, 1): What happens in the case of linear equation
considered by BCGJ?

u(x)− I[u](x) + f(x) = 0 in Ω.

The nonlocal terms that are the principal terms.
Simpler problem: The process does not reach the boundary!
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Remark

This is not true anymore in the presence of a drift term! The drift
can push the process to hit the boundary

Remark

The �atness of the boundary in BCGJ eliminates some technical
di�culties which arise when dealing with Neumann boundary
conditions in general domains and are mainly due to the estimation of
the nonlocal terms.

Questions: Nonlinear equations? More general domains?
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"On Neumann problems for nonlocal Hamilton-Jacobi equations with

dominating gradient terms", 2015

{
u(x)− I[u](x) +H(x,Du) = 0 in Ω
∂u
∂n = 0 on ∂Ω,

(4)

I is of censored type σ < 1 (previous slides)

H is a nonlinear Hamiltonian (typically relatd to optimal control
problems)
the growth of H in the gradient strictly dominates the nonlocal
di�usion

� H either in coercive form in the gradient term,

� either in Bellman form, not necessarely coercive

Ω ⊂ RN is an open domain possibly unbounded smooth enough
(W 2,∞).
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Coercive Hamiltonian

Coercive Hamiltonians of the type

H(x, p) = b(x)|p|m + a1(x)|p|l + (a2(x), p)− f(x),

for m > σ, where x, p ∈ Rn, 0 < l < m, a1, a2, f, b are continuous and
bounded functions, b is Lipschitz continuous and satis�es

b(x) ≥ b0 > 0 ∀x ∈ Ω.
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Hamiltonian in Bellman form

Non-coercive Hamiltonians in Bellman form
related to optimal control problems

H(x, p) = sup
α∈A
{−b(x, α) · p− l(x, α)};

where A is a compact metric space, b : Ω̄×A → Rn and
f : Ω̄×A → R are continuous and bounded functions.

(i) Uniform continuity of the cost l;

(ii) Uniform Lipschitz continuity of the drift b.
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Main results

Framework of viscosity solutions

COMPARISON [G. 2015]

Under the assumptions of the previous slides, let u be a bounded usc

subsolution of (4) and v a bounded lsc supersolution of (4). Then

u ≤ v in Ω̄.

EXISTENCE, UNIQUENESS
Once the comparison holds, we use Perron's method for
integro-di�erential equations to get as a corollary existence and
uniqueness for the problem (4) in the class of continuous functions.

EVOLUTIVE PROBLEMS
behaviour as t→ +∞ of the solutions, convergence to the associated
stationary problem.
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Main di�culties

Bad x-dependence+general geometry of the boundary!
We aim at estimating

I[u](x)− I[v](y) =∫
x+z∈Ω̄

[u(x+ z)− u(x)]
dz

|z|N+σ
−
∫
y+z∈Ω̄

[v(y + z)− v(y)]
dz

|z|N+σ

How to compare the two domains of integration?

We write
{x+ z ∈ Ω̄} =

{x+ z ∈ Ω̄, y + z ∈ Ω̄} ∪ {x+ z ∈ Ω̄, y + z /∈ Ω̄}

� {x+ z ∈ Ω̄, y + z ∈ Ω̄} : plus simple

� {x+ z ∈ Ω̄, y + z /∈ Ω̄} : ?
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Thank you for the attention!
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A signi�cant example: the halfspace
Ω = {(x1, · · · , xN) ∈ RN |xN > 0}

In this case
I[u](x)− I[v](y) =∫

xN+zN≥0

[u(x+ z)− u(x)]
dz

|z|N+σ

∫
yN+zN≥0

[v(y + z)− v(y)]
dz

|z|N+σ

Suppose xN ≥ yN (the other being symmetric):

{xN + zN ≥ 0} =

{xN + zN ≥ 0, yN + zN ≥ 0} ∪ {xN + zN ≥ 0, yN + zN < 0}

Note that

{xN + zN ≥ 0, yN + zN ≤ 0} = {−xN ≤ zN ≤ −yN .}

and its measure goes to zero if xN → yN !

USEFUL REMARK!
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Proof

� Underlying idea: prove that we are in the case of the previous
remark, xN = yN . We use the superfractional growth in the
gradient of H to control the nonlocal di�usion.

� The �at case is far more simple. In case of ageneral domain, the
description of the set of integrations in the nonlocal terms is
more complicated due to the geometry of ∂Ω and there are some
left terms which we have to estimate.
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Evolutive problem, large time behaviour

We provide large time behaviour for the problem
∂tu(x)− I[u(·, t)](x) +H(x,Du) = 0 in Ω× (0,+∞)
∂u
∂n = 0 on ∂Ω× (0,∞),
u(x, 0) = u0(x) in Ω̄.

(5)

� Ω is a bounded open subset of Rn of class W 2,∞

� H is an Hamiltonian in coercive form

�

I[u(·, t)](x) = P.V.

∫
x+z∈Ω̄

[u(x+ z, t)− u(x, t)]
dz

|z|N+σ

with σ ∈ (0, 1).
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Large time behaviour

Let u(x, t) be the unique solution to the previous evolution problem.

Question: What is the behaviour of u(x, t) as t→ +∞?
Does it converge to a/the solution of a suitably associated problem?
And how?
Ergodic behaviour

�

u(·, t)/t→ c

where c is the so-called ergodic constant.

� We search for an asymptotic development of u of the type

u(x, t) = ct+ w(x) + o(1)

where o(1) tends to zero as t→∞ .
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Large time behaviour

(i) Prove that there exists a unique constant c ∈ R for which the
stationary ergodic problem{

−I[w(·)](x) +H(x,Dw) = −c in Ω
∂u
∂n = 0 on ∂Ω,

(6)

has a solution w ∈ C m−σ
m (Ω̄) (unique up to an additive constant).

(ii) Convergence as t→ +∞:
There exists a pair (w, c) solution to (6) such that

u(x, t)− ct− w(x)→ 0 as t→ +∞

uniformly on Ω̄.
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Main steps

We follow closely the arguments given in
G. Barles, O. Ley, S. Koike, E. Topp, Regularity results and large time

behavior for integro-di�erential equations with coercive hamiltonians

(see also G. Barles, E. Chasseigne, A. Ciomaga, C. Imbert, Lipschitz
regularity of solutions for mixed integro-di�erential equations in the
local framework).

� Key result: Hölder regularity for the solutions of (5): G. Barles,
O. Ley, S. Koike and E. Topp (see above)

� We solve the ergodic problem, by means of the approximant
problems and uniform estimates given by regularity results.

� We prove a strong maximum principle for the evolutive problem
considered (5).

� We conclude the asymptotic convergence as t→ +∞.
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Some other references

Menaldi, Robin, 1985: re�ection problems solved in the case of
di�usion processes with jumps only inside Ω.
Garroni, Menaldi, 2002: large class of uniformly elliptic
integro-di�erential equations, where the principal part is a
non-degenerate 2nd order term. Dirichlet type problems.
Barles, Topp, Koike, Ley, 2014: same kind of nonlinearity in H for
Dirichlet type problems.
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We recall the "natural" Neumann boundary condition for the
re�ected α-stable process of Guan and Ma is di�erent from the one we
consider here. They show that the boundary condition arising
through the variational formulation and Green type formulas is

lim
t→0

t2−α
∂u

∂xN
(x+ teN) = 0.

This formula allows the normal derivative ∂u
∂xN

to explode less rapidly

than |xN |σ−2 and justi�es the use of boundary conditions in the
viscosity sense since uxN is not necessarily equal to 0 on the boundary
for σ < 2.
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Other references on censored processes

Widely used in physics (Levy �ights), operation research, queuing
theory, mathematical �nance, risk estimation.

� R. J. Alder, R. E. Feldman, M. S. Taqqu (eds), A Practical Guide
to Heavy Tails: Statistical Techniques and Applications. (1998).

� D. Applebaum, Levy Processes and Stochastic Calculus-Part I,
(2002).

� J. Bertoin, Levy Process (1996).

� S. Combanis, G. Samorodnisky and M. S. Taqqu, Stable
Processes and Related Topics, Progress in probability, (1991).

� J. Klafter, M. F. Shlesiger, and G. Zumofen, Beyond Brownian
motion,(1996).

� K. Sato, Levy processes and in�nitely divisible distributions
(1999)

� W. Whitt, Stochastic-Process Limits: An Introduction to
Stochastic-Process Limits and their Application to Queues.
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