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I Strominger [Str86] analyzed heterotic superstring background
with spacetime supersymmetry.

I The model is based on a Hermitian manifold X generalizing
CY-manifolds.

I X is conformally balanced with holomorphic (3,0)-form and an
anomally cancellation condition.

For us, X = (G/Γ, J,F ) is a Hermitian homogeneus space:

I G is 6-dimensional Lie group, g its Lie algebra.
I Γ lattice subgroup of G⇒ G/Γ is compact.
I J is G-invariant complex structure.
I F is the fundamental form of a G-invariant Hermitian metric:

F (·, ·) = g(·, J·).

The G-invariance of the solution implies:
I solutions with constant dilaton.
I analysis at the level of g.
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Solutions to the Strominger system with constant dilaton
Find (M6, J,F ,Ψ,∇,A):

a) (J,F ,Ψ) is SU(3)-structure on M6 satisfying:
I 0 6= Ψ ∈ ∧3,0

J M6 is holomorphic (∂̄Ψ = 0).
I F is balanced: dF 2 = 0.

b) ∇ is a metric connection on TM.
c) A is a Donaldson-Uhlenbeck-Yau instanton: ΩA ∈ su(3).
d) The Green-Schwarz anomally cancellation condition:

dT = 2π2α′ (p1(∇)− p1(A)) =
α′

4

(
trΩ ∧ Ω− trΩA ∧ ΩA

)
where:

I α′ ∈ R\{0} (better in physics α′ > 0).
I T is the torsion 3-form.
I Ω is the curvature form for ∇.
I ΩA is the curvature form for A.

Theorem [FIUV09,Iva10]
A solution to Strominger satisfies heterotic eq. motion⇔ ∇ is
SU(3)-instanton.
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Some particular metric connections ∇:
I Bismut ∇+ = ∇LC + 1

2 T ([Car03],[DFG08]): Hermitian
(∇+J = 0), torsion T (·, ·, ·) = JdF (·, ·, ·).

I Chern ∇C = ∇LC + 1
2 C ([Str86],[LY05],[FY09]): Hermitian

(∇CJ = 0), torsion C(·, ·, ·) = dF (J·, ·, ·).
I [FY15] Hermitian connections ∇t ([Gau77]):

g(∇t
X Y ,Z ) = g(∇LC

X Y ,Z )+
1− t

4
T (X ,Y ,Z )+

1 + t
4

C(X ,Y ,Z ), t ∈ R.

∇+ = ∇t=−1, ∇C = ∇t=1.
I Levi-Civita ∇LC ([Str86],[GMW04]): torsion-free.
I ∇− = ∇LC − 1

2 T ([Hul86],[BR89]): torsion= −T .

•
∇+
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Proposition [–UV16]
Let (M6, J,F ) Hermitian, then ∇ε,ρ is metric connection:

g(∇ε,ρX Y ,Z ) = g(∇LC
X Y ,Z )+εT (X ,Y ,Z )+ρC(X ,Y ,Z ), (ε, ρ) ∈ R2.

I ∇ε,ρJ = −2
(
ε+ ρ− 1

2

)
∇LCJ. (if (M, J,F ) not Kähler⇒ ∇ε,ρ

Herm. ⇔ ∇ε,ρ = ∇t).
I ∇t corresponds to ∇ε, 1

2−ε (i.e. ε+ ρ− 1
2 = 0), and

∇c = ∇0, 1
2 , ∇± = ∇± 1

2 ,0, ∇LC = ∇0,0.

•
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Complex nilmanifolds (G/Γ, J) are a rich source of examples as they
are not-Kähler (except the torus) and have holomorphically trivial
canonical bundle. We have a complete map of the g′s [Sal01] and the
cmpx. str. up to isomorphism. [ABD11,UV14,C–UV14]

[Uga07,FIUV09,UV14,UV15]
If a 6-dim. nilmanifold admits Hermitian balanced metrics then
g ∼= h2, . . . , h6, h

−
19.

I h2, . . . , h5 provide solutions to the Strominger system with
respect to ∇+ and ∇LC. h3 provides also sols. to the motion eqs.
with respect to ∇+ .

I h6 provides solutions to the Strominger system with respect to
∇+.

I h−19 provides solutions to the Strominger system with respect to
∇+ and ∇C .

Solutions with α′ > 0 and non-flat instanton for all the cases.

[FY15]
There are solutions to the Strominger system on sl(2,C):

I with α′ > 0 and flat instanton for any ∇t with t < 0 (∇+ included).
I with α′ > 0 and non-flat instanton for any ∇t with t < −1 (∇+ not

included).
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I We are mainly interested in considering Strominger + motion
equations.

I We revisit the h3 and sl(2,C).
I We provide the new solvable non-nilpotent example g7.

g

Solvable Semisimple
sl(2,C)
([FY15])

Nilpotent
h3 ([FIUV14])

Non-nilpotent
g7 ([–UV16])



The nilpotent Lie algebra h3 = h(2,1)⊕ R is given by:

dβ j = 0, j = 1, . . . ,5, dβ6 = β12 + β34.

where {β1, . . . , β6} is basis of h∗3. Notation: β12 := β1 ∧ β2.

The Lie group H3 = H(2,1)× R, H(2,1) is the 5-dim. Heisenberg Lie
group:

H(2,1) =




1 a1 a2 c
0 1 0 b1
0 0 1 b2
0 0 0 1

 | a1,a2,b1,b2, c ∈ R

 .

Malcev’s Theorem⇒ H3 admits lattices ([Mal62]).

Proposition [ABD11]
There are 2 non-isomorphic cmpx. str. J± on h3. They are given in
terms of a (1,0)-basis {ω1, ω2, ω3}:

J± : dω1 = dω2 = 0, dω3 = ω11 ± ω22.
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Proposition [Uga07],[UV15]
I Only J− admits balanced metrics.
I The non-isomorphic balanced metrics on J− are given by:

2Ft = i
(
ω11 + ω22 + t2ω33

)
, 0 6= t ∈ R.

The basis e1 + i e2 = ω1, e3 + i e4 = ω2, e5 + i e6 = t ω3. is
adapted to (J−,Ft ):

J−(e1) = −e2, J−(e3) = −e4, J−(e5) = −e6, Ft = e12+e34+e56.

We consider the SU(3)-structures:

(J−,Ft ,Ψt = (e1 + i e2) ∧ (e3 + i e4) ∧ (e5 + i e6)).

Proposition [UV15]
For any SU(3)-str. the connection Aλ:

(σAλ)1
2 = −(σAλ)2

1 = −(σAλ)3
4 = (σAλ)4

3 = λ(e5 + e6),

is SU(3)-instanton for any λ ∈ R. Furthermore,

p1(Aλ) = − 2 t2λ2

π2 e1234.
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(
ω11 + ω22 + t2ω33

)
, 0 6= t ∈ R.

The basis e1 + i e2 = ω1, e3 + i e4 = ω2, e5 + i e6 = t ω3. is
adapted to (J−,Ft ):
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is SU(3)-instanton for any λ ∈ R. Furthermore,

p1(Aλ) = − 2 t2λ2

π2 e1234.



Proposition [–UV16]
Given the SU(3)-str. (J−,Ft ,Ψt = tω123), ∇ε,ρ is SU(3)-instanton⇔
(ε, ρ) = ( 1

2 ,0), that is, ∇+.

Theorem [–UV16]
Let M be a h3-nilmanifold endowed with the SU(3)-str. (J−,Ft ,Ψt ),
then the Strominger system has invariant solutions for any connection
∇ε,ρ and with non-flat instanton.

•
∇+

•∇C

•
∇−

•
∇LC

ε

ρ
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∇LC

ε

ρ (i) If ρ ≥ ε+ 1
2 , then α′ < 0.

Particular cases: ∇− and the
Hermitian connection ∇t for any
t ≥ 1 (Chern included).
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Proposition [–UV16]
Given the SU(3)-str. (J−,Ft ,Ψt = tω123), ∇ε,ρ is SU(3)-instanton⇔
(ε, ρ) = ( 1

2 ,0), that is, ∇+.

Theorem [–UV16]
Let M be a h3-nilmanifold endowed with the SU(3)-str. (J−,Ft ,Ψt ),
then the Strominger system has invariant solutions for any connection
∇ε,ρ and with non-flat instanton.

•
∇+

•
∇+

•∇C

ρ− ε = 1
2

•
∇−

•
∇LC

ε

ρ (iii) for ∇ = ∇+, the solutions
satisfy the heterotic equations of
motion with α′ > 0 and non-flat
instanton.



sl(2,C) is the semisimple Lie algebra of the complex Lie group:

SL(2,C) = {A ∈ GL(2,C) | det(A) = 1}

sl(2,C) can be described in terms of the (1,0)-basis {ω1, ω2, ω3}:

J : dω1 = ω23, dω2 = −ω13, dω3 = ω12.

Proposition [AG86]
If (g, J) is complex Lie algebra⇒ any Hermitian F is balanced.
We consider the balanced metrics:

2 Ft = i t2(ω11̄ + ω22̄ + ω33̄).

The basis e1 + i e2 = t ω1, e3 + i e4 = t ω2, e5 + i e6 = t ω3 is
adapted to (J,Ft ). The SU(3)-structures are given by:

(J,Ft ,Ψt = (e1 + i e2) ∧ (e3 + i e4) ∧ (e5 + i e6)).
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Proposition [–UV16]
∇ε,ρ is SU(3)-instanton⇔ ∇ε,ρ = ∇C or ∇ε,ρ = ∇+. Moreover:

p1(∇C) = 0, p1(∇+) = − 2
π2t4 (e1234 + e1256 + e3456).

The analysis of the cancellation of anomalies depends on the
function:

β(ε, ρ) = 1+4ε+4ε2 +32ε3−12ρ−24ερ−32ε2ρ+36ρ2 +32ερ2−32ρ3.

Theorem [–UV16]
Let SL(2,C)/Γ endowed with the SU(3)-str. (J,Ft ,Ψt ), then the
Strominger system has invariant solutions for any connection ∇ε,ρ:

∇+

•∇C

•
∇−

•
∇LC

ε

ρ
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Let SL(2,C)/Γ endowed with the SU(3)-str. (J,Ft ,Ψt ), then the
Strominger system has invariant solutions for any connection ∇ε,ρ:

•
∇+

•∇C

◦∇0

•
∇−

•
∇LC

ε

ρ (i) If β(ε, ρ) 6= 0, flat instanton and
sign(α′) = sign(β(ε, ρ)). In
particular:

1. ∃ solutions with α′ > 0 for
∇LC and ∇t with t < 0.
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ρ (i) If β(ε, ρ) 6= 0, flat instanton and
sign(α′) = sign(β(ε, ρ)). In
particular:

1. ∃ solutions with α′ > 0 for
∇LC and ∇t with t < 0.

2. ∇+ satisfies motion eqs. with
α′ > 0 and flat instanton.



Proposition [–UV16]
∇ε,ρ is SU(3)-instanton⇔ ∇ε,ρ = ∇C or ∇ε,ρ = ∇+. Moreover:

p1(∇C) = 0, p1(∇+) = − 2
π2t4 (e1234 + e1256 + e3456).

The analysis of the cancellation of anomalies depends on the
function:

β(ε, ρ) = 1+4ε+4ε2 +32ε3−12ρ−24ερ−32ε2ρ+36ρ2 +32ερ2−32ρ3.

Theorem [–UV16]
Let SL(2,C)/Γ endowed with the SU(3)-str. (J,Ft ,Ψt ), then the
Strominger system has invariant solutions for any connection ∇ε,ρ:

∇+∇+

◦

•∇C

•
∇−

•
∇LC

ε

ρ (ii) If β(ε, ρ) 6= 8 there are
solutions to Strominger with
non-flat instanton (A = ∇+) and
sign(α′) = sign(β(ε, ρ)− 8).
In particular for any Hermitian
connection ∇t with t < −1 (∇+

not included).



g7 is the solvable Lie algebra given by:

dβ1 = β24 + β35, dβ2 = β46, dβ3 = β56,

dβ4 = −β26, dβ5 = −β36, dβ6 = 0.

g7 is solvable and non-nilpotent: g7 = Rn s.

[Boc09]: The solvable Lie group G7 admits lattices.

Proposition [F–U15]
g7 admits 2 non-isomorphic cmpx. str. Jδ (δ = ±1) with closed
(3,0)-form.
In terms of the (1,0)-basis:

ω1
δ = β4 + i β2, ω2

δ = β3 + i β5, ω3
δ = 1

2β
6 + 2i δβ1.

Jδ is expressed by:

Jδ :
dω1

δ = i ω1
δ∧(ω3

δ+ ω3̄
δ), dω2

δ =−i ω2
δ∧(ω3

δ+ ω3̄
δ),

dω3
δ = δ (ω11̄

δ − ω22̄
δ ),
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Proposition [F–U15]
Any balanced metric on (g7, Jδ) is given by

2 F δ
r ,t,u = i (r2ω11̄

δ + r2ω22̄
δ + t2ω33̄

δ ) + u ω12̄
δ − ū ω21̄

δ ,

0 6= r , t ∈ R, u ∈ C.

The real basis {e1, . . . , e6}:

e1 + i e2 =

√
r4−|u|2

r ω1
δ , e3 + i e4 = u

r ω
1
δ + ir ω2

δ , e5 + i e6 = t ω3
δ .

is adapted to (Jδ, F δ
r ,t,u). We consider the SU(3)-structures on g7:(

Jδ, F δ
r ,t,u, Ψδ

r ,t,u = (e1 + i e2) ∧ (e3 + i e4) ∧ (e5 + i e6)
)
.
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Proposition [–UV16]
For each λ, µ ∈ R the connection Aλ,µ given by:

(τAλ,µ)1
2 = −(τAλ,µ)2

1 = −(τAλ,µ)3
4 = (τAλ,µ)4

3 = λe5 + µe6,

is an SU(3)-instanton and p1(Aλ,µ) = − 2µ2t2

π2(r4−|u|2)
e1234.

Proposition [–UV16]
∇ε,ρ is an SU(3)-instanton if and only if u = 0 and (ε, ρ) = ( 1

2 ,0), i.e.
∇ε,ρ = ∇+. Furthermore, if u = 0 then the Bismut connection
satisfies

p1(∇+) = − 8 t4

π2r8 e1234.

From now on, we divide the study according to the vanishing of the
parameter u.
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We start by looking for solutions to the motion equations for
SU(3)-structures with u = 0.

Theorem [–UV16]
Let M be a g7-solvmanifold endowed with the SU(3)-str.
(Jδ, F δ

r ,t,u=0, Ψδ
r ,t,u=0), the Strominger system has invariant solutions

for any connection ∇ε,ρ and with non-flat instanton.

•
∇+

•∇C

•
∇−

•
∇LC

ε

ρ
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2 , then α′ < 0.

Particular cases: ∇− and the
Hermitian connection ∇t for any
t ≥ 1 (Chern included).
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After studying the cancellation of anomalies for the SU(3)-str. with
u 6= 0:

dT = α′

4 (p1(∇ε,ρ)− p1(Aλ,µ))

the results for the solutions to Strominger system are expressed in
terms of the regions:

∆ = L− ∪ N− − {P2,Q2},
∆+ = L− ∪M− − (M− ∩ Z−),

where L− := {(ε, ρ) | L(ε, ρ) < 0}, for the functions

L(ε, ρ) = (ε− 3
2 )2 + (ρ+ 1)2 − 4,

N(ε, ρ) = (ε+ 1
2 )2 + (ρ− 1)2 − 1,

M(ε, ρ) = ε2 + (ρ− 1
2 )2 − 1

4 ,
Z (ε, ρ) = (1 + ε− ρ)

[
4ε2 + (1− 2ρ)2 − 4

]
+ 3.

L = 0 and N = 0 intersect at the points P1 =
(

1−
√

7
8 , 3−

√
7

8

)
and

Q1 =
(

1+
√

7
8 , 3+

√
7

8

)
.



ε

ρ

∆+

∆

∇t

N = 0

L = 0

M = 0

Z = 0 Q2

P2

Q1

P1

P2 = (0,0), Q2 = ( 1
2 ,

1
2 ) /∈ ∆.

P1 =
(

1−
√

7
8 , 3−

√
7

8

)
and

Q1 =
(

1+
√

7
8 , 3+

√
7

8

)
/∈ ∆.



Theorem [–UV16]
Let M be a g7-solvmanifold. There are SU(3)-str. (Jδ, F δ

r ,t,u, Ψδ
r ,t,u)

with u 6= 0, providing solutions to the Strominger system with respect
to a connection ∇ε,ρ in the following cases:

(i) For (ε, ρ) ∈ {P1,Q1}, there exist solutions with α′ > 0 and flat
instanton.

(ii) For any (ε, ρ) ∈ ∆, there exist solutions to the Strominger system
with non-flat instanton. Moreover, α′ > 0 if and only if (ε, ρ) ∈ ∆+.

Corollary [–UV16]
A solvmanifold with underlying Lie algebra g7 provides invariant
solutions to the Strominger system with α′ > 0 and non-flat instanton
with respect to a Hermitian connection ∇t for

t ∈ (−5− 4
√

2,1−
√

2) ∪ ( 5−
√

17
2 ,1 +

√
2).

In particular, there are solutions for the Bismut connection (t = −1)
and for the Chern connection (t = 1).



Theorem [–UV16]
Let M be a g7-solvmanifold. There are SU(3)-str. (Jδ, F δ

r ,t,u, Ψδ
r ,t,u)

with u 6= 0, providing solutions to the Strominger system with respect
to a connection ∇ε,ρ in the following cases:

(i) For (ε, ρ) ∈ {P1,Q1}, there exist solutions with α′ > 0 and flat
instanton.

(ii) For any (ε, ρ) ∈ ∆, there exist solutions to the Strominger system
with non-flat instanton. Moreover, α′ > 0 if and only if (ε, ρ) ∈ ∆+.

Corollary [–UV16]
A solvmanifold with underlying Lie algebra g7 provides invariant
solutions to the Strominger system with α′ > 0 and non-flat instanton
with respect to a Hermitian connection ∇t for

t ∈ (−5− 4
√

2,1−
√

2) ∪ ( 5−
√

17
2 ,1 +

√
2).

In particular, there are solutions for the Bismut connection (t = −1)
and for the Chern connection (t = 1).
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g7 has also a behaviour observed for the nilpotent Lie algebra h−19 in
[UV14]:

Corollary [–UV16]
Let us consider a solvmanifold with underlying Lie algebra g7. There
is an SU(3)-structure and a non-flat instanton solving at the same
time the Strominger system for ∇+ and ∇C ,both with positive α′’s.
That is:

(G7/Γ, Jδ,F δ
r ,t,u 6=0,Ψ

δ
r ,t,u 6=0,∇,Aλ,µ 6= 0) :

 ∇ = ∇+, (α′ > 0)

∇ = ∇C , (α̃′ > 0)

Concluding g7...

g7 has a very rich space of solutions: ∇ = ∇LC, ∇+, ∇C , heterotic
motion equations. Comparing with the NLA’s:

I h2, . . . , h6 have solutions to Strominger for ∇LC, ∇+, but not for
∇C .

I h−19 has solutions to Strominger for ∇+, ∇C but not to the
heterotic motion equations.
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