RNAalignClust: Sequence-structure-based clustering of multiple alignments

Alexander Junge¹ Milad Miladi²

¹Center for non-coding RNA in Technology and Health (RTH), University of Copenhagen ²Bioinformatics Group, University of Freiburg

Computational Analysis of RNA Structure and Function Benasque, Spain July 2015 Annotated human ncRNAs:

- Rfam 11.0 seed alignments: 1.850
- GENCODE v20: 23.989

Clustering single RNA sequences identifies ncRNA classes, e.g.,

• GraphClust [Heyne et al., Bioinformatics, 2012]: clustering based on local sequence and structure

Screens in genome-wide alignments (using e.g., RNAz, CMfinder) for structured RNAs yield multiple structural alignments of conserved ncRNAs

Screens in genome-wide alignments (using e.g., RNAz, CMfinder) for structured RNAs yield multiple structural alignments of conserved ncRNAs

We are developing a program for clustering multiple alignments:

- Improve clustering quality compared to single sequence approaches
- Derive evolutionary conserved sequence and secondary structure

- Identify sequence-structure similarities between ncRNAs
- Leverage evolutionary information (covariation) contained in multiple sequence alignments in clustering
- Output Perform clustering to:
 - Find new members of existing ncRNA families
 - Unravel new ncRNA families/classes

Identifying similarities of secondary structures

Neighborhood Subgraph Pairwise Distance (NSPD) Kernel used in GraphClust [Heyne et al., Bioinformatics, 2012]

- ullet pprox structure k-mers with gaps
- ncRNAs highly similar if many shared substructures

C

Measuring structure similarity of multiple alignments

Evolutionary folding

Measuring structure similarity of multiple alignments

 \rightarrow use NSPD graph kernel to compare alignments

RNAalignClust - From input alignments to clustering

Split Rfam 12 family seed alignments into subalignments. *Similar* sequences from *different* species form a subalignment.

Split Rfam 12 family seed alignments into subalignments. *Similar* sequences from *different* species form a subalignment.

- Benchmark contains subalignments from all Rfam families
- 2 Each subalignment contains one human sequence

A good clustering puts all subalignments from same Rfam family in one cluster and does not mix families.

Comparing sequence to alignment clustering

- V-measure is harmonic mean of *homogeneity* and *completeness*
- homogeneity: each cluster contains only members of a single family
- completeness: all members of a given family are in same cluster

	GraphClust	RNAalignClust
V-measure	0.871	0.909

Using alignments improves clustering performance

- *a* = number. of object pairs from same family correctly assigned to same cluster
- *b* = number of object pairs from different families correctly assigned to different clusters

Rand Index =
$$\frac{a+b}{\binom{n}{2}}$$

- *n* = number of alignments
- Adjusted Rand Index is R adjusted for chance

	GraphClust	RNAalignClust
Adjuste Rand Index	0.672	0.887

Low covariation in the benchmark data set

The benchmark data set has high average pairwise sequence identity (APSI) in the alignments

Low covariation in the benchmark data set

The benchmark data set has high average pairwise sequence identity (APSI) in the alignments

 \rightarrow limit APSI to study effect of covariation on clustering performance

More benchmark sets with different degrees of covariation

Create 2 additional benchmark data set with bounded APSI in alignments

More benchmark sets with different degrees of covariation

Create 2 additional benchmark data set with bounded APSI in alignments

12 / 17

V-measure

	Mean APSI	Covariation	GraphClust	RNAalignClust
High APSI	0.81	Low	0.87	0.91
Medium APSI	0.62	Medium	0.86	0.91
Low APSI	0.49	High	0.85	0.94

V-measure

	Mean APSI	Covariation	GraphClust	RNAalignClust
High APSI	0.81	Low	0.87	0.91
Medium APSI	0.62	Medium	0.86	0.91
Low APSI	0.49	High	0.85	0.94

Adjusted Rand Index

	Mean APSI	Covariation	GraphClust	RNAalignClust
High APSI	0.81	Low	0.67	0.89
Medium APSI	0.62	Medium	0.70	0.95
Low APSI	0.49	High	0.72	0.99

- Additional benchmark data sets
- Fine tune parameters
 - Compare different clustering algorithms/postprocessing steps
- Genome-scale clustering of potential ncRNAs

Ongoing work - Extended graph representation as e.g. GraphProt [Maticzka et al., Genome Biology, 2014]

Extract subgraphs at

- Radius R
- Distance **D**

 \rightarrow ncRNAs highly similar if many shared substructures

- Similarity function derived from NSPD Graph Kernel
- Leverage evolutionary information contained in multiple alignments:
 - Conserved basepairs as folding constraints
 - Set of secondary structures represents each alignment
- RNAalignClust has potential to cluster **large** (>100.000) data sets (locality sensitive hashing)

Acknowledgements

Bioinformatics Group, University of Freiburg:

- Milad Miladi
- Fabrizio Costa
- Rolf Backofen

RTH CENTER FOR NON-CODING RNA IN TECHNOLOGY AND MEALTH

RTH, University of Copenhagen:

- Stefan Seemann
- Jakob Hull Havgaard
- Jan Gorodkin

Funding:

Danish Center for Scientific Computing, Innovation Fund Denmark, Danish Cancer Society

Acknowledgements

Bioinformatics Group, University of Freiburg:

- Milad Miladi
- Fabrizio Costa
- Rolf Backofen

RTH CENTER FOR NON-CODING RNA IN TECHNOLOGY AND HEALTH

RTH, University of Copenhagen:

- Stefan Seemann
- Jakob Hull Havgaard
- Jan Gorodkin

Funding:

Danish Center for Scientific Computing, Innovation Fund Denmark, Danish Cancer Society

Thank you for your attention!

	Families with $>$ 3 subalignments (Number of alignments)
High APSI	48 (234)
Medium APSI	26 (166)
Low APSI	10 (92)

GraphClust full pipeline

- homogeneity: each cluster contains only members of a single class
- completeness: all members of a given class are assigned to the same cluster
- V-measure is harmonic mean of homogeneity and completeness
- 0.0 is as bad as it can be, 1.0 is a perfect score
- not normalized wrt. random labeling

Split each Rfam 12 family seed alignment into subalignments. *Similar* sequences from *different* species form a subalignment.

Human Chimp

Mouse Pig

1) Each sequence in the alignment is represented as a node in a graph.

2) Remove sequences with pairwise sequence identify (PSI) > 0.95.

3) Add edge between sequences from diff. species with $PSI \in (0.9, 0.95]$.

4) Search for cliques in graph.

5) Add clique as subalignment to benchmark data set.

6) Add edge between sequences from diff. species with $PSI \in (0.8, 0.9]$.

7) Add clique as subalignment to benchmark data set.

8) Add edge between sequences from diff. species with $PSI \in (0.7, 0.8]$.

Family subalignments (Cliques)

