RNAseq Bias Correction (& Isoform Quantification)

Walter L. (Larry) Ruzzo

Computer Science and Engineering Genome Sciences University of Washington Fred Hutchinson Cancer Research Center Seattle, WA, USA

Benasque, 2015-Jul-21

ruzzo@uw.edu

"All High-Throughput Technologies are Crap – Initially"

Q. Morris 7-20-2015

RNA seq

What we expect: Uniform Sampling

What we get: highly non-uniform coverage

E.g., assuming uniform, the 8 peaks above 100 are \geq +10 σ above mean

What we get: highly non-uniform coverage

The Good News: we can (partially) correct the bias

Bias is sequence-dependent

and platform/sample-dependent

Fitting a model of the sequence surrounding read starts lets us predict which positions have more reads.

Want a probability distribution over k-mers, $k \approx 40$?

Some obvious choices:

Full joint distribution: 4^k-1 parameters

PWM (0-th order Markov): (4-1)•k parameters

Something intermediate:

Directed Bayes network

Form of the models: Directed Bayes nets

Wetterbom (282 parameters)

One "node" per nucleotide, ±20 bp of read start

- •Filled node means that position is biased
- •Arrow i \rightarrow j means letter at position i modifies bias at j
- •For both, numeric parameters say how much

How–optimize:

 $\ell = \sum_{i=1}^{n} \log \Pr[x_i | s_i] = \sum_{i=1}^{n} \log \frac{1}{\nabla}$

"First, do no harm"

Theorem: The probability of "false bias discovery," i.e., of learning a non-empty model from *n* reads sampled from unbiased data, declines *exponentially* with *n*.

... while accuracy and runtime rise with *n* (empirically)

Figure 8: Median R^2 is plotted against training set size. Each point is additionally labeled with the run time of the training procedure.

Possible objection to the approach:

Typical expts compare gene A in sample I to *itself* in sample 2. Gene A's sequence is unchanged, "so the bias is the same" & correction is useless/dangerous

Responses:

Bias is *sample-dependent*, to an unknown degree

SNPs and/or alternative splicing might have a big effect, if samples are genetically different and/or engender changes in isoform usage

Atypical experiments, e.g., imprinting, allele specific expression, xenografts, ribosome profiling, ChIPseq, RAPseq, ...

Strong control of "false bias discovery" \Rightarrow *little risk*

BIOINFORMATICS ORIGINAL PAPER

Vol. 28 no. 7 2012, pages 921–928 doi:10.1093/bioinformatics/bts055

Gene expression

Advance Access publication January 28, 2012

A new approach to bias correction in RNA-Seq

Daniel C. Jones^{1,*}, Walter L. Ruzzo^{1,2,3}, Xinxia Peng⁴ and Michael G. Katze⁴ ¹Separtment of Computer Science and Engineering, University of Washington, Seattle, WA 98195-2350, ²Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, ³Fred Hutchinson Cancer Research Center, Seattle, WA 98109 and ⁴Department of Microbiology, University of Washington, Seattle, WA

Associate Editor: Alex Bateman

ABSTRACT

Motivation: Quantification of sequence abundance in RNA-Seq experiments is often conflated by protocol-specific sequence bias.

These biases may adversely effect

low level not

Batch Effects? YES!

A: Pairwise proportionality correlation between samples sequenced on 2 flowcells each at 5 sites. B: The absolute change in correlation induced by enabling bias correction (where available). For clarity, BitSeq estimates of "MAY 2", excluded; bias correction was extremely detrimental there.

Alternate Splicing

Liu, et al. BMC Bioinformatics 15.1 (2014): 364

Isolator

Soon to be the world's best isoform quantitation tool Bayesian hierarchical model + fast MCMC sampler give mean and *uncertainty* in estimates Can handle dozens of RNAseq samples per hour

When data is lacking, estimates are shrunk towards each other, supressing suprious changes.

1 read vs. 2 reads is probably not a 2-fold change in transcription!

Method	А	В	С	D
Isolator	0.878	0.866	0.839	0.852
Cufflinks	0.870	0.856	0.799	0.841
eXpress	0.870	0.855	0.829	0.840
Salmon	0.866	0.852	0.826	0.836
RSEM/ML	0.865	0.851	0.825	0.835
BitSeg	0.840	0.821	0.802	0.813
Kallisto	0.858	0.840	0.817	0.826
Sailfish	0.844	0.814	0.797	0.802
RSEM/PM	0.840	0.822	0.803	0.811

Table 2: Proportionality correlation between gene level quantification of 18353 genes using PrimePCR qPCR and RNA-Seq quantification.

Method	c vs 0.75a + 0.25b	d vs 0.25a + 0.75b
Isolator	0.975	0.975
BitSeg	0.967	0.967
RSEM/PM	0.968	0.967
Sailfish	0.932	0.925
RSEM/ML	0.922	0.919
Salmon	0.916	0.914
Kallisto	0.907	0.902
eXpress	0.903	0.899
Cufflinks	0.870	0.916

Table 5: Proportionality correlation between gene-level estimates for the mixed samples C and D and weighted averages of estimates for A and B, corresponding to the mixture proportions for C and D.

RNAseq data shows strong technical biases Of course, compare to appropriate control samples But that's not enough, due to: batch effects SNPs/genetic heterogeneity

alt splicing

• • •

all of which tend to differently bias sample/control

"All hight-throughput technologies are crap, initially," BUT careful modeling can help.

Acknowledgements

Daniel Jones

Katze Lab

Michael Katze Xinxia Peng

POI Labs

Tony Blau, Chuck Murry, Hannele Ruohola-Baker, Nathan Palpant, Kavitha Kuppusamy, ...

Funding NIGMS, NHGR, NIAID