RNAiFold: Complete Inverse Folding for Synthetic Design

Juan Antonio García Martín 23/07/2015

Benasque 2015: Computational Analysis of RNA Structure and Function

RNA folding

Sequence + Structure --- Function

Folding

AAGCGCAAAGCGAGACGCAAGCGC

Inverse folding

1.00

Synthetic RNA design approaches

Objective

Novel algorithm design and implementation of tools to design synthetic RNA

Approach

Generate a large number of sequences whose minimum free energy structure is identical to the target design structure, and subsequently filter with respect to different criteria in order to select the most promising candidates for biochemical validation

Complete modular RNA inverse folding

• Design:

- Constraint programming
 - Model: Variables with a discrete domain
 - Constraints: Defines the scope of the search
 - Heuristics: Increases search speed
 - Objective: Stop condition (# solutions, optimization)
- Requirements:
 - Able to generate all possible solutions for small structures and millions for longer structures.
 - Fast when completeness is not required
 - Allows design flexibility

GOIDGIGCAGUE UGGIDEUUCE UAE UGAUGAGUE COUGAGACAAAE UGEE COEC CECTORE CAEUN UGGIDEUUCE UAE UGAUGACIDAGUE COECOEC

RNAiFold: Insights

 $GC \rightarrow -6$

Tree reduction

Str

P2

P2a

c)

P2

P2a

MFE helix check

MFE helix check

Str

P1

P1a

Garcia-Martin JA, Clote, P, Dotu, I. RNAiFold: a constraint programming algorithm for RNA inverse folding and molecular design. J. Bioinform. Comput. Biol. 2013;11:1350001.

RNAiFold

Garcia-Martin JA, Clote, P, Dotu, I. RNAiFold: a constraint programming algorithm for RNA inverse folding and molecular design. J. Bioinform. Comput. Biol. 2013;11:1350001.

Performance

Table 1. Rfam CP Results.

Paramete	ers	C	ЪЪ	INFC	D-RNA	MO	DENA	RNA	-SSD	RNA	inverse
RF id	n	$_{\mathrm{sol}}$	time	sol	time	sol	time	$_{\mathrm{sol}}$	$_{ m time}$	$_{\rm sol}$	time
RF00001.121	117	38	21.5	50	0.0	6	36.8	22	1.0	41	233.1
m RF00002.2	151	44	29.5	4	62.6	20	39.4	6	12.2	0	-
RF00003.94	161	0	-	1	72.1	29	70.2	0	-	0	-
RF00004.126	193	50	1.5	50	0.1	34	52.9	50	2.0	50	48.3
m RF00005.1	74	50	0.2	50	0.0	33	12.4	50	0.1	50	0.1
RF00006.1	89	50	0.3	50	0.0	37	15.1	50	0.6	50	4.3
RF00007.20	154	50	5.6	50	0.0	34	44.4	50	1.1	50	12.4
RF00008.11	54	50	0.1	50	0.0	26	8.7	50	0.0	50	0.0
m RF00009.115	348	48	20.8	0	-	29	214.1	26	48.2	0	-
m RF00010.253	357	0	-	0	-	0	-	0	-	0	-
RF00011.18	382	0	-	0	-	0	-	0	-	0	-
RF00012.15	215	50	2.7	15	25.0	27	64.5	28	28.8	1	139.4
RF00013.139	185	50	1.6	50	0.8	12	51.5	49	2.8	50	19.8
m RF00014.2	87	50	0.3	50	0.0	33	17.5	49	0.1	50	0.0
RF00015.101	140	49	1.3	50	0.2	38	29.1	40	0.6	50	52.4
m RF00016.15	129	0	-	0	-	0	-	0	-	0	-
RF00017.90	301	50	19.3	50	0.0	28	208.1	50	7.0	50	10.0
m RF00018.2	360	47	12.1	1	697.0	28	331.5	0	-	0	-
RF00019.115	83	50	0.2	50	0.0	32	14.9	50	0.2	50	0.3
m RF00020.107	119	0	-	0	-	0	-	0	-	0	-
RF00021.10	118	50	0.3	50	0.0	37	27.8	49	0.2	50	0.2
RF00022.1	148	50	0.7	50	0.0	38	32.6	24	0.9	35	225.5
RF00024.16	451	0	-	0	-	0	-	0	-	0	-
m RF00025.12	210	50	1.4	9	47.9	33	54.2	29	2.9	0	-
RF00026.1	102	50	0.4	33	5.5	38	15.2	50	1.4	44	173.2
m RF00027.7	79	50	0.1	50	0.0	32	17.4	50	0.1	50	0.4
RF00028.1	344	39	6.2	0	-	0	-	4	71.2	0	-
RF00029.107	73	50	0.3	50	0.0	37	10.4	50	0.2	50	0.3
RF00030.30	340	46	6.8	1	57.3	22	186.8	34	39.3	0	-
sum	-	1111	133.2	813	271.5	683	1555.5	860	220.9	771	919.7
avg	-	38.3	5.7	28.0	12.9	23.6	67.6	29.7	10.0	26.6	54.1

Garcia-Martin JA, Clote, P, Dotu, I. RNAiFold: a constraint programming algorithm for RNA inverse folding and molecular design. J. Bioinform. Comput. Biol. 2013;11:1350001.

Output sequences

Method	ERD	FRNA	Incarnation	Info-RNA	MODENA	Nupack	RNA-SSD	RNAfbinv	RNAiFold2	RNAinverse
Output (%)	100%	30%	60%	95%	60%	57%	90%	13%	65%	65%
Target (%)	85%	38%	0%	57%	45%	70%	82%	0%	100%	18%
Avg str len	397	122	352	393	234	256	400	74	363	208
Avg output	117	325	41,535	195	50	22	1	2	55,476	935
P(S)	3.32%	1.70%	0.06%	3.17%	11.30%	30.01%	2.24%	0.36%	23.21%	0.78%
Native cont. (%)	85 ± 9	61 ± 15	63 ± 13	76 ± 12	89 ± 9	98 ± 1	85	32 ± 6	93 ± 2	57 ± 12
Avg E	-0.41	-0.24	-0.46	-0.63	-0.46	-0.44	-0.30	-0.14	-0.56	-0.23
Pos entropy	0.33	0.71	0.41	0.44	0.15	0.07	0.36	0.88	0.12	0.80
MH diversity	0.16	0.35	0.21	0.22	0.07	0.03	0.18	0.45	0.06	0.38
Vienna diversity	0.11	0.23	0.15	0.16	0.05	0.02	0.11	0.30	0.05	0.26
Exp bp dist	0.09	0.21	0.27	0.16	0.06	0.01	0.08	0.38	0.03	0.24
Ens def	0.14	0.32	0.39	0.22	0.08	0.02	0.14	0.56	0.04	0.37
Exp num bp	0.28	0.29	0.34	0.30	0.26	0.29	0.28	0.28	0.27	0.28
GC-content (%)	55%	49%	71%	72%	50%	57%	36%	51%	57%	49%

AVG. ENSEMBLE DEFECT

AVG. EXPECTED PROPORTION OF NATIVE CONTACTS

RNAiFold 1.0: Limitations

- Memory usage
 - 32 bit software limits memory to 4GB
- Sequence length
 - Complete search is unpractical for very long structures
- COMET availability
 - Available only via webserver

RNAiFold 2.0

- Implemented in C++ using OR-Tools (open source).
- Modular and scalable

Software	⇒	WS	PK	Н	MT	PT	Т	EM	D	SeqC	StrC	AaC	0	Num
RNAiFold 2.0	\checkmark	\checkmark	—	\checkmark	—	\checkmark	\checkmark	'99,'04	0,1,2,3	\checkmark	\checkmark	\checkmark	mfe	MAX
RNAinverse	\checkmark	 ✓ 					\checkmark	'99,'04	0,1,2,3	IUPAC*			mfe, prob	100
RNA-SSD	—	\checkmark					\checkmark	'99	1	IUPAC*	—		mfe	10
Info-RNA	\checkmark	 ✓ 						'04	1	IUPAC			mfe, prob	50
NUPACK	\checkmark	 ✓ 		√*			\checkmark	'99,'04	0,1,2	\checkmark	—		ens def	10
MODENA	\checkmark		\checkmark					I	def	_			mfe, prob	?
Frnakenstein	\checkmark				\checkmark		\checkmark	I	def	_			various	?
IncaRNAtion	\checkmark						\checkmark	'04 *	_	IUPAC			pf sampling	_
ERD	\checkmark	 ✓ 					\checkmark	I	def	IUPAC*			mfe	MAX*
RNAdesign	\checkmark				 ✓ 		\checkmark	'04	def	_			various	_
RNAfbinv	\checkmark	—	—		—	\checkmark		'99, I	def	local A,C,G,U	—		mfe	

- Partial target structure(**)
- Sequence constraints
 - GC-content (*)
 - Number of base pairs(***)
 - Maximum, minimum and consecutive nucleotides by region(***)
 - Structural compatibility and incompatibility constraints (***)
- Amino acid coding constraints (***)
 - Partial and overlapping regions
 - Restrict search to amino acids similar in BLOSUM62 similarity score
 - Maximization of BLOSUM62 similarity score

Supported by:

- (*) Some other methods
- (**) Only one other software
- (***) RNAiFold only

JA Garcia-Martin, I Dotu, P Clote, (2015) RNAiFold 2.0 (Synthetic RNA Design): A web server to design RNA molecules (submitted). Available at http://bioinformatics.bc.edu/clotelab/RNAiFold2.0

Applications (I): IRES discovery

Dotu I, Lozano G, Clote P, Martinez-Salas E. Using RNA inverse folding to identify IRES-like structural subdomains. RNA Biol. 2013 Dec 1;10(12):1842-52.

Applications(I): IRES discovery

Dotu I, Lozano G, Clote P, Martinez-Salas E. Using RNA inverse folding to identify IRES-like structural subdomains. RNA Biol. 2013 Dec 1;10(12):1842-52.

Applications(II): SECIS insertion

Applications: Computational design of Hammerhead Ribozymes

Figures: Monika Martick et al (2008),

1. Sequence conservation

	Rank	Position $(1-54)$	Nucleotide	Frequency	Percentage
	1	7	U	1	100%
1	2	23	U	1	100%
	3	27	G	1	100%
	4	22	\mathbf{C}	1	100%
	5	48	А	1	100%
	6	47	А	1	100%
	7	28	А	1	100%
1	8	25	А	1	100%
	9	24	G	0.988095	99%
	10	46	А	0.988095	99%
	11	6	G	0.987342	99%
	12	45	G	0.97619	98%
	13	49	\mathbf{C}	0.97561	98%
	14	29	G	0.964286	96%
	15	44	\mathbf{C}	0.964286	96%
	16	38	А	0.957746	96%
	17	8	\mathbf{C}	0.949367	95%
	18	35	G	0.942857	94%
	19	42	G	0.928571	93%
	20	31	\mathbf{C}	0.892857	89%

3. Filtering and selection

	ID	Selection	criteria
--	----	-----------	----------

- HH1 GC-content 30 39%, P(S₀, s) $\ge 40\%$, smallest (binary) entropy distance for active site
- HH2 GC-content 40 49%, P(S₀, s) $\ge 40\%$, smallest (binary) entropy distance for active site
- HH3 GC-content 40 49%, P (S₀, s) $\ge 40\%$, second smallest (binary) entropy distance for active site
- HH4 GC-content 50 59%, $P(S_0, s) \ge 40\%$, smallest (binary) entropy distance for active site
- HH5 GC-content 60 69%, P(S₀, s) $\ge 40\%$, smallest (binary) entropy distance for active site
- HH6 GC-content 30 39%, P (S₀, s) $\ge 40\%$, largest (binary) entropy distance for active site
- HH7 GUC in positions 6-8, smallest ensemble defect
- HH8 smallest ensemble defect, entropy and expected bp distance and highest Boltzmann probability
- HH9 $P(S_0, s) \le 20\%$, smallest (binary) entropy distance for active site
- HH10 smallest (binary) entropy distance for active site

4. Experimental validation

Kinetics

ID	K _{obs}	$\mathrm{F}_{\mathrm{max}}$	MSE	Pos Ent	Ens Def	EBPD Dis Act
HH1	0.037	0.79	0.0029	0.27	4.17	0.0501207
HH2	0.0057	0.74	0.003	0.29	4.55	0.0386253
HH3	0.0027	0.65	0.0039	0.26	4.12	0.0410984
HH4	0.0127	0.55	0.0048	0.40	6.76	0.0354213
HH5	0.0085	0.52	0.0066	0.38	6.24	0.033132
HH6	0.102	0.73	0.0047	0.41	8.14	0.059864
HH7	0.25	0.74	0.0107	0.12	2.38	0.0406728
HH8	0.02	0.68	0.0124	0.08	1.45	0.0662421
HH9	0.025	0.76	0.0015	0.25	4.53	0.0328018
HH10	0.14	0.77	0.01	0.29	4.98	0.0269354

Correlations: Pos. entropy (-0.46) Ens. defect (-0.37)

Dotu I, Garcia-Martin JA, Slinger BL, Mechery V, Meyer MM, Clote P.

Complete RNA inverse folding: computational design of functional hammerhead ribozymes. Nucleic Acids Res. 2015;42(18):11752-62.

RNAiFold web server

RNA Inverse Folding Constraint Programming (CP) and Large Neighborhood Search (LNS)

algorithms for inverse folding

	Welcom	e to the C ۲	Clote Lab website !	o Inverse	Folding
rs	Inv. fold	Inv. cof	old Str	uctures	Download

The RNA inverse folding problem is the problem, given a target secondary structure in dot bracket notation, of determining one or more RNA sequences, whose minimum free energy (MFE) structure is the target structure. Here, the MFE structure is computed using RNAfold from the <u>Vienna RNA Package</u>. In addition, the user may provide sequence constraints, stipulating that certain positions be occupied by specific nucleotides, or that (for instance) the solution sequence has a GC-content within a certain user-specified range. This website provides access to two algorithms for the inverse folding problem:

RNA-CPdesign

• **RNA-CPdesign**. Given a target structure and optional sequence constraints, CPdesign uses *Constraint Programming (CP)* to determine one or more RNA sequences that fold into the given target structure. CP performs a complete exploration of the search space, and, thus can also prove that no sequence folds into the target structure exists. Since computation time may be exhorbitant, the latter is only feasible for sufficiently small structures.

• **RNA-LNSdesign**. Given a target structure and optional sequence constraints, LNSdesign uses *Large Neighborhood Search (LNS)* to determine one or more RNA sequences that fold into the target structure. LNS is a heuristic, that calls CP as a subroutine, which is suitable for larger structures. Since LNSsearch is a heuristic algorithm, it cannot prove the nonexistence of a solution to an inverse folding problem.

Supported by NSF DMS-1016618. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

	RNA CP design RNA inverse folding using Constraint Programming(CP)
Home	Server
RNA CP design Server	Email address: (optional):
Results	Either upload a file containing a single RNA structure, paste in an RNA structure, or fill in fields in the verbose form.
Sequences	🔍 File upload 💫 Paste input 🧕 Verbose input
Manual	Fill the following fields: Use sample Fasta comment
Contacts	Target structure (required)
RNAiFold	Sequence
	Structure of compatible base pairs Structure of incompatible base pairs Temperature (°C): 37 Maximum solutions: 1 Dangling end treatment: 2 Limit GC pairs: Min: 0 Max: - Limit GU pairs: Min: 0 Max: - Limit GU pairs: Min: 0
	Maximum consecutive nucleotides: A: - C: - GC content: Min: 0 Max: 100
	SUBMIT RESET
Supported by expressed in t	NSF DMS-1016618. Any opinions, findings, and conclusions or recommendations his material are those of the authors and do not necessarily reflect the views of the NSF.

J. A. Garcia-Martin, P. Clote, and I. Dotu. RNAiFold: a web server for RNA inverse folding and molecular design. Nucleic. Acids. Res., 41(Web):W465–W470, July 2013. Available at http://bioinformatics.bc.edu/clotelab/RNAiFold

RNAiFold 2.0 web server

Email addr	ess: (optional): jco	ltrane@giantsteps.edu		
	Step1	Step2		Step3
Find sequesting structure	ences in the seec corresponds to tl	l aligment whose he alignment con	predicted mini sensus structur	mum free energy re
Select a Rf	am family RF00008	: Use sam	ple	
Energy mo	del Turner '99 :			
Dangling e	nd treatment Mini	mum energy (-d 1)	:	
				Continue to Step 2
	Step1	Step2		Step3
Select one	sequence as mod	lel to determine o	onserved positi	ions
Choose a tar	act structure from	the list. A 1005312	1 202-235 -	
			1_202-355 -	
Sequence: GAUG	AGUCUGUGCUAAGCACACUGA	UGAGUCUAUGAAAUGAGACGA	AACUCAUA	
Force invers	e of non conserved	l positions 🏾 🔊		
Specify a mi	nimum conservatio	on threshold 95	Get conserv	ved positions
			Gereonser	
.((((((((()))))((((())))))))).		
				Continue to Chan 2
Position	٨	C	G	Continue to Step 3
1	A 112676	0 /78873	0 205775	0 112676
2	0.792208	0.103896	0.025974	0.077922
3	0.506494	0.077922	0.064935	0.350649
4	0.428571	0.194805	0.376623	0.000000
5	0.857143	0.077922	0.012987	0.051948
6	0.012987	0.000000	0.987013	0.000000
7	0.000000	0.000000	0.000000	1.000000
8	0.038961	0.948052	0.000000	0.012987
9	0.014925	0.000000	0.208955	0.776119
10	0.085366	0.036585	0.878049	0.000000
11	0.060976	0.097561	0.487805	0.353659
12	0.170732	0.000000	0.792683	0.036585
13	0.048780	0.817073	0.121951	0.012195
14	0.060976	0.073171	0.097561	0.768293
15	0.512195	0.012195	0.00000	0.475610
16	0.768293	0.109756	0.073171	0 048780

5	Step1	Step2		Step3	
Find 5 : c	ompatible see	quences using inv	erse foldi	ng	
Either upload fill in fields in	a file containi the verbose fo	ng a single RNA str rm.	ucture, pa	ste in an RNA structure, or	
• File uploa	ad Past	e input 🔹 Ver	bose inpu	t	
Fill the fol Fasta com	lowing fields: nment			Load sample	:
AJ00531	2.1_282-335				
Target str	ructure (<mark>requir</mark>	ed) @			
.((((((((((()))))(((()	()))))))).			
Company					

5 solutions found.

Download RNAiFold 2.0 results or RNAiFold 2.0 input files.

Target structure: > AJ005312.1 282-335 .((((((.((((...))))))......((((......)))))...)))).

Solution 1 :

AGGAGGUAGCCCGAUUCGGGCCUGAAGAGGUGUAGUUAAUCGCCGAAACCUCCC

GC content: 0.57 - AUs: 2 - GCs: 12 - GUs: 1 Probability of MFE structure:0.346724 Expected pointwise entropy:0.0797598 Morgan-Higgs structural Diversity:2.21595 Vienna structural Diversity:1.17149 Expected base pair distance:0.751023 Ensemble defect:1.43592

BLAST this sequence

JA Garcia-Martin, I Dotu, P Clote, (2015) RNAiFold 2.0 (Synthetic RNA Design): A web server to design RNA molecules (submitted). Available at http://bioinformatics.bc.edu/clotelab/RNAiFold2.0

RNAiFold 2.0 Some ongoing work

- Optimize inverse folding
 - New search heuristics and structure decomposition strategies
 - Constraint evaluation order
- Add new functionalities
 - Design constraints
 - Incorporate target functions and energy models
 - Evaluate new measures of structural diversity
- Expand objective functions (e.g. ensemble defect)

ONGOING WORKS

Conclusions

- Advantages of using a CP approach
 - Scalability
 - Flexibility for constrained design
 - Completeness (can also determine that NO solution exists)
- Applications of RNAiFold
 - Properties of the sequence ensemble
 - Discovery of functional RNAs
 - Synthetic design

Peter Clote Thanks!! Ivan Dotú

Amir Bayegan

Evan Senter

NSF DBI-1262439

Betty Slinger Michelle Meyer