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FIG. 1. (Color online) Left: A dimer configuration on the square
lattice. Flippable plaquettes are shaded. Right: Flippable plaquettes
contribute a diagonal term v to the Hamiltonian and can be flipped
with amplitude �t (t > 0).

Quantum dimer models (QDM) play an important role as
simple model systems to understand the quantum dynamics
of constrained systems. ... [2].

Despite a sustained effort over the more than twenty years
since its inception [1], the ground state phase diagram of the
square lattice Rokhsar-Kivelson (RK) QDM is still debated.
While at large negative V/t ⇥ �1 there is a consensus that a
columnar dimer valence bond crystal (VBC) is stabilized, the
controversy is about the intermediate regime �0.5 � V/t <
1. In this region a plaquette phase has been suggested [3, 4], or
a persistence of the columnar phase [6], while more recently a
combination thereof, a mixed plaquette-columnar phase, has
been put forward [9]. All these phases are a priori possible
and viable candidates in this regime. However in this Letter
we provide strong numerical evidence that this intermediate
regime is governed by a huge crossover length, below which
the system effectively behaves as a U(1) symmetric system.
In this U(1) symmetric regime the system is delocalized in
order parameter space and does not yet lock into either of the
discrete symmetry breaking scenarios mentioned before.

This observation is potentially also relevant for frus-
trated antiferromagnets on the square lattice, as an approxi-
mate mapping between these systems and an effective QDM
has recently been introduced. This might also provide an
explanation for the long-standing puzzle that the energy
levels in frustrated square lattice antiferromagnets in the
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FIG. 2. (Color online) Square lattice: v/t dependence of the 1/L3

finite size correction to the energy per site. Symbols denote different
sets of samples considered in the linear regression. The dashed lined
is a heuristic fit motivated in the main text. Note the collapse of the
correction for v/t � �0.6 for the largest system sizes considered.

columnar/plaquette regime do not collapse exponentially on
presently accessible length scales in simulations.

We simulate the Rokhsar-Kivelson (RK) Quantum Dimer
Model (QDM) on the square and the honeycomb (hexagonal)
lattice using Exact Diagonalization. Accessible system sizes
go currently up to N = 80 for the square lattice and N = 126
for the honeycomb lattice.

Ground state energy and excitation spectrum — In the in-
set of Fig. 2 we show the energy per site as a function of v/t
and its derivative de/d(v/t). All system sizes considered are
shown in the inset, but the finite size effects are invisible on
the plotted scale. In the proposed VBC phases - which fea-
ture discrete symmetry breaking - one expects exponentially
vanishing finite size effects in the energy per site beyond a
(typically short) correlation length. In contrast to this expec-
tation we observe that the energy per site has leading 1/L3

finite size corrections in a considerable window of v/t values
and the full range of system sizes considered. The main plot of
Fig. 2 illustrates the v/t behavior of the absolute value of the
prefactor of the correction term, obtained by a linear regres-
sion over different sets of samples as indicated in the legend.
For v/t � �0.6 it can be seen that the correction term rapidly
collapses when including only the largest system sizes. This
implies that the postulated crossover length is indeed short in
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Outline of the talk

Frustrated quantum magnetism in a nutshell 

Some examples of constrained models and their phase 
diagrams 

Revisiting the simplest case: quantum dimer model (QDM) on a 
square lattice 

Engineering SU(2) spin-1/2 microscopic models to realize any 
phase of its QDM counterpart 

Conclusion and outlook
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Part 1 : Quantum Magnetism

see also talks by Misguich and Becca



Quantum magnetism
‣ Mott insulator : magnetism well described by spin lattice models

• Antiferromagnetism
• In most compounds, few coupling constant are important. 

Simplest example: Heisenberg model

H =
X

i,j

JijSi · Sj

J > 0

Jij 6= 0 for hi, ji, hhi, jii...

• Quantum effects are important for low spin values and low dimension

in this talkS = 1/2, d = 2

J

mostly



S=1/2 Heisenberg models
‣ Bipartite lattices, nearest-neighbor J 

• Under control (e.g. with spin waves, Quantum Monte Carlo)

• Simplest example : square lattice

•           and                  per unit cell : Antiferromagnetic long range orderd > 1 S = 1/2

ms = 0.30793(3)



S=1/2 Heisenberg models
• Under control (e.g. with spin waves, Quantum Monte Carlo)

• Most of the time, antiferromagnetism dies but ground-state not understood

• Guess : spin is no longer the good degree of freedom at low energy

•           and                  per unit cell : Antiferromagnetic long range orderd > 1 S = 1/2

‣ Non-bipartite lattices: frustration

• Antiferromagnetic order may survive

e.g. triangular lattice

ms ' 0.205

J1-J2 model for 
J2 ⇠ 0.5J1

J1
J2

• No longer under control 

kagome

‣ Bipartite lattices, nearest-neighbor J 



Exotic Quantum Phases
J1-J2 square lattice: 

✦  Z2 spin liquid 

✦Valence Bond Crystal (VBC) with J3 

✦Both phases 

H. Jiang, H. Yao and L. Balents, PRB (2012).

Recent list (inventory à la Prévert)

M. Mambrini, A. Läuchli, D. Poilblanc, F. Mila, PRB (2006).

J1-J2 honeycomb lattice: 

✦Valence Bond Crystal (VBC) with additional J3  

✦VBC

kagome lattice: 

✦  Z2 spin liquid 

✦U(1) spin liquid 
✦VBC 

✦p6 chiral RVB

Yan, White and Huse, Science (2011); Jiang, Wang, Balents, Nat. Phys. (2012) 
Depenbrock, McCulloch, Schollwöck PRL (2012)

Zhu, Huse, White, PRL (2013) Gong, Sheng, Motrunich, Fisher, PRB (2013)

F. Albuquerque et al., PRB (2011).

Iqbal, Becca, Sorella, Poilblanc, PRB (2013) 

Evenbly and Vidal, PRL (2010)

Gong et al., PRL (2014)

Capponi, Chandra, Auerbach, Weinstein, PRB (2013)



Singlet physics

‣ In some cases, n. n. VBs are the «good» degrees of freedom

‣ 2 sites example 
H = JS1 · S2 S = 0

S = 1
J

• form a singlet 1p
2
(|"#i � |#"ii

1 2a.k.a Valence bond (VB), SU(2) dimer

Valence Bond crystal

‣ Good ansatz for non magnetic states (S=0) 

(rotation, translation broken)
« Spin liquid »

+...+

(no broken symmetry)

• Caution : Caricatures (not always n.n. bonds), other states are possible ...

...



Formalize this!
‣ Assume nearest neighbors valence bonds are important

• Method 1 : Diagonalize in this variational subspace
• Problem : Valence bonds are non-orthogonal

O12 = hVB1|VB2i 6= 0 8 VB1,VB2

H| i = EO| i

‣ Leads to effective (orthogonal) Quantum Dimer Models

‣ Original scheme recently revisited 

• Method II : Overlap expansion Rokhsar, Kivelson, ‘88

• Exploit the hierarchy of overlap matrix elements

Oij 2 {1, 1
2
,
1

4
. . .

1

2N/2�1
}

• Expand overlap matrix and Heisenberg Hamiltonian in powers of

Schwandt, Mambrini, Poilblanc ‘10

x = 1/
p
2



Quantum dimer models
‣ Hamiltonian for orthogonal hardcore dimer coverings

HQDM = �t + v

| ih |+ | ih |
X

| ih |+ | ih |
X

• Overlap expansion of Heisenberg model : t = x

2
J

v = x

4
J

• New terms appear at higher order :

...
Generalized QDM



Quantum dimer models
‣ Hamiltonian for orthogonal hardcore dimer coverings

• Effectively captures a great deal of physics (new phases)
• Easy to play with : field theories, numerics-friendly 

‣ QDM interesting on their own
• Phase diagrams

HQDM = �t + v

0.6columnar crystal

?

staggered

Rokshar, Kivelson, Moessner, Sondhi ...

square 
lattice

triangular 
lattice

staggeredcolumnar crystal 0.82�0.75 1liquid
RK point

| RKi /
X

c

|ci

v/t



But wait ...

• Q1 : How well are the phase diagram established ?

• Q2 : Spin models with quantum dimer phases ?

6=



Part 2 : Snapshots of
phase diagrams for

some constrained models



• Phase diagram for attractive v = �1

columnar crystal critical phase T = 0 Tc = 0.65 T = 1

Classical dimers in 2d
• Simplest classical model on 2d (square) lattice 

Ec = v
h
N c( ) +N c( )

i
Z =

X

c

exp(�Ec/T )

• Kosterlitz-Thouless transition, sine-Gordon theory 1 10 100
x
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• In the critical phase, exponents vary continuously

T = 1 T = 2 T = 3

Alet et al. ‘05



Tc = 1.675

unconventional phase 
transition

Ec = v


N c( ) +N c( ) +N c( ) +N c( ) +N c( ) +N c( )

�

dimer 
“Coulomb” 

liquid

Classical dimers in 3d
• Same model …

Z =

X

c

exp(�Ec/T )

• … but new physics !

T = 0 T = 1

• degeneracy = 6

columnar crystal

• Long-range order

m(r) =

0

@
(�)rx [dx(r)� d�x(r)]
(�)ry [dy(r)� d�y(r)]
(�)rz [dz(r)� d�z(r)]

1

A
Alet, Misguich, Pasquier, Moessner, & Jacobsen ‘06



2d nearest-neighbor RVB quantum wave-function

| RVBi =
X

c

| ic
=

1p
2
(| i � | i)

paradigm for spin liquid

⇤S0 · Sr⌅ ⇥ (�)re�r/�

➡ Short-range spin correlations

� � 1.35

i,j et k,l 
nearest-neighbor

i j

k l
r
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(1, 1)
(0, 1)
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(a) -   = (0, 0)w (b) - L = 128

Cijkl(r) � 1/|r|�

� � 1.16

Cijkl = ⇥(Si · Sj)(Sk · Sl)⇤ � ⇥Si · Sj⇤⇥Sk · Sl⇤
➡ But critical dimer-dimer correlations !

Unusual spin liquid :  
finite spin gap but gapless singlet excitations

Albuquerque and Alet ’10
Tang, Sandvik, Henley ‘11
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FIG. 1. Schematic phase diagram from QMC simulations
(L

x

= L
y

= 60). The (v0, v3) plane is divided into five re-
gions: a staggered phase with the maximal flux (f = 2),
the star and the plaquette phases (f = 0), the S2 phase
(f = 1/2), and the fan region, containing a cascade of flux
sectors 1/2  f < 2. The plaquette color indicates the dimer
density (same scale as Figs. 2 and 3).

local dimer moves. As discussed below, for ground states,
one of the two fluxes is zero and we can restrict ourselves
to Fx = 0 and work with f := Fy/Ly � 0.

Classical limit.—Let us consider the classical limit
t = 0. Setting v

0

= sin↵, v
3

= cos↵, and defining
↵
1

= arctan(�2), ↵
2

= ⇡/2 � ↵
1

, one finds three crys-
tals as ↵ is varied: (i) for ↵ 2 [⇡/2,↵

1

], the three-
fold degenerate staggered crystals (nonflippable config-
urations) with maximum flux f = 2, vanishing energy,
and ~⇢ = (0, 0, 1, 0), (ii) for ↵ 2 [↵

1

,↵
2

], the (threefold
degenerate) star crystal in the f = 0 sector (Fig. 1) with
~⇢ = (1/3, 0, 0, 2/3), (iii) for ↵ 2 [↵

2

,⇡/2], a 12-fold degen-
erate crystal [22] denoted S

2

, within the f = 1/2 sector,
with ~⇢ = (0, 1/2, 0, 1/2). The point ↵ = ⇡/2 is highly
degenerate, since any configuration without 0-plaquettes
is a ground state, and such states exist in all flux sec-
tors. This degeneracy is lifted when t 6= 0, leading to a
nontrivial ground-state flux variation as discussed below.

Phase diagram.—We studied the phase diagram with
QMC simulations using the mapping to an Ising-type
model described in Refs. [18–20]. Specifically, results
displayed in Fig. 1 have been obtained for a torus with
60 ⇥ 60 plaquettes, flux sectors f = 0, 1

10
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, . . . , 2, in-
verse temperature � = 9.6, and imaginary-time step

3
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3
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3

S-string

F-string

H-string

FIG. 2. Left: a configuration of three strings and the cor-
responding dimer covering, with 0- and 3-plaquettes. Left
bottom and right: three variational classes of dynamically
constrained strings, called S-, H-, and F -strings. S-strings
are in a static zigzag configuration, H-strings (F -strings) are
allowed to fluctuate by one row in every second column (in ev-
ery column). Arrows indicate the fluctuations of the strings,
each corresponding to a 3-plaquette flip. Dimer densities are
indicated according to the color scale of Fig. 3. For H- and
F -strings, the shown dimer densities correspond to a super-
position of the allowed configurations.

�� = 0.01.
• f = 2. In this region, ground states are isolated stag-

gered configurations with vanishing energy. The Hamil-
tonian is positive definite in the upper right quadrant,
and the f = 2 region also extends to a large part of the
lower right quadrant, down to the boundary with the
f = 0 sector.

• f = 0. The star and plaquette crystals found in this
region also exist in the v

3

-only model [18, 19] and are
separated by a first-order transition (dashed line). The
star phase is adiabatically connected to the (threefold
degenerate) crystalline configurations found for t = 0.
The latter simultaneously maximize the number of 3-
and 0-plaquettes, and the star phase thus fills a large
part of the (v

3

< 0, v
0

< 0)-quadrant and also extends
into the neighboring quadrants. On the v

0

= 0 line, the
star phase gives way to the plaquette phase through a
first-order transition at v

3

= �0.228(2) [18, 19]. The
plaquette phase is defined by continuity with the “ideal”
plaquette state, which is an uncorrelated product of res-
onating 3-plaquettes | i + | i. In the vicinity of the
RK point, as is already the case for Ĥ(t, v

0

= 0, v
3

) [19],
the large (diverging) correlation length makes it di�cult
to discriminate numerically between the star and pla-
quette phases, hence the question mark in Fig. 1. This
phenomenon is likely to be related to the U(1) regime
observed in the square lattice QDM [23].

• f = 1/2. In most of this region, the system forms
a 12-fold degenerate crystalline phase, adiabatically con-
nected to the S

2

configuration.
• 1/2 < f < 2. This is the most interesting part of the

phase diagram, which we call the fan region. To under-
stand the flux variations taking place there, we recall that
any dimer configuration can be represented equivalently
as a configuration of nonintersecting strings on the hexag-

Moessner, Sondhi, Chandra ’01
Schlittler, Barthel, Misguich, Vidal, Mosseri ’15

2d  QDM
Phase diagram 

on a honeycomb lattice
(bipartite case)

Zero-temperature properties of the quantum dimer model on the triangular lattice

Arnaud Ralko,1 Michel Ferrero,2 Federico Becca,2 Dmitri Ivanov,1 and Frédéric Mila1
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Using exact diagonalizations and Green’s function Monte Carlo simulations, we have studied the zero-
temperature properties of the quantum dimer model on the triangular lattice on clusters with up to 588 sites. A
detailed comparison of the properties in different topological sectors as a function of the cluster size and for
different cluster shapes has allowed us to identify different phases, to show explicitly the presence of topo-
logical degeneracy in a phase close to the Rokhsar-Kivelson point, and to understand finite-size effects inside
this phase. The nature of the various phases has been further investigated by calculating dimer-dimer correla-
tion functions. The present results confirm and complement the phase diagram proposed by Moessner and
Sondhi on the basis of finite-temperature simulations #Phys. Rev. Lett. 86, 1881 !2001"$.

DOI: 10.1103/PhysRevB.71.224109 PACS number!s": 75.10.Jm, 05.50.!q, 05.30."d

I. INTRODUCTION

The investigation of spin-liquid phases is currently a very
active field of research, partly—but not only—because of
their possible connection to the superconductivity observed
in several cuprates. The definition of a “spin liquid” is itself
a matter of debate. Following the work of Shastry and Suth-
erland on a two-dimensional model whose exact ground state
is a product of dimer singlets,1 the word is sometimes used to
designate phases in which the spin-spin correlation function
decays exponentially fast with distance at zero temperature.
However, such phases often exhibit other types of long-range
order, such as dimer order, which manifest themselves as
nondecaying correlation functions involving more than two
spins.2 In that respect, the word liquid is not appropriate, and
it should arguably be reserved for systems in which all cor-
relation functions decay exponentially fast at large distance.
This discussion would be quite academic if the only charac-
teristic of such liquids was the absence of any kind of order,
but following the pioneering work of Wen,3 it is well admit-
ted by now that such liquids can exhibit another property
known as topological order: In the thermodynamic limit, the
ground state !when defined on a topologically nontrivial do-
main" exhibits a degeneracy not related to any symmetry and
referred to as topological degeneracy. These degenerate
ground states live in topological sectors which cannot be
connected by any local operator.

The realization of such phases in quantum spin models is
still preliminary though. The best candidates are frustrated
magnets for which quantum fluctuations are known to de-
stroy magnetic long-range order, but their ground-state prop-
erties are very difficult to access, and when definite conclu-
sions are reached, it is usually because the presence of some
kind of long-range order !dimer, plaquette, etc." can be
established.4 The main difficulty is in a sense technical: A
good diagnosis would require us to study large enough clus-
ters, but this is not possible since quantum Monte Carlo
simulations of frustrated antiferromagnets are plagued with a
very severe minus sign problem.

In that respect, effective models such as the quantum
dimer model !QDM" are extremely interesting. Although

their relationship to actual Heisenberg antiferromagnets is
not a simple issue,5 they describe resonance processes typical
of strongly fluctuating frustrated quantum magnets while re-
taining the possibility to be analyzed by standard techniques
such as quantum Monte Carlo. This possibility was first ex-
ploited by Moessner and Sondhi,6 who developed a finite-
temperature Monte Carlo algorithm to study the QDM on a
triangular lattice defined by the Hamiltonian

where the sum runs over all plaquettes including the three
possible orientations. The kinetic term controlled by the am-
plitude t changes the dimer covering of every flippable
plaquette, i.e., of every plaquette containing two dimers fac-
ing each other, while the potential term controlled by the
interaction v describes a repulsion !v#0" or an attraction
!v$0" between dimers facing each other. Since a positive v
favors configurations without flippable plaquettes while a
negative v favors configurations with the largest possible
number of flippable plaquettes, the so-called maximally flip-
pable plaquette configurations !MFPC", one might expect a
phase transition between two phases as a function of v / t. The
actual situation is far richer, though. As shown by Moessner
and Sondhi, who calculated the temperature dependence of
the structure factor, there are four different phases !see Fig.
1": !i" A staggered phase for v / t#1, in which the ground-

FIG. 1. Phase diagram of the QDM on the triangular lattice as a
function of v / t after Ref. 6.

PHYSICAL REVIEW B 71, 224109 !2005"
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Phase diagram 
on a triangular lattice
(non-bipartite case)



topological Z2 liquid !

2

FIG. 1. Schematic phase diagram from QMC simulations
(L

x

= L
y

= 60). The (v0, v3) plane is divided into five re-
gions: a staggered phase with the maximal flux (f = 2),
the star and the plaquette phases (f = 0), the S2 phase
(f = 1/2), and the fan region, containing a cascade of flux
sectors 1/2  f < 2. The plaquette color indicates the dimer
density (same scale as Figs. 2 and 3).

local dimer moves. As discussed below, for ground states,
one of the two fluxes is zero and we can restrict ourselves
to Fx = 0 and work with f := Fy/Ly � 0.

Classical limit.—Let us consider the classical limit
t = 0. Setting v

0

= sin↵, v
3

= cos↵, and defining
↵
1

= arctan(�2), ↵
2

= ⇡/2 � ↵
1

, one finds three crys-
tals as ↵ is varied: (i) for ↵ 2 [⇡/2,↵

1

], the three-
fold degenerate staggered crystals (nonflippable config-
urations) with maximum flux f = 2, vanishing energy,
and ~⇢ = (0, 0, 1, 0), (ii) for ↵ 2 [↵

1

,↵
2

], the (threefold
degenerate) star crystal in the f = 0 sector (Fig. 1) with
~⇢ = (1/3, 0, 0, 2/3), (iii) for ↵ 2 [↵

2

,⇡/2], a 12-fold degen-
erate crystal [22] denoted S

2

, within the f = 1/2 sector,
with ~⇢ = (0, 1/2, 0, 1/2). The point ↵ = ⇡/2 is highly
degenerate, since any configuration without 0-plaquettes
is a ground state, and such states exist in all flux sec-
tors. This degeneracy is lifted when t 6= 0, leading to a
nontrivial ground-state flux variation as discussed below.

Phase diagram.—We studied the phase diagram with
QMC simulations using the mapping to an Ising-type
model described in Refs. [18–20]. Specifically, results
displayed in Fig. 1 have been obtained for a torus with
60 ⇥ 60 plaquettes, flux sectors f = 0, 1
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, . . . , 2, in-
verse temperature � = 9.6, and imaginary-time step
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FIG. 2. Left: a configuration of three strings and the cor-
responding dimer covering, with 0- and 3-plaquettes. Left
bottom and right: three variational classes of dynamically
constrained strings, called S-, H-, and F -strings. S-strings
are in a static zigzag configuration, H-strings (F -strings) are
allowed to fluctuate by one row in every second column (in ev-
ery column). Arrows indicate the fluctuations of the strings,
each corresponding to a 3-plaquette flip. Dimer densities are
indicated according to the color scale of Fig. 3. For H- and
F -strings, the shown dimer densities correspond to a super-
position of the allowed configurations.

�� = 0.01.
• f = 2. In this region, ground states are isolated stag-

gered configurations with vanishing energy. The Hamil-
tonian is positive definite in the upper right quadrant,
and the f = 2 region also extends to a large part of the
lower right quadrant, down to the boundary with the
f = 0 sector.

• f = 0. The star and plaquette crystals found in this
region also exist in the v

3

-only model [18, 19] and are
separated by a first-order transition (dashed line). The
star phase is adiabatically connected to the (threefold
degenerate) crystalline configurations found for t = 0.
The latter simultaneously maximize the number of 3-
and 0-plaquettes, and the star phase thus fills a large
part of the (v

3

< 0, v
0

< 0)-quadrant and also extends
into the neighboring quadrants. On the v

0

= 0 line, the
star phase gives way to the plaquette phase through a
first-order transition at v

3

= �0.228(2) [18, 19]. The
plaquette phase is defined by continuity with the “ideal”
plaquette state, which is an uncorrelated product of res-
onating 3-plaquettes | i + | i. In the vicinity of the
RK point, as is already the case for Ĥ(t, v

0

= 0, v
3

) [19],
the large (diverging) correlation length makes it di�cult
to discriminate numerically between the star and pla-
quette phases, hence the question mark in Fig. 1. This
phenomenon is likely to be related to the U(1) regime
observed in the square lattice QDM [23].

• f = 1/2. In most of this region, the system forms
a 12-fold degenerate crystalline phase, adiabatically con-
nected to the S

2

configuration.
• 1/2 < f < 2. This is the most interesting part of the

phase diagram, which we call the fan region. To under-
stand the flux variations taking place there, we recall that
any dimer configuration can be represented equivalently
as a configuration of nonintersecting strings on the hexag-
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Using exact diagonalizations and Green’s function Monte Carlo simulations, we have studied the zero-
temperature properties of the quantum dimer model on the triangular lattice on clusters with up to 588 sites. A
detailed comparison of the properties in different topological sectors as a function of the cluster size and for
different cluster shapes has allowed us to identify different phases, to show explicitly the presence of topo-
logical degeneracy in a phase close to the Rokhsar-Kivelson point, and to understand finite-size effects inside
this phase. The nature of the various phases has been further investigated by calculating dimer-dimer correla-
tion functions. The present results confirm and complement the phase diagram proposed by Moessner and
Sondhi on the basis of finite-temperature simulations #Phys. Rev. Lett. 86, 1881 !2001"$.

DOI: 10.1103/PhysRevB.71.224109 PACS number!s": 75.10.Jm, 05.50.!q, 05.30."d

I. INTRODUCTION

The investigation of spin-liquid phases is currently a very
active field of research, partly—but not only—because of
their possible connection to the superconductivity observed
in several cuprates. The definition of a “spin liquid” is itself
a matter of debate. Following the work of Shastry and Suth-
erland on a two-dimensional model whose exact ground state
is a product of dimer singlets,1 the word is sometimes used to
designate phases in which the spin-spin correlation function
decays exponentially fast with distance at zero temperature.
However, such phases often exhibit other types of long-range
order, such as dimer order, which manifest themselves as
nondecaying correlation functions involving more than two
spins.2 In that respect, the word liquid is not appropriate, and
it should arguably be reserved for systems in which all cor-
relation functions decay exponentially fast at large distance.
This discussion would be quite academic if the only charac-
teristic of such liquids was the absence of any kind of order,
but following the pioneering work of Wen,3 it is well admit-
ted by now that such liquids can exhibit another property
known as topological order: In the thermodynamic limit, the
ground state !when defined on a topologically nontrivial do-
main" exhibits a degeneracy not related to any symmetry and
referred to as topological degeneracy. These degenerate
ground states live in topological sectors which cannot be
connected by any local operator.

The realization of such phases in quantum spin models is
still preliminary though. The best candidates are frustrated
magnets for which quantum fluctuations are known to de-
stroy magnetic long-range order, but their ground-state prop-
erties are very difficult to access, and when definite conclu-
sions are reached, it is usually because the presence of some
kind of long-range order !dimer, plaquette, etc." can be
established.4 The main difficulty is in a sense technical: A
good diagnosis would require us to study large enough clus-
ters, but this is not possible since quantum Monte Carlo
simulations of frustrated antiferromagnets are plagued with a
very severe minus sign problem.

In that respect, effective models such as the quantum
dimer model !QDM" are extremely interesting. Although

their relationship to actual Heisenberg antiferromagnets is
not a simple issue,5 they describe resonance processes typical
of strongly fluctuating frustrated quantum magnets while re-
taining the possibility to be analyzed by standard techniques
such as quantum Monte Carlo. This possibility was first ex-
ploited by Moessner and Sondhi,6 who developed a finite-
temperature Monte Carlo algorithm to study the QDM on a
triangular lattice defined by the Hamiltonian

where the sum runs over all plaquettes including the three
possible orientations. The kinetic term controlled by the am-
plitude t changes the dimer covering of every flippable
plaquette, i.e., of every plaquette containing two dimers fac-
ing each other, while the potential term controlled by the
interaction v describes a repulsion !v#0" or an attraction
!v$0" between dimers facing each other. Since a positive v
favors configurations without flippable plaquettes while a
negative v favors configurations with the largest possible
number of flippable plaquettes, the so-called maximally flip-
pable plaquette configurations !MFPC", one might expect a
phase transition between two phases as a function of v / t. The
actual situation is far richer, though. As shown by Moessner
and Sondhi, who calculated the temperature dependence of
the structure factor, there are four different phases !see Fig.
1": !i" A staggered phase for v / t#1, in which the ground-

FIG. 1. Phase diagram of the QDM on the triangular lattice as a
function of v / t after Ref. 6.
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Extended quantum U(1)-liquid phase in a three-dimensional quantum dimer model
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Recently, quantum dimer models have attracted a great deal of interest as a paradigm for the study of exotic
quantum phases. Much of this excitement has centred on the claim that a certain class of quantum dimer model
can support a quantum U(1) liquid phase with deconfined fractional excitations in three dimensions. These
fractional monomer excitations are quantum analogues of the magnetic monopoles found in spin ice. In this
article we use extensive quantum Monte Carlo simulations to establish the ground-state phase diagram of the
quantum dimer model on the three-dimensional diamond lattice as a function of the ratio µ of the potential
to kinetic energy terms in the Hamiltonian. We find that, for µc = 0.75± 0.02, the model undergoes a first-
order quantum phase transition from an ordered “R-state” into an extended quantum U(1) liquid phase, which
terminates in a quantum critical “RK point” for µ = 1. This confirms the published field-theoretical scenario.
We present detailed evidence for the existence of the U(1) liquid phase, and indirect evidence for the existence
of its photon and monopole excitations. Simulations are benchmarked against a variety of exact and perturbative
results, and a comparison is made of different variational wave functions. We also explore the ergodicity of the
quantum dimer model on a diamond lattice within a given flux sector, identifying a new conserved quantity
related to transition graphs of dimer configurations. These results complete and extend the analysis previously
published in [O. Sikora et al. Phys. Rev. Lett. 103, 247001 (2009)].

PACS numbers: 75.10.Jm 75.10.Kt, 11.15.Ha, 71.10.Hf

I. INTRODUCTION

Dimer models, which describe the myriad possible con-
figurations of hard-core objects on bonds, have long been a
touch-stone of statistical mechanics1,2. Quantum dimer mod-
els (QDM’s), in which dimers are allowed to resonate between
different degenerate configurations, were first introduced to
describe antiferromagnetic correlations in high-Tc supercon-
ductors3. It has since been realized that QDM’s arise naturally
as effective models of many different condensed matter sys-
tems, and provide a concrete realizations of several classes
of lattice gauge theories. As such, they have become central
to the theoretical search for new quantum phases and excita-
tions. A key question in this context is when, if ever, a QDM
can support a liquid ground state?

The answer to this question depends on lattice dimension
and topology. In two dimensions (2D), the situation is rela-
tively well-understood4, and a liquid ground state is known
to exist in the QDM on the non-bipartite triangular5 and
kagome6 lattices. This liquid is gapped and has deconfined
fractional excitations, which are vortices of an underlying Z2

(Ising) gauge theory. Meanwhile, for 2D bipartite lattices,
the underlying gauge theory has a U(1) character, akin to
electromagnetism7,8. In this case a liquid state is found only
at a single, critical, “Rokhsar-Kivelson” (RK) point3. Away
from this, the system crystallizes into phases with broken lat-

FIG. 1: (Color online) Phase diagram of the quantum dimer model
on a diamond lattice, as a function of the ratioµ of potential to kinetic
energy, following8,12,14.

tice symmetries. For the QDM on a square lattice, these are
columnar dimer and resonating plaquette phases9,10. A very
similar phase diagram is found for the QDM on a honeycomb
lattice11.

Much less is known about QDM’s in three dimensions (3D).
However here field theoretical arguments suggest that a new,
extended U(1)-liquid phase with gapless photon-like excita-
tions might “grow” out of the RK point for a 3D QDM on
a bipartite lattice8,12 (see Fig. 1). Similar claims have been
made for the closely related quantum loop model in three di-
mensions13.

In a recent Letter14, we presented numerical evidence for

Phase diagram 
on a diamond lattice

(bipartite case) Dynamical dimer correlations at bipartite and non-bipartite Rokhsar-Kivelson points 10

Figure 4. Cubic Lattice. Left panel: low-energy zoom ! 2 [0, 0.3] of D
x

(Q, !)
along the same path in the Brillouin zone as in Figure 3. Right panel: Supplementary
low energy data for D

x

(Q, !) along the path (⇡, ⇡, 0) ! (⇡, ⇡, ⇡). The dashed white
lines with the filled circles denotes the measured !D

x

fm (Q) for both panels, and is in good
agreement with the expected k2 dispersion close to (⇡, ⇡, ⇡). Note that the maximum
intensity of D

x

(Q, !) rapidly deviates from the expected k2-law and becomes linear,
revealing the remnant of the linearly dispersing ”photon” mode of the U(1)-liquid
Coulomb phase.

contrary to the square lattice case, there is no other peculiar point in the Brillouin zone

(such as the 2d ”pi0n”) so that the (⇡, ⇡, ⇡) point is supposed to be the only gapless

excitation. Also, in the 3d case, there is a so-called Coulomb phase with dipolar dimer

correlations [5, 6, 27]. Moreover, based on an e↵ective low energy field-theory [5, 6],

the cubic dimer model can be described: (a) for v
c

/t < v/t < 1, by a standard U(1)

Maxwell electromagnetic theory with a linearly dispersing transverse photon; (b) at the

RK point, v = t, the photon dispersion becomes quadratic.

Fig. 3 shows our results both for the dimer spectral functions and equal-time

structure factors along a specific path through the Brillouin zone. Except at (⇡, ⇡, ⇡)

where it vanishes by symmetry, the equal-time structure factor D
x

(Q) is rather smooth

and has no divergence. The non-continuity of D
x

(Q) upon approaching (⇡, ⇡,⇡) from

di↵erent directions is the momentum space signature of the dipolar real-space dimer

correlation functions.

The first moment of the spectral functions, which corresponds to the SMA result,

exhibits a wide dispersion reaching its maximum of ⇠ 2.45 at the � point, with a

quadratic behavior aproaching zero energy close to (⇡, ⇡, ⇡), similar to the square lattice.

The visible intensity is however concentrated mostly at very low energy, in contrast to

the square lattice. By looking more closely at the low-energy features shown in Fig. 4,

it can be seen that the spectral function is not simply following the SMA energy, even

in the neighorhood of (⇡, ⇡, ⇡), clearly at variance with the results for the square lattice,

Läuchli, Capponi, Assaad ‘08

Dynamics at the RK point:
emergence of a photon !
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V/t1

Non-flippable phase

~ 0.70

Stripe phase Z2 phase

FIG. 5. (Color online) Phase diagram of the QLM Eq. (5) as a function of V/t, containing the three di↵erent phases discussed
in Sec. III A. The boundary between stripe phase and Z

2

spin liquid is determined using topological degeneracy and stripe
structure factor.

TABLE I. Three plateaus of S = 1/2 BFG model and the
corresponding e↵ective models.

plateaus q(S �m) number of dimers/site e↵ective model

m = 0 3/2 three generalized QDM

m = 1/6 1 two QLM

m = 1/3 1/2 one QDM

QLM (Sec. III), and then on the microscopic spin model
(Sec. IV).

III. PHASE DIAGRAM OF THE QUANTUM
LOOP MODEL

We consider here the e↵ective model (5) in the case
of two dimers per site, where allowed states are repre-
sented by configurations of self-avoiding loops such as
represented in Fig. 3. Motivated by the original spin
model Eq. (1) at the m = 1/6 plateau, we are primarily
interested in the nature of the ground state of the e↵ec-
tive QLM at V/t = 0, however we will also investigate the
nature of the surrounding phases in the phase diagram.
We first give, in Sec. III A, general arguments on the
structure of the phase diagram as well as on the topolog-
ical properties of the loop configurations, before comple-
menting this analysis in Sec. III B with QMC simulations
of the loop model. Anticipating the results obtained, we
present in Fig. 5 the ground-state phase diagram of the
QLM on the triangular lattice to illustrate the following
discussion.

A. General considerations of the phase diagram of
the quantum loop model

When V/t ! �1, the ground-state energy is mini-
mized by configurations where loops form straight lines
along one of the three lattice directions, as shown in the
left part of the phase diagram presented in Fig. 5. As

FIG. 6. (Color online) Top left: Triangular clusters used in
the QLM study. Bottom left: notations for the loop segment
occupation number. Right: First Brillouin zone of the tri-
angular lattice, with the reciprocal space vectors b

1

and b
2

.
The high symmetry points K = (4⇡/3, 0), M = (⇡,⇡/

p
3)

and A = (⇡, 0) required for the non-flippable states are rep-
resented.

aligned up and down spins form alternating stripes in the
corresponding configurations of the original spin mod-
els (see the right panel of Fig. 12), we call this a stripe
phase. In this gapped ordered phase, some of the rota-
tions and reflections of the triangular lattice are sponta-
neously broken (i.e., the point group changes from C

6v

to
C

2v

), leading to the three-fold degenerate ground states
(in the QDM, the corresponding columnar phase further
breaks translation symmetry).

At the RK point V/t = 1, the ground state is given by
the equal-weighted sum of all fully-packed loop configu-
rations on the triangular lattice. To our best knowledge,
the equivalent classical problem has not been studied be-
fore. As the triangular lattice is non-bipartite, we expect
that the loop segment correlations are short-ranged, in-
dicating a liquid phase presumably with a gap, as also
found for the RK point of the QDM [8].

When V/t > 1, the ground states are readily found
to have zero energy and correspond to non-flippable loop
configurations (i.e. for which the kinetic term vanishes),
which is again similar to the staggered phase of the QDM.

Phase diagram of the quantum loop model on the 
triangular lattice

Plat, Alet, Capponi, Totsuka ’15, see Totsuka’s talk !
4

FIG. 3: (Color online) The phase diagram of the dimer models at
different fractional fillings f . The important details about each of
them are given in the text. The focus of the present paper is at f =
1/3.

In context of the present work, as noted in the last sec-
tion, we mention that the low energy effective Hamiltonian in
the strong coupling limit generally assumes the RK form irre-
spective of the filling fraction of the bosons (or the equivalent
dimer models: QDM, FPL or the 3-dimer model respectively
for f = 1/6, 1/3 and 1/2) considered, albeit with important
implications for the stability and nature of both the liquid and
the solid phases which is summarized in Fig. 3. With this gen-
eral formulation we now specialize to the physics of the Mott
lobe for 1/3 filling.

III. NUMERICAL CALCULATIONS AT 1/3 FILLING

We use a combination of tensor product states (TPS) for-
malism and exact diagonalization (ED) methods to obtain the
phase diagram (Fig. 3 middle line) of the FPL model on the
triangular lattice. Necessary details about implementing the
numerical methods for different clusters are furnished in the
following subsections facilitating a systematic analysis of our
model. We take the value of g to be 1 which is a convenient
choice for further numerical calculations.

A. Entanglement entropy at the RK point: the Z2 liquid

One of the most interesting features of the Hamiltonian in
Eq. (7) is the existence of the exactly solvable RK point (g =
VRK). We start by showing that at this point the ground state
of our model (FPL) indeed has a topological order.

In order to characterize the topological order, an instructive
quantity to look at is the entanglement entropy (S) for a bipar-

FIG. 4: (Color online) The plot shows the finite size dependence
of the topological entanglement entropy � as a function of L, the
perimeter of the subsystem A. The green dashed line corresponds to
the saturated value of ln 2 in the thermodynamic limit. The lattice is
constructed on an infinite cylinder assuming periodic boundary con-
dition in one direction. The black dashed line indicates the bipartition
of the cylinder separating the subsystem A from the rest B. The inset
shows the linear growth of the entanglement entropy S with L.

tition of the system into two parts A and B . The entanglement
entropy of the reduced density matrix ⇢

A

of subsystem A is
defined as S = �Tr [⇢

A

log ⇢
A

] where ⇢
A

is obtained from
the full density matrix by tracing out all the degrees of free-
dom in the rest (B). For a gapped and topologically ordered
gapped ground state, S satisfies the “area law” which goes as,

S(L) = ↵L� � +O(L�1) + · · · , (8)

where ↵ in the leading term is a non-universal coefficient and
L is the perimeter of the subsystem A. The sub-leading term
�, also known as the topological entanglement entropy,47–50

is, however, universal bearing the anyonic content of the state
that reflects the topological order. This is directly related to
the total quantum dimension (D) of the underlying topological
field theory as � = logD. Since D = 2 for a gapped Z2 liquid
(described by the Z2 gauge theory), the quantity � in Eq. (8)
saturates to log 2 in the thermodynamic limit i.e. L ! 1.

The ground state at the RK point can be exactly repre-
sented by tensor networks using the framework of projected
entangled-pair states (PEPS).51,52 We use this construction on
a cylindrical triangular lattice (Fig. 4) to calculate S as a func-
tion of L and obtain � (Fig. 4) using Eq. (8). The subsystem
A is constructed by bipartitioning the semi-periodic triangular
lattice with the dashed line as shown in Fig. 4. The circum-
ference L of the cylinder enters Eq. (8) as the perimeter of the
subsystem and should be much larger than the maximum cor-
relation length associated with the state.53 The inset of Fig. 4
shows the expected linear growth of S with L that is predicted
by the leading term in Eq. (8). The topological entanglement
entropy (�) is extracted from the intersection of the function S
on the y-axis when extrapolated backward and plotted against
different values of L. The tendency of � to saturate at the
value of log 2 for large L indicates to the fact that the RK
point for the FPL model on the triangular lattice represents
the ground state of a topologically ordered Z2 liquid akin to
the other dimer models at 1/6 and 1/2 fillings.54,55 This is one
of the main results of this work.

Roychowdhury, Bhattacharjee, 
Pollmann ‘15

Various QDM’s on 
the triangular lattice
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Rokhsar-Kivelson QDM on the square lattice

Phase diagram: long history of numerical simulations 

S Sachdev, PRB 40 5204 (1989) 
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A Ralko, D Poilblanc, R Moessner PRL 100 037201 (2008)

RK point (v=t): GS are equal-weight superpositions of dimer coverings, 
with critical dimer correlations  
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Zero winding number sector

Characteristic modes exhibiting a (“quantum number”)2 dependence (and a 
1/N dependence). Is this a U(1) tower of states of some kind ?
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Field theory
in the vicinity of the RK point, field theory in terms of the height variable 
 
 

Neglect the last two terms, Hamiltonian formulation:  

Unit electric flux ⇒  
where eE is the energy in the first winding number 
sector 

Unit magnetic flux ⇒ 

 speed of light ⇒
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Parameters of the field theory

Very nice agreement between 3 different ways to measure the speed of light!
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What happens beyond the crossover scale ?

Quantum Monte Carlo simulations of a fully frustrated transverse field 
Ising model which reduces to the quantum dimer model in the limit of small 
transverse field.
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Let us briefly compare to what happens on the honeycomb lattice (ED, N=126):



✓ = 5/2

✓ = 6

RK QDM on the honeycomb lattice
Let us briefly compare to what happens on the honeycomb lattice (ED, 
N=126):

v/t = 0.6v/t = �0.2v/t = �0.4v/t = �1

-2 -1.5 -1 -0.5 0 0.5 1
v/t
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N=24
N=42
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N=72
N=96
N=126

rf
3

PlaquetteColumnar (Read-Sachdev)

(a) (b) (c) (d) (e)

Columnar phase, plaquette phase, first order transition between them, as 
expected....

ED can detect both phases. Indeed                  with                   (honeycomb)               

(square)

⇠c ⇠ ⇠✓
cf R. Moessner, S. L. Sondhi, and P. Chandra, PRB 64, 144416 (2001).

compared to



Conclusion 2D bipartite RK QDMs

U(1) symmetric behavior seen in bipartite lattice QDM 

identification of parameters of effective U(1) description (useful for d=3+1) 

what happens in frustrated square lattice spin models ? 

Similarity to U(1)-like histograms seen in some VBS-Néel transitions ?

No evidence for 
mixed or plaquette 

phases...  

see also Banerjee  et al. ‘15   



Part 4 : Back to spins



Cano-Fendley models
Cano & 

Fendley, ‘10‣ Local S=1/2 spin models on the square lattice

H =
�

+

H +
�

�
H +H

an
d 

ot
he

rs
 ..

.

Annihilates all nearest-neighbors valence bond states
(“Klein term”)

H+ = PS+=5/2

⇥ (S+ · S+ � 3/4)(S+ · S+ � 15/4)

S+ = S1 + S2 + S3 + S4 + S5

1

2

3

4
5

CF0/1



Cano-Fendley models
‣ Local S=1/2 spin models on the square lattice

H =
�

+

H +
�

�
H +H

In the nearest-neighbors VB subspace:
Will force a dimer on the plaquette

H = PS =3/2 ⇥ (S · S � 3/4)

S = S1 + S2 + S3
1

2

3

CF0/1



Cano-Fendley models
‣ Local S=1/2 spin models on the square lattice

H =
�

+

H +
�

�
H +H

In the nearest-neighbors VB subspace:
Will force a dimer on the plaquette

H = PS =3/2 ⇥ (S · S � 3/4)

S = S1 + S2 + S3
1

2

3

CF0/1



Cano-Fendley models
‣ Local S=1/2 spin models on the square lattice

H =
�

+

H +
�

�
H +H

In the nearest-neighbors VB subspace:
Will force flippable plaquettes

H = PS =3/2PS =3/2

CF0/1



Cano-Fendley models
‣ Local S=1/2 spin models on the square lattice

H =
�

+

H +
�

�
H +H

PS =0 ⇥ (S · S � 2)

PS =1 / S · S

In the nearest-neighbors VB subspace:
flip plaquettes

| ⇥ = �| ⇥+ | ⇥PS =0

PS =1 | i = +| i+ | i

H = PS =3/2PS =3/2PS =0/1

CF0/1



Cano-Fendley models

HRK =
�

�
|�⇤⇥�|�|�⇤⇥�|

‣ In the nearest-neighbors VB subspace:

Look similar to Quantum Dimer Model (at RK point)

covering of the square lattice with 
nearest-neighbour valence bonds|c�|�� =

�

c

|c�

‣ Therefore expect Sutherland ground-states !

‣What about outside this subspace ?

‣ Study with exact diagonalization : full and n.n. VB restricted

‣ Compare with Quantum Dimer Model

Let’s see later ...



Ground-state degeneracies
Cano-Fendley (full) n.n. VB restricted QDM

‣ Zero energy states degeneracies on a torus (N sites)

N=16

N=20

N=26

N=32

N=36

17 1723

13 1313

16 1616

696969

4141-

‣ Same ground-states for VB variational subspace and QDM 

‣No spurious ground-states for the full model (except N=16)
‣ Extensive torus degeneracy easily understood from QDM

N=40 - 2929

N=50 4747-



Spin gap
• Role of the Klein term amplitude K for one of the models
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K = 1

K = 10

K=10 in the following

3

It is easy to show that :

ˆ

⇧ = (7)

ˆ

⇧ = (8)

ˆ

⇧ = (9)

ˆ

⇧ = . (10)

Hence,
✓

ˆPS=µ

+

ˆPS=µ

◆
= (2µ� 1) + (11)

✓
ˆPS=µ

+

ˆPS=µ

◆
= (2µ� 1) + . (12)

At this stage, it seems from Eq. (11)-(12) that ˆHµ

2 perfectly
mimicks the QDM Eq. (2) in the variational NNVB basis with
v = 1 and t = 1 (respectively t = �1 ) for µ = 0 (respec-
tively µ = 1). However, it is important to remark that the
states involved in the r.h.s. of Eq. (11)-(12) are not invariant
under the application of ˆP

S=3/2 or ˆP
S=3/2 and these oper-

ators induce further reconfigurations of NNVB states outside
the flippable plaquette. This will lead to subtle differences be-
tween the two models that will be discussed in the following,
together with the precise correspondence between CF models
and their QDM counterparts.

Note as well that on the square lattice the sign of t is irrel-
evant for the QDM as it can be gauged away. Therefore, both
CF models are designed to have the equal-amplitude states
in the NNVB non-orthogonal basis15–17 as zero-energy GS.
Similarly to the situation of the RK-point of the QDM, all
equal-amplitude states in each ergodicity sector are valid GS,
therefore the minimal degeneracy of the CF models is equal
to the number of ergodicity / topological sectors for NNVB /
dimer coverings of the square lattice (see Appendix A). Note
that we used the term ’minimal’ as other GS may arise due to
the Klein term which also annihilates non-NNVBs states on
a square lattice with periodic boundary conditions. In Sec. II
we present numerical evidence, using exact diagonalizations
both in the full S

z

basis (allowing to study magnetic and non-
magnetic states) and in the variational NNVB basis (expected
to be relevant there), that the models proposed by Cano and
Fendley are indeed realizations of SU(2)-invariant spin-1/2
models that not only share the GS properties but also the low-
energy structure with the QDM at the RK point.

In Sec. III of this article, we investigate, using various nu-
merical and analytical methods, a generalization of Cano and
Fendley proposal allowing to mix both CF models ˆH0 and
ˆH1 :

ˆHK,✓

= K ˆH1 +

1

n(✓)

⇣
cos ✓ ˆH0

2 + sin ✓ ˆH1
2

⌘
, (13)

where the normalization factor n(✓) = | cos ✓| + | sin ✓| is
introduced for convenience. The two CF models are recovered

FIG. 1. (color online) Non-NNVB zero energy singlet (resp. zero
energy triplet) eigenstate of the Klein term: the central red bond is to
be interpreted as a singlet (resp. a triplet).

as ˆH0
=

ˆHK=1,✓=0 and ˆH1
=

ˆHK=1,✓=⇡/2. Note that ˆHK,✓

also conserves the SU(2) spin symmetry of the CF model, as
well as square-lattice spatial symmetries.

The motivation to introduce ˆHK,✓ is to see whether this
family of spin-1/2 models can host phases similar to those ob-
served in the phase diagram of the conceptually simpler QDM
on the square lattice (Eq. 2), as the mixing angle ✓ is tuned.

II. CANO-FENDLEY MODELS: ✓ = 0 AND ✓ = ⇡/2

A. Prefactor of the Klein term

Before going into the detailed numerical study of ˆHK,0 and
ˆHK,⇡/2, it is important to investigate the influence of the pref-

actor K of the Klein term ˆH1 in Eq. (13) as it plays an im-
portant role to isolate the NNVB states from other singlet or
triplet states in the low-energy manifold.

First let us consider the Klein term alone. On a square
lattice with periodic boundary conditions, the Klein term is
known to be not perfect

18 in isolating the NNVB manifold, as
other singlet states and even triplets also have zero energy? .
Indeed, it is quite easy to verify that the states depicted in
Fig. 1 are zero energy non-NNVB singlet or triplet eigenstates
of the Klein term, as the total spin of any group of five spins
formed by a site and its four nearest neighbors is lower than
3/2.

Since the Klein term has no spin gap, it is important to show
that there exists a regime of value for K in the presence of

Hµ

2 for which (i) a sizable spin gap opens in the thermody-
namic limit and (ii) the other interactions included in Hµ

2 al-
low NNVB configurations to gain further energy by resonat-
ing, and therefore to separate from other zero-energy states of
the Klein term.

In the original CF proposal, its amplitude was set to 1, but
we find that it is necessary to consider a larger value. We show

• Generalization of the two Cano-Fendley models



Gaps
�S=1

‣ Finite spin gap‣Gapless S=0 excitations (very likely)

• Can push variational NNVBs up to N=50
• QDM (gapless) and CF have similar low-lying singlet structure
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Original Cano-Fendley
models maps approx. to
RK point of t-V QDM

Generalized QDM mapping
• Systematic derivation of the effective QDM model

6

The shape of the considered plaquettes depends on the lat-
tice and on the precision required for the projection. Since
the amplitude of plaquette terms in the effective hamiltonian
decreases exponentially with the number of dimers involved
in the flipping process, it is generally sufficient to truncate the
hamiltonian retaining only the smallest loops contributions.
Recently, other schemes to derive GQDM from Heisenberg
model have been proposed claiming to refine the procedure
in the context of the kagome and square-kagome antiferro-
magnets.24,25 One has still however to perform a direct nu-
merical comparison with the parent spin hamiltonian to un-
derstand whether its physical properties are well reproduced
by the effective models. Here we will use the original GQDM
scheme12 and make a precise connection between the spin
hamiltonian ˆHK,✓ Eq. (13) and the QDM Eq. (2) that is fully
confirmed by exact diagonalizations.

On the square lattice, the smallest plaquette terms are :

= + , (14)

= + . (15)

Here, we will also consider next-leading plaquette terms :

= + , (16)

= + , (17)

= + , (18)

= + . (19)

The effective GQDM hamiltonian is defined as
O�1/2HK,✓O�1/2, where O and H are the overlap and
hamiltonian operators :

O = ↵2
+ ↵4

+ larger loops , (20)

HK,✓

= h ↵2
+ h + h ↵4 (21)

+ h + h ↵2
+ h

+ larger loops ,

with ↵2
= 1/2 (this value originating from the non orthogo-

nality of the NNVB basis and the overlap rule), and the values
of h , . . . , h are determined by ˆHK,✓. It is important to note
that in the GQDM scheme,12 the above expressions are not se-
ries in ↵2 but expansions on GQDM operator basis. In other
words, no assumption is made on ↵.

The final effective Hamiltonian for HK,✓ takes the form

Heff,✓
= �t4(✓) + v4(✓) � t6(✓) (22)

+ v6(✓) � t04(✓) + v04(✓)

+ larger loops

where the analytical expressions for parameters (which all
depend on the mixing angle ✓) have been reported to the Ap-
pendix B (see Eqs. B10-B15) for conciseness. A few specific
values are discussed in the following (see Table II).

Some remarks on

ˆHK,0
and

ˆHK,⇡/2. Interestingly enough,
the two models introduced by Cano and Fendley,13 which cor-
respond to ✓ = 0 and ⇡/2, exactly map to the same RK hamil-
tonian |t4| = v4 = 1/4 if truncated to the first relevant terms
t4 and v4. Pushing the mapping further reveals differences
between ˆHK,0 and ˆHK,⇡/2, as they for instance introduce dif-
ferent dynamics (such as the t6 term) in the NNVB manifold.

As to prove the ability of the GQDM mapping to capture
the properties of ˆHK,✓, we first investigate whether the cor-
rections t6(✓), v6(✓), t04(✓), v04(✓) to the QDM can explain the
difference in the low-lying singlet excitations energy scale be-
tween ˆHK,0 and ˆHK,⇡/2 observed in section II C. On Fig. 4
the ED spectra of GQDM models corresponding to ˆHK,0 and
ˆHK,⇡/2 are represented for a 36-site cluster in each symme-

try sector. The data show indeed a clear difference in energy
scales of the lowest excitations, very similar to the results ob-
tained with ED and NNVB calculations on the original spin
models (see Fig. 3).

Exploring v/|t| by varying ✓. Using the expressions of
v4(✓) and t4(✓) reported in Eqs. (B10) and (B11) of Ap-
pendix B, we represent on Fig. 5 the variation of the ratio
v4/|t4| as a function of ✓. As can be seen from this figure,
any value of the ratio v4/|t4| can be reached by an appro-
priate tuning of ✓. The value of v4/|t4|, together with the
knowledge of the QDM phase diagram, serves as a guideline
to understand which phases are accessible for the ground-state
of ˆHK,✓ for a given ✓. The phase diagram of the square lattice
QDM exhibits VBC states26–28 such as columnar for v/|t| < 0

and staggered for v/|t| > 1. In the intermediate region, a
plaquette phase has been suggested to exist,26–28 or a mixed
columnar-plaquette,29 but its presence has recently been ques-
tioned and the columnar phase seems to extend up to the RK
point.30,31

Of course larger loops processes, in particular t6(✓), must
also be taken into account and can somehow modify this sim-
ple picture. A careful numerical study of ˆHK,✓ should there-
fore be pursued, which will be done using both exact and
NNVB diagonalization, together with an exact diagonaliza-
tion study of the GQDM counterpart. In the following we will
concentrate on three particular values of ✓ denoted ✓

A

, ✓
B

and ✓
C

(see Table II and Fig. 5), for which we can expect re-
spectively columnar VBC, putative mixed plaquette-columnar
VBC and staggered VBC phases from the v4/|t4| QDM proxy.

B. Low-energy excitations and dimer correlations

In order to characterize possible symmetry breaking, it is
useful to investigate the low-energy levels quantum numbers
on a finite cluster. The VBC phases we expect for models A,
B and C will have clear signature in the low-energy spectra as
singlet excitations with definite quantum numbers that should
collapse onto the ground-state in the thermodynamic limit.29

ˆH0
ˆH1 A B C

✓ = 0 ✓ = ⇡/2 ✓
A

= � arccos

⇣
� 3p

10

⌘
✓
B

= � arccos

⇣
3p
10

⌘
✓
C

= arccos

⇣
1p
10

⌘

t4 0.25 �0.25 �0.125 0.25 �0.125
v4 0.25 0.25 �0.25 0.125 0.25
t6 �0.0885651 0.202914 0.015695 �0.117152 0.130044
v6 �0.031203 �0.0308274 0.0311091 �0.0156954 �0.0309213
t04 0.063808 0.0742716 �0.0664239 0.0292881 0.0716557
v04 0.0364349 0.0779137 �0.0468046 0.00784772 0.067544
v4/|t4| 1 1 �2. 0.5 2.

Mambrini et al.



Generalizations map approx
onto any point in the phase diagram

Generalized QDM mapping
• Systematic derivation of the effective QDM model

6

The shape of the considered plaquettes depends on the lat-
tice and on the precision required for the projection. Since
the amplitude of plaquette terms in the effective hamiltonian
decreases exponentially with the number of dimers involved
in the flipping process, it is generally sufficient to truncate the
hamiltonian retaining only the smallest loops contributions.
Recently, other schemes to derive GQDM from Heisenberg
model have been proposed claiming to refine the procedure
in the context of the kagome and square-kagome antiferro-
magnets.24,25 One has still however to perform a direct nu-
merical comparison with the parent spin hamiltonian to un-
derstand whether its physical properties are well reproduced
by the effective models. Here we will use the original GQDM
scheme12 and make a precise connection between the spin
hamiltonian ˆHK,✓ Eq. (13) and the QDM Eq. (2) that is fully
confirmed by exact diagonalizations.

On the square lattice, the smallest plaquette terms are :

= + , (14)

= + . (15)

Here, we will also consider next-leading plaquette terms :

= + , (16)

= + , (17)

= + , (18)

= + . (19)

The effective GQDM hamiltonian is defined as
O�1/2HK,✓O�1/2, where O and H are the overlap and
hamiltonian operators :

O = ↵2
+ ↵4

+ larger loops , (20)

HK,✓

= h ↵2
+ h + h ↵4 (21)

+ h + h ↵2
+ h

+ larger loops ,

with ↵2
= 1/2 (this value originating from the non orthogo-

nality of the NNVB basis and the overlap rule), and the values
of h , . . . , h are determined by ˆHK,✓. It is important to note
that in the GQDM scheme,12 the above expressions are not se-
ries in ↵2 but expansions on GQDM operator basis. In other
words, no assumption is made on ↵.

The final effective Hamiltonian for HK,✓ takes the form

Heff,✓
= �t4(✓) + v4(✓) � t6(✓) (22)

+ v6(✓) � t04(✓) + v04(✓)

+ larger loops

where the analytical expressions for parameters (which all
depend on the mixing angle ✓) have been reported to the Ap-
pendix B (see Eqs. B10-B15) for conciseness. A few specific
values are discussed in the following (see Table II).

Some remarks on

ˆHK,0
and

ˆHK,⇡/2. Interestingly enough,
the two models introduced by Cano and Fendley,13 which cor-
respond to ✓ = 0 and ⇡/2, exactly map to the same RK hamil-
tonian |t4| = v4 = 1/4 if truncated to the first relevant terms
t4 and v4. Pushing the mapping further reveals differences
between ˆHK,0 and ˆHK,⇡/2, as they for instance introduce dif-
ferent dynamics (such as the t6 term) in the NNVB manifold.

As to prove the ability of the GQDM mapping to capture
the properties of ˆHK,✓, we first investigate whether the cor-
rections t6(✓), v6(✓), t04(✓), v04(✓) to the QDM can explain the
difference in the low-lying singlet excitations energy scale be-
tween ˆHK,0 and ˆHK,⇡/2 observed in section II C. On Fig. 4
the ED spectra of GQDM models corresponding to ˆHK,0 and
ˆHK,⇡/2 are represented for a 36-site cluster in each symme-

try sector. The data show indeed a clear difference in energy
scales of the lowest excitations, very similar to the results ob-
tained with ED and NNVB calculations on the original spin
models (see Fig. 3).

Exploring v/|t| by varying ✓. Using the expressions of
v4(✓) and t4(✓) reported in Eqs. (B10) and (B11) of Ap-
pendix B, we represent on Fig. 5 the variation of the ratio
v4/|t4| as a function of ✓. As can be seen from this figure,
any value of the ratio v4/|t4| can be reached by an appro-
priate tuning of ✓. The value of v4/|t4|, together with the
knowledge of the QDM phase diagram, serves as a guideline
to understand which phases are accessible for the ground-state
of ˆHK,✓ for a given ✓. The phase diagram of the square lattice
QDM exhibits VBC states26–28 such as columnar for v/|t| < 0

and staggered for v/|t| > 1. In the intermediate region, a
plaquette phase has been suggested to exist,26–28 or a mixed
columnar-plaquette,29 but its presence has recently been ques-
tioned and the columnar phase seems to extend up to the RK
point.30,31

Of course larger loops processes, in particular t6(✓), must
also be taken into account and can somehow modify this sim-
ple picture. A careful numerical study of ˆHK,✓ should there-
fore be pursued, which will be done using both exact and
NNVB diagonalization, together with an exact diagonaliza-
tion study of the GQDM counterpart. In the following we will
concentrate on three particular values of ✓ denoted ✓

A

, ✓
B

and ✓
C

(see Table II and Fig. 5), for which we can expect re-
spectively columnar VBC, putative mixed plaquette-columnar
VBC and staggered VBC phases from the v4/|t4| QDM proxy.

B. Low-energy excitations and dimer correlations

In order to characterize possible symmetry breaking, it is
useful to investigate the low-energy levels quantum numbers
on a finite cluster. The VBC phases we expect for models A,
B and C will have clear signature in the low-energy spectra as
singlet excitations with definite quantum numbers that should
collapse onto the ground-state in the thermodynamic limit.29
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Mixing CF models
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Conclusions
‣Ground-states of the local S=1/2 SU(2) CF spin models
‣ Unusual type of spin liquid
‣ spin gap, but no S=0 gap
‣QDM and CF have similar low-lying singlets

‣ Stability w.r.t. Heisenberg interactions: spin liquid to 
VBC then Néel
‣ Extend CF scheme to build a robust Spin Liquid on 

other geometries
‣ nn RVB states can be written as PEPS

‣ Extensions

‣Mixing angle θ: all phases of QDM can be found !

Schuch, Poilblanc, Cirac, Perez-Garcia ‘12




