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Hierarchical RNA Folding

GCGCUCUGAUGAGGCCGCAAGGCCGAAACUGCCGCAAGGCAGUCAGCGC
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e RNAs fold hierarchically

e To predict 3D structure, assume we know 2D structure



Sampling Approach

Sample structures rather than predicting the optimal structure.

Monte Carlo (MCMC) approach:

® Create a model
® Evaluate energy
© Accept / Reject
@ Perturb model
® Go to step 2



Coarse Graining

Conformation space is of RNA 3D structures is too large for
efficient sampling.

Solution: Coarse graining
Remove details from the models in order to

e make larger strides across the conformation space

e spend less effort evaluating each structure



Coarse Graining

All-Atom Representation




Coarse Graining

All-Atom Representation

NAST (Jonikas et al. 2009)

DMD (Ding et al. 2008)



Ernwin Coarse Grained Representation

Helix based coarse graining with
e 6 parameters per interior loop
e 3 parameters per hairpin / exterior loop

e 1 parameter per helix



Coarse Grain Model Parameters
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Structure Evaluation

Structure evaluation is split into two parts:

e Local structure:
Relative orientation of adjacent helices

e Global structure:
Avoid steric clashes
Ensure compactness of structures
Long-range interactions



Local Structure
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e Learn frequency distribution for helix orientations dependent
on loop size

e Used large number of Rosetta generated models with random
sequences



Local Structure
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Learn frequency distribution for helix orientations dependent
on loop size

Used large number of Rosetta generated models with random
sequences
Locally correct structures can be now be sampled directly!

MCMC only needed to include long range interactions



Non-local Energies

How to include non-local energies?

e Knowledge based potentials common approach for global
properties and long-range interactions

e Given feature X with a reference (desired) frequency
distribution P(X)

P(X)
Ex =—cln——%
) Q(X)
with Q(X) the background (expected) distribution.

e Used in the accept/reject step of MCMC



Non-local Energies

How to include non-local energies?

e Knowledge based potentials common approach for global
properties and long-range interactions

e Given feature X with a reference (desired) frequency
distribution P(X)

P(X)
Ex =—cln ——
* Q(X)
with Q(X) the background (expected) distribution.
e Used in the accept/reject step of MCMC
e Instead of a fixed Q(X), we sample Q(X) during the

simulation
Known as reference ratio method (Hammelryck, 2010)



Non-local Energies

Currently, we use 4 non-local energy terms:

e Clash detection — uses 1 virtual atom for each nucleotide

Radius of gyration — ensures compactness of structures

Loop-loop — distance between two hairpin loops

e A-minor interaction — unpaired A interacting with the minor
groove of a helix (hairpin and interior loop version)



A-minor Interaction
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The parameters d, ®, and W describe how the donor loop (blue) is
oriented with respect to the receptor stem (green).



A-minor Interaction

Probability Density of the A-Minor Energy
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Expected vs. Sampled

How many interactions do we expect a loop to be involved in?

A-Minor Energy (hairpin loops)
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Other Energies
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How Useful is An Energy?
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The ernwin energy has a better profile than the Rosetta energy.



Prediction Accuracy and Comparisons
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Density

Sampling Coarse-Grain Features
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Summary

Introduced highly coarse-grained helix based structure model

Allows more complete sampling of configuration space

Proposed long-range energies over a coarse-grain model

Direct sampling of local structure and knowledge based
potentials for long-range interactions

Details: Kerpedjiev et al., RNA 21, pp 1110-1121, 2015
Code at https://github.com/pkerpedjiev/ernwin


https://github.com/pkerpedjiev/ernwin

Limitations and Improvements

Conversion from coarse grained — atomic resolution and
refinement

Better long-range energy terms
More sequence dependence
Incorporation of interior loop motifs

Incorporation of multi-loop motifs



Including 3D Motifs

Can we use 3D motif prediction to improve ernwin?

e Run JAR3D on each interior loop
returns a list motifs and PDB ids for each motif
e Choose loop conformation from one of the JAR3D instances

e Compare predictions with/out JAR3D

Unfortunately, no JAR3D predictions for multi-loops yet.



Including Motif Predictions from JAR3D

Name Length Int. Loops (found) MCC Original MCC JAR3D MCC Change RMSD Change
1GID_A 158 8(5) 0.67 0.79 0.12 -10.07
IX8W_A 242 10(6) 0.64 0.69 0.05 -2.94
4GMA_Z 192 8(3) 0.68 0.71 0.04 -3.79
3T4B_A 83 2(1) 0.89 0.91 0.02 -1.92
3DOU-A 161 7(0) 0.75 0.76 0.01 -5.52
IGXY A T61 T0(5) 0.70 071 0.01 0.33
4LVZ_A 89 2(1) 0.82 0.83 0.01 -1.74
2TRA_A 73 0(0) 0.90 0.91 0.01 -0.80
2HOJ_A 78 3(0) 0.90 0.91 0.01 -0.05
4L81_A 96 2(2) 0.82 0.83 0.00 -1.98
1Y26_X 71 1(0) 0.98 0.97 0.00 1.00
3DHS_A 215 6(3) 0.75 0.74 0.00 0.60
4P5J_A 83 0(0) 0.86 0.85 0.00 0.15
3CW5_A 75 0(0) 0.91 0.90 -0.01 0.29
1U9S_A 155 8(3) 0.80 0.79 -0.01 -2.01
TKXKA 70 42) 0.88 0.86 0.0 0.37
4P9R_A 189 3(3) 0.72 0.70 -0.02 -1.16
4PQV_A 68 0(0) 0.87 0.84 -0.03 0.15
3DIR-A 172 6(3) 0.81 0.76 -0.05 0.99
3GX5_A 94 4(2) 0.88 0.79 -0.09 1.38

MCCs computed by converting 3D structures into contact maps



Correctly Predicted Kink-Turn Motif

Struct Name Struct Length Interior Loops -MCC Change RMSD Change
1GID_A 158 3 -0.12 -10.07

Crystal Structure Best Prediction



Incorrectly Predicted Interior Loop

Struct Name Struct Length Interior Loops -MCC Change RMSD Change
3GX5.A 94 2 0.09 1.38

Crystal Structure Best Prediction



