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BASIC	DEFINITIONS	
Spectral	gap	problem	



Setup	

N 

N 

Particles in a lattice 
 
d-dimensional Hilbert space associated to 
each site. 
 
Finite range translational invariant 
Hamiltonian 

i 

How does the spectral gap behave as N goes to infinity? 

Does the system have gap? i.e is there a c>0 such that              for all N?  

Spectral Gap Problem: 

€ 

ΔN > c

€ 

H = hi ⊗1rest
i
∑

Spectral Gap: 

€ 

ΔN = λ1(N) − λ0(N)



Where	does	it	appear?	
Spectral Gap in condensed matter physics: 
 
•    It defines the concept of quantum phase, phase transition, phase diagram, … 
 
 

Spectral Gap in quantum information and computation: 
 
•    It measures the efficiency in adiabatic quantum computation and quantum state engineering   



BASIC	DEFINITIONS	
Undecidability	



Turing	Machines	

0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

A

Head with internal state A 

€ 

Finite number of internal states :  Q = A,B,C,...{ }∪ halting state H{ }

€ 

Finite alphabet :  S = 0,1{ }

Infinite tape with starting cell 

€ 

Instructions :  δ :Q × S→Q × L,R{ } × S

Initial 
config. 

€ 

Turing Machines ⇔Natural numbers



Turing	Machines	

0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

A

Head with internal state A 

€ 

Finite number of internal states :  Q = A,B,C,...{ }∪ halting state H{ }

€ 

Finite alphabet :  S = 0,1{ }

Infinite tape with starting cell 

€ 

Instructions :  δ :Q × S→Q × L,R{ } × S

€ 

E.g. δ(A,0) = (C,1,R)
δ(C,0) = (B,1,L)

Initial 
config. 

0	 0	 0	 0	 0	 0	 0	 1	 0	 0	 0	 0	 0	 0	 0	 0	

C

0	 0	 0	 0	 0	 0	 0	 1	 1	 0	 0	 0	 0	 0	 0	 0	

B

Time =1 

Time =2 

€ 

Turing Machines ⇔Natural numbers



The	halting	problem	of	a	TM	
A TM halts on input n if it eventually enters the halting state  
when the TM starts with the head in the starting cell and starting internal state, and with the tape initialized 
in n, written in binary just at the right of the starting cell. 

Halting problem: Given a TM, does it halt?  
We say simply that a TM halts if it halts on input 0.  

0	 0	 0	 0	 0	 0	 0	 0	 1	 0	 1	 1	 0	 0	 0	 0	

A In binary n =1101
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The	halting	problem	of	a	TM	
A TM halts on input n if it eventually enters the halting state  
when the TM starts with the head in the starting cell and starting internal state, and with the tape initialized 
in n, written in binary just at the right of the starting cell. 

Halting problem: Given a TM, does it halt?  

Theorem  (1936, Turing): The halting problem is undecidable. That is, there is no 
algorithm (= TM) that on input another TM (=n), decides whether it halts or not. 

We say simply that a TM halts if it halts on input 0.  

Theorem  (1936, Turing): There exists a TM M, called universal (UTM), so that it 
halts on input n iff the TM=n halts on input 0. 

Corollary: There is no algorithm that on input a natural number n, decides 
whether the UTM halts or not on input n. 

0	 0	 0	 0	 0	 0	 0	 0	 1	 0	 1	 1	 0	 0	 0	 0	

A In binary n =1101



Gödel	axiomatic	independence	
There is a close connection between (Turing) undecidability and (Gödel) axiomatic 
independence. 

Fix a decision problem and an axiom system A such that  
 
(a)  there is an algorithm that generates exactly the axioms of A 
(b)  there is an algorithm that, when fed an instance n of the decision problem, 

outputs a statement Yn in the language of A such that 
•  if Yn is provable in A, then the answer to n is YES, and   
•  if ¬Yn is provable in A, then the answer to n is NO.  

Under these assumptions, if the decision problem is (Turing) undecidable, 
then at least one of its instance statements Yn is independent of A. 

We will state and prove (Turing) undecidability of the Spectral Gap Problem. 
There is a corresponding statement for (Gödel) independence. 



OUR	RESULT	
	
	



Our	result	(informal	statement)	

Problem (Spectral Gap): 
Input: nearest-neighbor interaction h  
Output: decide if H has a gap or not. 
 
 

Theorem: 
The Spectral Gap problem is undecidable. 
  
 

There is no algorithm that on input h decides it 
 



Our	result	(informal	statement)	

Problem (Spectral Gap): 
Input: nearest-neighbor interaction h  
Output: decide if H has a gap or not. 
 
 

Theorem: 
The Spectral Gap problem is undecidable. 
  
 

Even with the promise that  
1. In the gapped case, the gap is larger than the norm of h for all system sizes and the 
ground state is unique and product (“all spins up”). 
2. In the gapless case, eigenvalues become dense in a region (of diverging size) just 
above the ground energy. 

Gap Gapless 
€ 

Δ

There is no algorithm that on input h decides it 
 



Theorem:  
 
 
 
 
 
 
 
         the Hamiltonian given by  
 
 
 
Have the following properties 
1. All terms                                 have operator norm bounded by 1. 
2. If the UTM halts on input n, then, for all system sizes N, 
(that is, the gap is      ) and the unique eigenstate with eigenvalue 0 is | 
3.If the UTM does not halt on input n, then the spectrum becomes dense in the real line.  

Our	result	(formal	statement)	

€ 

hcol (n),hrow (n),h1(n)
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N 
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hrow
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hcol
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H (n) = hrow
(c,c+1)(n)

c
∑ +

rows
∑ hrow
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r
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i

i
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≥1
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0∈ spec(H)⊂ 0{ }∪ 1,∞[ )
↑↑!↑↑



Theorem:  
 
 
 
 
 
 
 
         the Hamiltonian given by  
 
 
 
Have the following properties 
1. All terms                                 have operator norm bounded by 1. 
2. If the UTM halts on input n, then, for all system sizes N,  
(that is, the gap is      ) and mult(0)=1. 
3.If the UTM does not halt on input n, then the spectrum becomes dense in the real line.  

Our	result	(formal	statement)	
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hcol (n),hrow (n),h1(n)

N 

N 
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hrow
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hcol
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h1
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≥1

hcol (n) = A

hrow (n) = B+β  eiπϕC + eiπ 2−ϕD+ h.c.( )
h1(n) =α(n)P

Only dependency on n 
 

Given the binary rep. of a natural number                        , we call     
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n = n1n2...n n

€ 

ϕ = 0,n n ...n2n1∈Q
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Theorem: We give explicitly a dimension d, matrices A,B,C,D, P and a rational number     
as small as desired so that  
• A, B are hermitian and with coefficients in 
• C, D, P have integer coefficients 
 
And if we define, for each natural number n,  
(                   an algebraic computable number ).  
 
Then the Hamiltonian given by  
 
 
 
Have the following properties 
1. All terms                                 have operator norm bounded by 1. 
2. If the UTM halts on input n, then, for all system sizes N,  
(that is, the gap is      ) and mult(0)=1. 
3.If the UTM does not halt on input n, then the spectrum becomes dense in the real line.  

Our	result	(formal	statement)	
Given the binary rep. of a natural number                        , we call     
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n = n1n2...n n

€ 

ϕ = 0,n n ...n2n1∈Q

€ 

β

hcol (n) = A

hrow (n) = B+β  eiπϕC + eiπ 2−ϕD+ h.c.( )
h1(n) =α(n)P

α(n)< β

€ 

hcol (n),hrow (n),h1(n)

N 

N 

Only dependency on n 
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INGREDIENTS	OF	THE	PROOF	



Ingredients	of	the	proof	
Proof quite technical and long (140 pages). 4 main ingredients: 
 
Ingredient 1 (Writing n on the tape).  
 
 
 
 
 
 
 
 
 
 
 



Ingredients	of	the	proof	
Proof quite technical and long (140 pages). 4 main ingredients: 
 
Ingredient 1 (Writing n on the tape). Construction for each n of a QUANTUM Turing 
Machine with size independent of n, so that, for each N>|n|, on input 
 
 
 
 
Outputs always n (in binary) 
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Ingredients	of	the	proof	
Proof quite technical and long (140 pages). 4 main ingredients: 
 
Ingredient 1 (Writing n on the tape). Construction for each n of a QUANTUM Turing 
Machine with size independent of n, so that, for each N>|n|, on input 
 
 
 
 
Outputs always n (in binary) and moreover it 
1. Uses N+3 space 
2. Takes time 
3. Never moves the head to the left of the starting cell. 
4. Has deterministic head movement. 

0	 0	 0	 0	 0	 0	 0	 0	 1	 1	 1	 1	 1	 0	 0	 0	

N 
 

Observation: there cannot exist a similar CLASSICAL Turing Machine. 
 

€ 

O(poly(N)2N )

It is “simply” the Quantum Turing Machine associated to the quantum phase estimation 
algorithm. 



Ingredients	of	the	proof	

Ingredient 2. (a Hamiltonian whose spectrum depends on whether the UTM on input 
n halts or not) 
 
 
 
 
 
 
 
 
 
 
 
 
  



Ingredients	of	the	proof	

Ingredient 2. (a Hamiltonian whose spectrum depends on whether the UTM on input 
n halts or not)  
 
Construction, for each classical or quantum Turing Machine, of a 1D nearest neighbor 
interaction so that on a system of size N, it has a unique ground state which encodes (in 
superposition) the evolution of the TM for a time      on a tape of size N initialized in N-3 
written in unary. 
 
 
By adding a penalty term to the halting state, one gets that the Hamiltonian has energy 0 if 
the TM does not halt and energy       if it halts. 
 
By choosing the QTM of Ingredient 1 followed by the UTM we get a Hamiltonian which 
has different ground energies depending on the behavior of the UTM on input n.     
 
The idea of a state that encodes the evolution of a Turing Machine goes back to 
Feynmann and Kitaev. Here we exploit recent constructions of Gottesman and Irani. 

€ 

ξN

€ 

ξ−N

0	 1	 1	 1	 1	 1	 1	 0	 0	

N 
 



Ingredients	of	the	proof	

Ingredient 3. (Amplifying the spectral difference between halting and not-halting)  
 
 
 
 
 
. 
 
 
 
 
 
 
 
 
 



Ingredients	of	the	proof	

Ingredient 3. (Amplifying the spectral difference between halting and not-halting)  
 
For that we rely on Robinson’s aperiodic tiling which allows us to have infinitely many 
copies of the previous Hamiltonian in all possible system sizes. 
 
We also use the trivial fact that we can encode any valid tiling in the ground state of a 
nearest neighbor Hamiltonian defined in terms of the tiles. 
 
 
 
 
 
 
 
 
 



Ingredients	of	the	proof	

After Ingredient 3 we have a nearest neighbor interaction so that in a square region of size L 
we have a difference in energy of order      depending on whether the UTM on input n halts 
or not. By adding a term              we can make one energy positive and the other negative.   
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L2

Ingredient 4. (from ground energy difference to spectral gap) 
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h = αId
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L2

Ingredient 4. (from ground energy difference to spectral gap) 
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hTM  not halt € 

h0
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hcritical
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h = αId

0 

€ 

hTM  halt



Ingredient 4. (from ground energy difference to spectral gap) 
 
 
 
 
 
 
 
 
 
 
 

Ingredients	of	the	proof	

After Ingredient 3 we have a nearest neighbor interaction so that in a square region of size L 
we have a difference in energy of order      depending on whether the UTM on input n halts 
or not. By adding a term              we can make one energy positive and the other negative.   

€ 

L2

€ 

hTM  not halt

€ 

h = αId

0 

€ 

hTM  halt

€ 

gapless

€ 

gap



SOME	CONSEQUENCES	



Implications	of	the	result	
In condensed matter physics, most knowledge is numerical. Got by increasing the system 
size and extrapolating the result. Example: Haldane’s conjecture. 
 

Schollwöck and co. d=5, DMRG (1995) Nichtingale and co. d=3, MC (1986) 



Implications	of	the	result	
In condensed matter physics, most knowledge is numerical. Got by increasing the system 
size and extrapolating the result.  
 

Our result implies that there exist systems that look gapless for all systems sizes 
But a gap opens from       on. Moreover, this (uncomputable) critical size can be arbitrarily large.  
 

€ 

< Lc

€ 

Lc

Local	
dimension	

5	 6	 7	 8	 9	 10	

Critical	size	L	
(lattice												)	

15	 84	 420	 2310	 107 1035000L× L

(arXiv:1512.05687) 



Implications	of	the	result	

There exist nearest neighbor interactions with uncomputable “fractal” phase diagrams. 



THANKS	FOR	YOUR	ATTENTION	


