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Boltzmann equation

Distribution function at time t � 0, position x 2 R3 and
velocity v 2 R3: f(t; x; v).

@f

@t
+ v � rxf = Q(f):

First simplification: Spatially homogeneous: f(t; x; v) = f(t; v):

@f

@t
= Q(f):

Number of particles (N), Energy (E) and Momentum (P):

N =

Z
R3
f(t; v) dv; E =

Z
R3
f(t; v)jvj2 dv; P =

Z
R3
f(t; v)v dv



The collision operator

Q(f)(t; v) =

Z
R3

Z
S2
B(v � v�; �)(f 0f 0� � ff�) d� dv�:

f 0 = f(v0); f 0� = f(v0�); f = f(v); f� = f(v�):

B(v� v�; �): information about how particles collide. There are
many models.
Collision conserve momentum and kinetic energy:

v0 + v0� = v + v�; jv0j2 + jv0�j2 = jvj2 + jv�j2

Classical framework: f 0f 0� � ff�
Quantum framework:

f 0f 0�(1 + �f)(1 + �f�)� ff�(1 + �f 0)(1 + �f 0�):

� = 0: classical particles. � = �1: fermions particles. � = 1:
bosons particles



Second simplification: Radially symmetric: f(t; v) = f(t; jvj2).
Dependence on the energy jvj2 instead on the velocity v.
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The distribution function is splited in two parts:

f(t; jvj2) = g(t; jvj2) + c(t)�0(v):

g is the gas, and c(t) is the condensate. A coupled system of
two equations is considered.



Existence of solution for a simplified version of the coupled
system obtained in [2]

Distribution function at time t � 0 and energy x � 0:
g(t; x).
The condensate at time t � 0:

c(t) = c0e
�
R
1

0
g(t;x)

p
x dx

; c0 > 0:

The gas g(t; x):

@g

@t
(t; x) = c(t)

" Z x

0

g(t; x� y)p
x� y

g(t; y)p
y

dy

+ 2

Z 1

x

g(t; y)p
y

g(t; y � x)p
y � x

dy

+ 2

Z 1

x

g(t; y)p
y

dy

� g(t; x)

 p
x+

4p
x

Z x

0

g(t; y)p
y

dy

!#
:



Differential form:

@g

@t
= c(t)

h
Q(g; g) + L(g)� g(t; x)A(g)

i
: (1)

Integral form:

g(t; x) = g0(x)e
�
R

t

0
A(g) d� +

Z t

0
c(s)e�

R
t

s
A(g) d�

h
Q(g; g) + L(g)

i
ds:

Number of particles and Energy:

N(t) =

Z 1

0
g(t; x) dx; E(t) =

Z 1

0
g(t; x)x dx:



Considering smooth approximations of 1p
x
we have the

following:

Lemma 1
For every T > 0 and every positive initial datum
g0 2 L1(0;1) \ L1([0;1); xdx), equation (1) has a unique
positive solution g 2 C

�
[0; T ]; L1(0;1) \ L1([0;1); xdx)

�
.

Moreover, the number of particles is nondecreasing and the
energy is conserved: 8t � 0Z 1

0
g(t; x) dx �

Z 1

0
g0(x) dx+ c0;

Z 1

0
g(t; x)x dx =

Z 1

0
g0(x)x dx:

Ingredients of the proof: Banach contraction principle (local
solution)+ a priori estimates (using the weak formulation)



Weak formulation

Multiply the equation by a test function '(x) and integrate:Z 1

0

�
g(t; x)� g(s; x)

�
'(x) dx

= 2

Z t

s
c(�)

Z 1

0
g(�; x)�n(x)

Z x

0
g(�; y) e'(x; y) dy dx d�

+

Z t

s
c(�)

Z 1

0
g(�; x)�n(x)'(x) dx d�:

where e'(x; y) = '(x+ y) + '(x� y)� 2'(x);

'(x) = 2

Z x

0
'(y) dy � '(x)x:

'(x) = 1 and '(x) = x ) conservations.



Moment’s estimates

The k-moment of g at time t � 0 is defined as

Mk(g)(t) =

Z 1

0
g(t; x)xk dx:

Lemma 2
Let k � 0. If the initial data g0 satisfiesZ 1

0
g0(x)x

k dx < +1;

then the solution satisfiesZ 1

0
g(t; x)xk dx � C 8t � 0:

Ingredients of the proof: bounded cut offs of xk + weak
formulation + limit process.



On going work

Limit process: To prove an existence result for

@g

@t
= c(t)

h
Q(g; g) + L(g)� g(t; x)A(g)

i
whithout cut off of

1p
x

using the solutions of the simplified equation obtained by
lemma 1, and the uniformly bounds of lemma 2.
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