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Take-home message (1/2)

• Exceptional Field Theory captures (locally on a coordinate patch)  
the 11d and massless Type II supergravities in an Exc. Generalised Geometry form

• It was unclear how to capture massive Type IIA supergravity:

- There should be a deformation of the massless IIA Ex. Gen. Geom.

- On the other hand, in EFT some non-geometry seemed necessary
-  There is a puzzle here…

• We solve this puzzle defining deformed EFT’s (XFT’s)  
(and show the relation with the expected, but not necessary, non-geometry)
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We define non-derivative deformations of the form

with XM  an embedding tensor.  Extra X-constraint:

 
For a certain X, we reproduce the full massive IIA.  No dimensional reduction!!

EFT is based on a generalised Lie derivative  
on an extended internal space (analogous to DFT)

section condition:

A (very specific) En(n) invariant tensor

�

�Y M

symmetries completely specify the field content as well as its interactions in an elegant and

unambiguous manner. In this section we introduce the basics of the EFT’s which we will be

extensively using. We will focus on D � 4 throughout this paper.

2.1 Generalised di↵eomorphisms

EFT fields depend on spacetime coordinates xµ, µ = 0, . . . , D � 1, and extended internal

coordinates yM . The fields and gauge parameters of the theory are arranged in objects that

transform consistently under a set of exceptional generalised di↵eomorphisms. On covariant

objects generalised di↵eomorphisms act with a generalised Lie derivative L
⇤

. For instance, the

action of L
⇤

on a vector UM of weight �(U) = �U reads2

L
⇤

UM = ⇤N@NUM � UN@N⇤M + Y MN
PQ @N⇤P UQ + (�U � !) @P⇤

PUM , (2.1)

where ⇤M (x, y) is the gauge parameter, Y MN
PQ is a specific, constant En(n) ⇥ R+ invariant

tensor (so that �
⇤

Y MN
PQ = L

⇤

Y MN
PQ = 0 ), and ! = 1/(D � 2) . All parameters of

generalised di↵eomorphisms carry weight ! .

Consistency of the generalised di↵eomorphisms requires the algebra of the generalised Lie

derivative to close, namely

[L
⇤

,L
⌃

]WM = L
[U,V ]E

WM , (2.2)

where the so-called E-bracket for parameters ⇤ and ⌃ is defined as

⇥
⇤,⌃

⇤M
E

⌘ 1

2
(L

⇤

⌃M � L
⌃

⇤M ) = ⇤P@P⌃
M +

1

2
Y MN

PQ @N⇤P ⌃Q � (⇤ $ ⌃) . (2.3)

The requirement (2.2) translates into a set of conditions [16] which severely restrict the depen-

dence of the fields and parameters in the EFT on the generalised coordinates:

Y PQ
MN @P ⌦ @Q = 0 ,

�
Y M(P

TQ Y T |N)

RS � Y M(P
RS �N)

Q

�
(@P@N ) = 0 ,

�
Y MN

TQ Y TP
SR + 2Y MN

RT Y TP
SQ � Y MN

RS �PQ � 2Y MN
SQ �PR

�
@P ⌦ @N = 0 .

(2.4)

The first condition in (2.4) is usually referred to as the section constraint. We will always

impose that it holds on any combination of fields and/or parameters, including derivatives and

products. As a result, the section constraint restricts all objects in the EFT to depend only on

a subset of the internal coordinates. The other equations in (2.4) then follow from the section

constraint for all the En(n) EFT’s [16].

The E-bracket in (2.3) fails to satisfy the Jacobi identity:

⇥
[⇤,⌃]

E

,�
⇤
E

+ cycl. =
1

3

�
[⇤,⌃]

E

,�
 
E

+ cycl. . (2.5)

This fact plays a central role in the construction of EFT’s, as it requires the introduction of

a hierarchy of p-form fields and gauge transformations [1–4, 38] similar to the one of gauged

2The transformation rule for a covariant tensor VM is deduced requiring that the contraction S = UMVM

transforms as a scalar density of weight �U + �V . The transformation rule for tensors follows immediately.
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R
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0
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RX 2�3
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(2,3) + (2,60) 15+ 40

0
144c 351

0
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Table 1: Relevant En(n) representations for the vector fields Aµ
M and the X deformation [36].

but does not truncate any of its degrees of freedom. The generalised Lie derivative then encodes

the ordinary internal di↵eomorphisms and p-form gauge transformations of the physical theory

in the corresponding dimensional split.

The central result of this work is the construction of ‘X deformed’ exceptional field theories

(XFT’s) based on the following modification of the generalised Lie derivative by non-derivative

terms
eL
⇤

= L
⇤

+ ⇤MXM , (1.2)

where XM turns out to be En(n) Lie algebra valued. In particular, it takes the form (XM )NP ⌘
XMN

P when acting on a field in the R
v

representation. Closure of the deformed generalised

Lie derivative (1.2) and consistency of the tensor hierarchy require X to be restricted to a

specific En(n) representation (see table 1) and to satisfy a quadratic constraint

X R
MP X Q

NR �X R
NP X Q

MR +X R
MN X Q

RP = 0 , (1.3)

in analogy with the constraints appearing in gauged maximal supergravity [29–35]. Further-

more, an additional constraint involving both X and @M must be imposed

XMN
P @P = 0 . (1.4)

This ‘X-constraint’ can be interpreted as a compatibility condition between the X deformation

and the yM dependence of the fields and parameters. Together with the section constraint (1.1)

these conditions guarantee the consistency of the algebra of internal generalised di↵eomorphisms

and, ultimately, of the whole XFT.

For specific choices of X , (1.4) is still compatible with solutions of the section constraint

(1.1) that preserve n or (n� 1) internal coordinates. The resulting XFT’s ultimately describe

three types of eleven- and ten-dimensional maximal supergravities:

� 11-dimensional and massless type IIA supergravities with background fluxes.

� Type IIB supergravity with background fluxes.

� Massive type IIA supergravity with background fluxes.

The latter case is a genuine result of XFT. Indeed, the massive IIA supergravity, which cannot be

described in EFT without violating the section constraint, now admits a geometric description

using the XFT framework. The background fluxes can be reabsorbed in the dynamical fields of

3
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in the corresponding dimensional split.

The central result of this work is the construction of ‘X deformed’ exceptional field theories

(XFT’s) based on the following modification of the generalised Lie derivative by non-derivative

terms
eL
⇤

= L
⇤

+ ⇤MXM , (1.2)

where XM turns out to be En(n) Lie algebra valued. In particular, it takes the form (XM )NP ⌘
XMN

P when acting on a field in the R
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representation. Closure of the deformed generalised

Lie derivative (1.2) and consistency of the tensor hierarchy require X to be restricted to a

specific En(n) representation (see table 1) and to satisfy a quadratic constraint

X R
MP X Q

NR �X R
NP X Q

MR +X R
MN X Q

RP = 0 , (1.3)

in analogy with the constraints appearing in gauged maximal supergravity [29–35]. Further-

more, an additional constraint involving both X and @M must be imposed

XMN
P @P = 0 . (1.4)

This ‘X-constraint’ can be interpreted as a compatibility condition between the X deformation

and the yM dependence of the fields and parameters. Together with the section constraint (1.1)

these conditions guarantee the consistency of the algebra of internal generalised di↵eomorphisms

and, ultimately, of the whole XFT.

For specific choices of X , (1.4) is still compatible with solutions of the section constraint

(1.1) that preserve n or (n� 1) internal coordinates. The resulting XFT’s ultimately describe

three types of eleven- and ten-dimensional maximal supergravities:

� 11-dimensional and massless type IIA supergravities with background fluxes.

� Type IIB supergravity with background fluxes.

� Massive type IIA supergravity with background fluxes.

The latter case is a genuine result of XFT. Indeed, the massive IIA supergravity, which cannot be

described in EFT without violating the section constraint, now admits a geometric description

using the XFT framework. The background fluxes can be reabsorbed in the dynamical fields of

3

maximal supergravity in its own right, massive IIA should posses an associated EGG capturing

its degrees of freedom and local symmetries in the same fashion as for the massless type II

theories. It is therefore natural to expect that such a generalised geometry would descend

from EFT after choosing some specific solution of the section constraint. On the other hand,

solutions of the section constraint in EFT have been classified and are known to exclusively

correspond to the massless type II and eleven-dimensional supergravities [14–17]. It thus seems

that some violation of the section constraint is needed in order to reproduce the Romans mass.

In the context of double field theory (DFT), the Romans mass was implemented by allowing

a Ramond–Ramond (RR) potential to depend on a non-geometric (winding) coordinate [18],

thus again suggesting that a similar scenario should take place in EFT. In this case, however,

there would be no direct relation with an EGG for massive IIA in ten dimensions. This paper

provides a solution to this puzzle and, in doing so, unveils an extension of the EFT framework.

The Romans mass mR has always manifested itself as a deformation parameter in any

construction related to type IIA. For instance, when considering dual holographic models, the

Romans mass translates into a deformation of the field theory in the form of a Chern-Simons

term with level k given by k/(2⇡ls) = mR [19, 20] (see also [21, 22]). A more recent example

involves the consistent reduction of the massive IIA theory on the six-sphere [20, 23]. In this

case it was shown [20, 24] that, after truncation to four dimensions, the Romans mass appears

as an electric-magnetic deformation parameter of the types constructed in [25,26] and classified

in [27, 28]. These results suggest that, in order to embed the massive IIA theory in EFT, one

should investigate the possible deformations of the latter.

In this paper, we will show that EFT does admit consistent deformations which still allow for

ten- and/or eleven-dimensional solutions of the section constraint. For one of these deformations,

there exists a purely geometric ten-dimensional solution which precisely corresponds to massive

IIA supergravity, and thus define as a byproduct the associated EGG. This new deformed EFT

framework endows massive IIA supergravity with the same geometrical and group-theoretical

tools so far exclusive to the massless theories.

We now present a brief summary of the structure of the deformed EFT framework. EFT

is based on an ‘external’ spacetime and an ‘internal’ extended space with coordinates xµ and

yM , where µ = 1, . . . , D , M = 1, . . . , dim R
v

and R
v

denotes the En(n) representation of the

vector fields in the theory (see Table 1). Internal generalised di↵eomorphisms act on fields by

means of a generalised Lie derivative L
⇤

. While all fields and parameters formally depend on

the full set of coordinates (xµ, yM ) , the dependence on the internal coordinates is ultimately

restricted to a physical subset by the section constraint

Y PQ
MN @P ⌦ @Q = 0 , (1.1)

where @M ⌘ @
@yM

and Y MN
PQ is a specific En(n)⇥R+ invariant tensor [16]. After choosing a

maximal solution of this constraint, EFT e↵ectively reduces to eleven-dimensional or type IIB

supergravity in a D + n or D + (n � 1) dimensional split, respectively. Such a split of the

physical coordinates into theD-dimensional external spacetime and the n- or (n�1)-dimensional

internal space explicitly breaks the Lorentz covariance of the eleven- or ten-dimensional theory

2

Take-home message (2/2)

(few-lines application: what massless IIA sphere truncations are consistent for mIIA)
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Outline

• A Gauged Supergravity Appetizer

• Consistent truncations, EFT & EGG

• Massless IIA vs. EFT

• The Romans mass & deformed EFT

• Relation to (non-)geometric EFT

• massive IIA on spheres (blackboard)
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• We will not do gauged supergravity here,  
but part of the motivation comes from it:

• Many gauged supergravities, only some have uplift to 11d/10d

• Classification of gauged supergravities is hard. 

• Finding which ones have an uplift is even harder.  

• Exc. Generalised Geometry & Exc. Field Theory help us  
 
…but they go beyond this: they can capture the full 11d/10d theories

Deformations of Gauged Supergravities
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Many gauged (D=4) supergravities come in  
families of inequivalent gaugings (all sharing same gauge group)

• ω-deformation of SO(8) gauged max. sugras 
only ω=0 mod π/4  lifts to 11d sugra on S7

These are related to inequivalent E.m. embeddings of gauge connections 
Explicit construction & classification: “Symplectic Deformations”

Deformations of Gauged Supergravities

the gauge interaction terms can be removed by a redefinition of the matter fields, as described

above. Therefore, these electric-magnetic redefinitions do not a↵ect the equations of motion and

can be safely quotiented out as we have done. However, some of these redefinitions are non-

local, and in an electric frame we might want to only allow for local field redefinitions instead.

If this is the case, (2.13) must be substituted with its subgroup of GL(nv,R) redefinitions of

the electric vectors:

G(X0, ✓0) ⌘
⇢
S 2 SGL(nv,R)(X

0) | S✓0 = ✓0m, m 2 NGm(Hm)

CGm(Hm)

�
. (2.15)

To give a simple example, quotienting by G(X0, ✓0) rather than by S(X0, ✓0) makes us regard

as inequivalent theories that di↵er by shifts in theta-terms.

2.4 Parity

If the ungauged theory we start with admits a parity symmetry, it must have an action on the

scalar manifold and hence act as an automorphism of G. Parity acts on Gd as an antisymplectic

transformation P
M

N inducing a Z2 automorphism [24,34,35]. In the matter sector, parity might

induce an automorphism of Hm, too. Denoting p
a

b this automorphism, if it exists, we make use

of the fact that the locality constraints allow us to map two matrices ✓
M

a, ✓
M

0 a to each other

both via a symplectic and an antisymplectic transformation. In particular, we can define P̂
M

N

such that

✓0 b

M

p a

b

= P̂ N

M

✓0 a

N

. (2.16)

Combining these observations, parity induces an extra identification on NSp(2nv,R)(GX

) only

when the following conditions are satisfied:

1. the ungauged theory has a parity symmetry and there is a representative P
M

N that

normalizes G
X

,

2. the action of parity on Gm can be taken to induce a transformation p
a

b 2 Aut(Hm) (i.e.

to normalize Hm),

3. the induced P̂ transformation can be chosen to stabilize X
MN

0 P .

In this case, we have the extra identification

N ⇠= P̂NP , N 2 NSp(2nv,R)(GX

) . (2.17)

As a byproduct, a given gauging defined by X
MN

0 P , ✓
M

0 a admits a parity symmetry only if

PP̂ 2 S(X0, ✓0). When no matter symmetries are gauged, these requirements reduce to P
M

N

normalizing G
X

, because in that case its action on X
MN

0 P must be equivalent to that of an

element Q�1 of NSp(2nv,R)(GX

), which classifies exhaustively all gaugings of G
X

. Then, one can

just define P̂ ⌘ PQ, as in the maximal case [24].

We have arrived at the definition of the so-called ‘reduced S-space’: first we define

S0
red ⌘ S(X0, ✓0) \ NSp(2nv,R)(GX

) / NGd
(G

X

), (2.18)

8

normalizer

can write

N ⇠= S N, S 2 SSp(2nv,R)(X
0 P

MN

), N 2 NSp(2nv,R)(GX

), (2.9)

since the transformation S has by definition no e↵ect on the embedding tensor. The most

natural generalization of this identification would be to require

N ⇠= S N, S 2 SSp(2nv,R)(X
0 P

MN

, ✓0 a

M

), (2.10)

as proposed in [24]. We can actually quotient out a larger group of transformations. The key

point is that the constraints (2.7) are preserved under any transformation such that

S N

M

✓0 a

N

= ✓0 b

M

m a

b

, S 2 SSp(2nv,R)(X
0 P

MN

), m b

a

2 NGm(Hm)

CGm(Hm)
. (2.11)

The latter quotient is isomorphic to a subgroup of Aut(Hm), hence it can be represented in

the adjoint of Hm as specified. Clearly, any m
a

b 2 Aut(Hm) would preserve the embedding

tensor constraints, since by definition m
a

dm
b

ef
de

fm�1
f

c = f
ab

c. However, in the Lagrangian

such automorphisms must be induced by a field redefinition of the matter fields obtained from

the action of the (broken) Gm global symmetries. One way to see this is to look at the covariant

derivative for some matter fields �:

D
µ

� ⌘ @
µ

��AM

µ

✓0 a

M

⌧
a

(�) ! @
µ

��AM

µ

✓0 b

M

m a

b

⌧
a

(�), (2.12)

where � is some matter field and ⌧
a

(�) are the infinitesimal variations of the fields under Hm.

Clearly the left and right hand side can only be equivalent if m
a

b can be reabsorbed in a

redefinition of � that also leaves invariant all couplings unrelated to the gauging (in particular,

it must be an isometry of the scalar manifold to preserve the kinetic terms). We thus define

the subgroup of NSp(2nv,R)(GX

) that can be appropriately quotiented away:

S(X0, ✓0) ⌘
⇢
S 2 SSp(2nv,R)(X

0) | S✓0 = ✓0m, m 2 NGm(Hm)

CGm(Hm)

�
. (2.13)

A second set of transformations to quotient out is associated with duality symmetries Gd.

In full analogy with maximal supergravity, these identifications are obtained by imposing

N ⇠= ND, D 2 NGd
(G

X

). (2.14)

In this case no further changes are needed.

Let us now comment on the point of view in which a fixed choice of X
MN

0 P and ✓
M

0 a is

made, and symplectic deformations a↵ect the frame where these tensors are introduced. For

instance, X
MN

0 P and ✓
M

0 a could involve electric vectors only, and we would be classifying all

electric frames compatible with such gauge couplings. The quotients that we need to perform are

necessarily the same (the two approaches are equivalent), but their interpretation changes. The

quotient by Gd now corresponds to redefinitions of the scalar fields only (non-linearly realized

on the fermion fields, too), rather than duality transformations. Again, this is analogous to

maximal supergravity [24]. The elements of S(X0, ✓0) now have a non-trivial interpretation:

they correspond to electric-magnetic redefinitions of the vector fields such that any e↵ect on

7

stabilizer

We can try to treat the gauging of the full Ggauge ✓ G in a similar way. Assuming that the

choice of gauge group has been made, we introduce its generators ⌧
A

, A = 1, . . . , dimGgauge,

structure constants f
AB

C , and a small embedding tensor #
M

A. This time, however, we must

solve the more general consistency constraints (2.1). A first di↵erence is that these result in a

set of quadratic equations for #
M

A, rather than linear ones. A more crucial di↵erence with the

previous case (and with maximal supergravity in particular) is that here is no analogue of (2.5)

that can characterize all consistent #
M

A group theoretically. Intuitively, the problem is that

the full Ggauge is not embedded in Sp(2nv,R). There is therefore no equivalent of X
MN

P that

entirely defines the gauging, on which symplectic transformations can act to induce a change

of the full #
M

A. If we nevertheless assume to have solved the linear and quadratic constraints

on #
M

A for a given Ggauge, we can ask which of the resulting solutions give rise to inequivalent

theories. To answer this question, we should quotient out any G transformation that maps

Ggauge to itself. Namely, we should compute the action of the normalizer NG(Ggauge) on the

general solutions #
M

A, thus obtaining the classification of G-orbits of gaugings of Ggauge. This

is the obvious generalization of the computation of duality orbits of maximal and half-maximal

gauged supergravities, when the global symmetries of the theory are larger than the duality

symmetries Gd.

Given that the space of consistent gauge connections has no group-theoretical description,

the characterization of the G-orbits can only be carried out on a case-by-case basis, computing

explicitly the action of G transformations on the embedding tensor. What we will do instead

is to pose an analogous but subtly di↵erent problem, the answer to which can be phrased in

terms of a certain subset of symplectic transformations that can be computed explicitly.

2.2 Symplectic deformations of N � 2 gauged theories

From now on we will focus on theories where the global symmetries decompose in a direct

product of duality and ‘matter’ symmetries, the latter leaving the vector fields invariant:5

G = Gd ⇥ Gm. (2.6)

In particular, this situation arises in theories with extended supersymmetry. It is convenient for

our purposes to first consider the consistent gauging of some group G
X

⇢ Gd, entirely specified

by X
MN

P , and then the further coupling of matter symmetries Hm ⇢ Gm to the vector fields,

so that the final gauging is a maximal subgroup Ggauge ✓ G
X

⇥ Hm. Assuming G
X

and Hm

have been chosen and fixed, we can rewrite the constraints (2.1) in terms of X
MN

P and a small

embedding tensor ✓
M

a, with a running along the adjoint of Hm. Beyond the constraints (2.2)

for X
MN

P , we now also have

✓ a

M

✓ b

M

f c

ab

= �X P

MN

✓ c

P

, ✓ a

M

✓ b

N

⌦MN = ✓ a

M

X Q

NP

⌦MN = 0. (2.7)

5The non-minimal couplings between scalars and vectors can be parameterized in terms of a symmetric matrix

M(�)MN and beyond those symplectic transformations that induce isometries on the scalar manifold, there can

be extra symmetries in Gd associated with U 2 U(nv) ⇢ Sp(2nv,R) if [U,M(�)] = 0 8�.

5

duality symmetries

matter symmetries

gauge group on matter

gauge group on vectors

embedding tensors

[Dall’Agata, GI, Marrani]

[GI]

[Dall’Agata, GI, Trigiante]

[De Wit, Nicolai]
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Symplectic deformations of some N=8 gaugings

subgroups of E
7(7)

. Similarly to the SO(8) gaugings, all other G
gauge

⇢ SL(8,R) are defined by
two matrices ✓

AB

, ⇠AB with in the 360 and 36 of SL(8,R) [35, 36, 34]. The embedding tensor
reads

⇥
AB

C

D

= �C
[A

✓
B]D

, ⇥ABC

D

= �[A
D

⇠B]C , (5.1)

and the consistency constraints impose ✓
AC

⇠CB / �B
A

or ✓
AC

⇠CB = 0. The deformations of the
gauge connections that we are going to discuss in the next sections can be always interpreted in
terms of an ! parameter ‘rotating’ ✓ and ⇠, as in the SO(8) case:

✓
AB

! cos! ✓
AB

, ⇠AB ! sin! ⇠AB. (5.2)

Similar expressions for the SU⇤(8) case, in terms of tensors in the 36 and 36 irreps, can be
defined. We will show that the range of the ! parameter, when it is allowed, can be very
different from model to model.

Before embarking ourselves in this task, however, we may ask whether another well-known
class of gaugings of maximal D = 4 supergravity admits such deformations: the Scherk–Schwarz
and Cremmer–Scherk–Schwarz gaugings (CSS for brevity) [37–39]. The formalism of equations
(2.4), with t

r

defined in terms of the four CSS mass parameters as explained in [39], allows to
quickly identify the space S

red

of deformations of the gauge connection. Unfortunately, we find
that for the CSS models no such deformation exists, as the connection #

M

r is unique up to the
obvious overall rescaling, which is itself a modulus of the theory. Therefore, the full S space of
the CSS gaugings consists exclusively of deformations of the ✓-angle of the gauged U(1) vector
field and of a large set of symplectic redefinitions of the ungauged ones.

5.1 SO(p, q) gaugings

The S space for the non-compact forms of SO(8) can be derived by analytic continuation of
the SO(8) theories. Most of the analysis of Section 4 is unchanged, only with the off-diagonal
blocks of the matrices in (4.21–4.23) being proportional to the Cartan–Killing invariant form
⌘
⇤⌃

instead of
28

. One subtlety regards the outer automorphisms of SO(p, q): the analytic
continuation will generally map the �(2) matrices used to define the S

3

generators to complex
matrices. In particular, only for SO(4, 4) it is possible to reconstruct a real �

sc

matrix that
can be used to define the T transformation, as was already noted in [34]. Other outer auto-
morphisms would be quotiented away in any case, therefore this is the only transformation that
can affect the final result. The explicit construction of �

sc

for SO(4, 4) shows that the resulting
T transformation does indeed belong to E

7(7)

. We conclude that the SO(4, 4) gauging has the
same (reduced) space of symplectic deformations as SO(8), namely:

SO(8), SO(4, 4) : S

red

= S1/D
8

, fundamental domain: ! 2 [0,⇡/8]. (5.3)

The full S space also contains a gauge invariant shift in the theta term proportional to ⌘
�⌃

.
For p, q 6= 4, the analysis is still very similar to SO(8), but the T transformation in equation

(4.25) must be substituted with the centralizer i�
2

⌦ ⌘. This means that now ! is identified to
±! + k⇡/2, k 2 Z and we obtain the space

SO(p, 8� p), p 6= 0, 4 : S

red

= S1/D
4

, fundamental domain: ! 2 [0,⇡/4]. (5.4)
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subgroups of E
7(7)

. Similarly to the SO(8) gaugings, all other G
gauge

⇢ SL(8,R) are defined by
two matrices ✓

AB

, ⇠AB with in the 360 and 36 of SL(8,R) [35, 36, 34]. The embedding tensor
reads

⇥
AB

C

D

= �C
[A

✓
B]D

, ⇥ABC

D

= �[A
D

⇠B]C , (5.1)

and the consistency constraints impose ✓
AC

⇠CB / �B
A

or ✓
AC

⇠CB = 0. The deformations of the
gauge connections that we are going to discuss in the next sections can be always interpreted in
terms of an ! parameter ‘rotating’ ✓ and ⇠, as in the SO(8) case:

✓
AB

! cos! ✓
AB

, ⇠AB ! sin! ⇠AB. (5.2)

Similar expressions for the SU⇤(8) case, in terms of tensors in the 36 and 36 irreps, can be
defined. We will show that the range of the ! parameter, when it is allowed, can be very
different from model to model.

Before embarking ourselves in this task, however, we may ask whether another well-known
class of gaugings of maximal D = 4 supergravity admits such deformations: the Scherk–Schwarz
and Cremmer–Scherk–Schwarz gaugings (CSS for brevity) [37–39]. The formalism of equations
(2.4), with t

r

defined in terms of the four CSS mass parameters as explained in [39], allows to
quickly identify the space S

red

of deformations of the gauge connection. Unfortunately, we find
that for the CSS models no such deformation exists, as the connection #

M

r is unique up to the
obvious overall rescaling, which is itself a modulus of the theory. Therefore, the full S space of
the CSS gaugings consists exclusively of deformations of the ✓-angle of the gauged U(1) vector
field and of a large set of symplectic redefinitions of the ungauged ones.

5.1 SO(p, q) gaugings

The S space for the non-compact forms of SO(8) can be derived by analytic continuation of
the SO(8) theories. Most of the analysis of Section 4 is unchanged, only with the off-diagonal
blocks of the matrices in (4.21–4.23) being proportional to the Cartan–Killing invariant form
⌘
⇤⌃

instead of
28

. One subtlety regards the outer automorphisms of SO(p, q): the analytic
continuation will generally map the �(2) matrices used to define the S

3

generators to complex
matrices. In particular, only for SO(4, 4) it is possible to reconstruct a real �

sc

matrix that
can be used to define the T transformation, as was already noted in [34]. Other outer auto-
morphisms would be quotiented away in any case, therefore this is the only transformation that
can affect the final result. The explicit construction of �

sc

for SO(4, 4) shows that the resulting
T transformation does indeed belong to E

7(7)

. We conclude that the SO(4, 4) gauging has the
same (reduced) space of symplectic deformations as SO(8), namely:

SO(8), SO(4, 4) : S

red

= S1/D
8

, fundamental domain: ! 2 [0,⇡/8]. (5.3)

The full S space also contains a gauge invariant shift in the theta term proportional to ⌘
�⌃

.
For p, q 6= 4, the analysis is still very similar to SO(8), but the T transformation in equation

(4.25) must be substituted with the centralizer i�
2

⌦ ⌘. This means that now ! is identified to
±! + k⇡/2, k 2 Z and we obtain the space

SO(p, 8� p), p 6= 0, 4 : S

red

= S1/D
4

, fundamental domain: ! 2 [0,⇡/4]. (5.4)
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in the fundamental representation of SL(8,R). It is clear that such generator would rescale ✓

AB

and ⇠AB separately. Finally, the sign of ⇠AB can be changed by a parity transformation, just
like in the SO(8) case. Therefore, the only inequivalent choices correspond to ⇠ = 0 or ⇠ 6= 0 or,
in the language of ‘! deformations’, to:

ISO(p, 7� p) : ! = 0 or ! 6= 0 (mod ⇡/2). (5.8)

A simple observation excludes the possibility that these two choices can be further identified by
some discrete transformation: the ! = 0 embedding tensors rescale homogeneously under the
action of (5.7), but not under any other non-compact generator of E

7(7)

, while turning on ! 6= 0

introduces non-homogeneous terms also under the action of (5.7).
The physical relevance of the symplectic deformation of these models is clear in the ISO(7)

case. On the one hand, by an argument given in [34], the ISO(p, 7 � p) theories with ! = 0

can at most admit Minkowski vacua (although none are known) because of the homogeneous
rescaling of the embedding tensor with respect to a non-compact generator of E

7(7)

. On the
other hand, the ISO(7) theory with ! 6= 0 is known to have an AdS vacuum [34], which is
possible precisely because ! 6= 0 breaks the homogeneity property of the embedding tensor.
Moreover, [9] identified another AdS vacuum of an ISO(7) gauging of maximal supergravity, and
we can now state that it also belongs to the ‘deformed’ model.

5.3 ‘Dyonic’ gaugings

The gaugings (5.5, 5.6), when defined in the SL(8,R) and SU⇤(8) symplectic frames, necessarily
involve magnetic vectors for gauging one semisimple factor, as well as a mix of electric and
magnetic vectors for the nilpotent generators. They are particularly relevant for the study of
Minkowski solutions of gauged maximal supergravity, as it has been found that all G

gauge

⇢
SU⇤(8), together with some more groups in SL(8,R), admit such vacua, with fully or partially
broken supersymmetry. Moreover, the models allowing for Minkowski vacua are connected to
the Cremmer–Scherk–Schwarz gaugings by singular limits in their moduli spaces [18].

Repeating the analysis of previous sections, we find that the only gaugings that admit a
symplectic deformation of their gauge connection that is not removed by E

7(7)

transformations
are of the form

Re(SO(4,C)⇥ SO(4,C))n T 16, (5.9)

where we can choose either two (p, q) real forms for the two factors (in which we obtain a subgroup
of SL(8,R)), or we can choose (SO⇤(4) ⇥ SO⇤(4)) n T 16 ⇢ SU⇤(8). The only deformation of
the gauge connection of these models corresponds to the separate rescaling of the couplings of
the two Re(SO(4,C)) factors (which also gives an electric-magnetic rotation of the vector fields
associated with T 16). As usual, it can be parameterized in terms of ! as in equations (5.1, 5.2).

Let us start with the analysis of the range of ! for SO(4,R)2 n T 16. In terms of (5.2),
! = 0 (mod⇡/2) corresponds to the ungauging of one semisimple factor, and therefore these
values must be excluded. Hence, any linear identification on ! must map Z⇡/2 to itself, which
means that at most we can expect the equivalence relation ! ' ±! + k⇡/2. We can in fact
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No (geometric) upift to 11d sugra for the ω-deformation

Crucially, in [Dall’Agata, GI, Marrani] this is proven to be and on/off deformation.  
Lifts to the on/off deformation of IIA on S6 :  the Romans mass.

(deformed ISO(7) is not really “dyonic”, all charges are mutually local)

[Guarino, Varela]

[De Wit, Nicolai] [Lee, Strict. Constable, Waldram]
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Consistent Truncations & EFT

10D/11D 
Sugra

(Ungauged)
Sugra

Gauged
Sugras@µ �! Dµ

Tn

p-form fluxes

geom.: Sn
, . . .

?

U(1)nV , neutral matter susy, ⇤
cosm

, masses, . . .

EFT/EGG

(inspired by Samtleben, 0808.4076)
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Consistent Truncations & EFT

• Exc. Field Theory can be used to construct consistent truncations  [Hohm, Samtleben]

• 11d  and massless type II in single framework

• En(n)×R+ structures are made evident and can be exploited

• Question: how can we embed massive type IIA in EFT?

• massive IIA is reduced on S6 using same Ansatz as massless (doable in EFT). 
Does this hold for lower-dim. spheres? [Guarino, Varela] 

• Puzzle:

- mIIA is a sugra theory in its own right.  
It should be captured by EFT upon solution of its (strong) section constraint.  
BUT this is not the case! [Berman et al.], [Blair Malek Park], [Bossard Kleinschmidt], [Bandos]

- On the other hand, in DFT non-geometry was necessary [Hohm, Kwak] 

(dependence on a winding coord. for some RR potential)
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 Basic idea of exceptional geometry:

• Repackage fields and symmetries of 11d/10d Sugra 
so that it looks like an (11-n) dimensional maximal supergravity.

• However, no truncation is performed! 
Equivalent form of the full 11d/10d Sugra we began with.

• Fields and symmetry parameters fill out En(n) representations  
                                                                                              (K(En(n)) for fermions)

• Very convenient (if not necessary!) if you want to do  
consistent truncation to an (11-n) dimensional theory.

• But you may as well study dynamics of full theory without truncation!

Supergravity,  geometry  &  En(n)
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There are En(n)×R+ Exceptional Generalised Geometries for

• 11d Supergravity and type IIA (massless, so far!)

• Type IIB 

Exceptional Field Theory is a framework that captures both (in coord. patch)  

by introducing extra internal coordinates 

Similar to Double Field Theory.

Exceptional Field Theory

xµ̂ = (xµ , ym) �� (xµ , Y M )

d=11 (11– n) + n (11– n) + Rvec= ��

Full En(n) representation
(or 10) (n –1)
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• There are EFT’s in D = 9, …, 3 corresponding to the En(n) series

• All fields depend on               ,  
but there is a section condition on Y dependence 
 
 
 
 
 
imposed on any field, parameter, etc.

• Result: fields only really depend on               ,

• but what       ?  Two maximal solutions:

• n dimensional: 11d Sugra coordinates
• (n –1) dimensional: Type IIB coordinates

E2(2) = SL(2)×R+

E3(3) = SL(2)×SL(3)

E4(4) = SL(5)

E5(5) =SO(5,5)

E6(6)   

E7(7)

E8(8)

11d

IIA [R+]IIB [SL(2)]

Exceptional Field Theory

xµ̂ = (xµ , ym) �� (xµ , Y M )

Y MN
PQ �M � �N = 0

xµ̂ = (xµ , ym) �� (xµ , Y M )

xµ̂ = (xµ , ym) �� (xµ , Y M )

A (very specific) En(n) invariant tensor

�

�Y M
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• EFTs look like a (D=9,…,3) supergravity theory,  
but with an infinite set of fields and internal symmetries.

• E.g. in D = 4, bosonic pseudo-action  
 
 
 

• Invariant under:

• External diffemorphisms

• Internal Generalised diffeomorphisms acting as:

Exceptional Field Theory

Ricci scalar E7(7)/SU(8) scalar fields

“scalar potential”

S =

�
d4x

�
d56Y e

�
R̂ +

1

48
gµ� DµMMN D�MMN

� 1

8
MMN Fµ�MFµ�

N + e�1 L � V (M, g)
�

�µ(x, Y )

A (very specific) En(n) invariant tensor

�

�Y M

symmetries completely specify the field content as well as its interactions in an elegant and

unambiguous manner. In this section we introduce the basics of the EFT’s which we will be

extensively using. We will focus on D � 4 throughout this paper.

2.1 Generalised di↵eomorphisms

EFT fields depend on spacetime coordinates xµ, µ = 0, . . . , D � 1, and extended internal

coordinates yM . The fields and gauge parameters of the theory are arranged in objects that

transform consistently under a set of exceptional generalised di↵eomorphisms. On covariant

objects generalised di↵eomorphisms act with a generalised Lie derivative L
⇤

. For instance, the

action of L
⇤

on a vector UM of weight �(U) = �U reads2

L
⇤

UM = ⇤N@NUM � UN@N⇤M + Y MN
PQ @N⇤P UQ + (�U � !) @P⇤

PUM , (2.1)

where ⇤M (x, y) is the gauge parameter, Y MN
PQ is a specific, constant En(n) ⇥ R+ invariant

tensor (so that �
⇤

Y MN
PQ = L

⇤

Y MN
PQ = 0 ), and ! = 1/(D � 2) . All parameters of

generalised di↵eomorphisms carry weight ! .

Consistency of the generalised di↵eomorphisms requires the algebra of the generalised Lie

derivative to close, namely

[L
⇤

,L
⌃

]WM = L
[U,V ]E

WM , (2.2)

where the so-called E-bracket for parameters ⇤ and ⌃ is defined as

⇥
⇤,⌃

⇤M
E

⌘ 1

2
(L

⇤

⌃M � L
⌃

⇤M ) = ⇤P@P⌃
M +

1

2
Y MN

PQ @N⇤P ⌃Q � (⇤ $ ⌃) . (2.3)

The requirement (2.2) translates into a set of conditions [16] which severely restrict the depen-

dence of the fields and parameters in the EFT on the generalised coordinates:

Y PQ
MN @P ⌦ @Q = 0 ,

�
Y M(P

TQ Y T |N)

RS � Y M(P
RS �N)

Q

�
(@P@N ) = 0 ,

�
Y MN

TQ Y TP
SR + 2Y MN

RT Y TP
SQ � Y MN

RS �PQ � 2Y MN
SQ �PR

�
@P ⌦ @N = 0 .

(2.4)

The first condition in (2.4) is usually referred to as the section constraint. We will always

impose that it holds on any combination of fields and/or parameters, including derivatives and

products. As a result, the section constraint restricts all objects in the EFT to depend only on

a subset of the internal coordinates. The other equations in (2.4) then follow from the section

constraint for all the En(n) EFT’s [16].

The E-bracket in (2.3) fails to satisfy the Jacobi identity:

⇥
[⇤,⌃]

E

,�
⇤
E

+ cycl. =
1

3

�
[⇤,⌃]

E

,�
 
E

+ cycl. . (2.5)

This fact plays a central role in the construction of EFT’s, as it requires the introduction of

a hierarchy of p-form fields and gauge transformations [1–4, 38] similar to the one of gauged

2The transformation rule for a covariant tensor VM is deduced requiring that the contraction S = UMVM

transforms as a scalar density of weight �U + �V . The transformation rule for tensors follows immediately.

5
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• Section condition imposes:

• For a certain choice of {ym} we get massless IIA.

 

• For instance one can match the gauge trfs of the D-dimensional vectors

IIA vs. EFT

D  +  kD  +  R1 ��
xµ̂ = (xµ , ym) �� (xµ , Y M )xµ̂ = (xµ , ym) �� (xµ , Y M )xµ̂ = (xµ , ym) �� (xµ , Y M )xµ̂ = (xµ , ym) �� (xµ , Y M )xµ̂ = (xµ , ym) �� (xµ , Y M )

≤  11 or 10

..and other p-form trfs  
in D dimensions

L�µ(x,y)

L�M (x,y)

�
��

�
( �µ̂ )

p ( �(0), �(1), �(2) )
��

are decomposed in scalars, vectors and so on under the action of the D-dimensional di↵eomor-

phisms, after appropriate Kaluza-Klein (KK) like redefinitions needed to make covariance under

the seven-dimensional external di↵eomorphisms explicit. All fields and gauge parameters still

depend on the ten-dimensional coordinates xµ , y↵ with µ = 0, . . . , 6 and ↵ = 1, 2, 3 . For

instance the D = 7 vectors arising from the ten-dimensional p-form potentials can be written as

AKK

µ = Aµ �Bµ
� A� , AKK

µ� = Aµ� �Bµ
� A�� , AKK

µ�� = Aµ�� �Bµ
� A��� , (2.11)

where Bµ
↵ are the KK vector fields coming from the metric. It is convenient to perform a

second set of non-linear redefinitions

Cµ = AKK

µ , Cµ� = AKK

µ� and Cµ�� = AKK

µ�� +AKK

µ A�� . (2.12)

After some algebra manipulations it can be shown that, under (2.10), these vectors transform as

follows under internal di↵eomorphisms with parameter ⇠↵ and internal gauge transformations

with parameters � , ⌅↵ , ✓↵� :

�Bµ
↵ = (@µ �Bµ

� @�) ⇠↵ + ⇠� @�Bµ
↵ ,

�Cµ = ⇠� @�Cµ + (@µ �Bµ
� @�)� ,

�Cµ� = ⇠� @�Cµ� + Cµ� @�⇠� + (@µ �Bµ
� @�)⌅� +Bµ

� @� ⌅� ,

�Cµ�� = ⇠� @�Cµ�� + 2Cµ�[� @�]⇠
� + (@µ �Bµ

� @�) ✓�� + 2Bµ
� @

[�| ✓�|�]

+2Cµ @
[�⌅�] � 2Cµ[� @�]� .

(2.13)

The 7 + 3-splitting we have adopted to describe the massless IIA supergravity can be com-

pared with the D = 7 EFT, based on E
4(4)

⌘ SL(5) [6, 15, 17]. Analogous comparisons can be

performed for other D + (n � 1) dimensional splittings. The SL(5) EFT is characterised by

generalised vectors ⇤M in the 10

0 representation, i.e. ⇤mn = �⇤nm , with m = 1, ..., 5 being a

fundamental SL(5) index. The structure tensor of the SL(5) EFT is given by3

Y mnpq
rs tu = ✏mnpqz ✏rstuz , (2.14)

and the section constraint reduces to

✏mnpqz @mn ⌦ @pq = 0 . (2.15)

There are two inequivalent solutions of (2.15) (up to SL(5) transformations [17]) corresponding

to M-theory (more precisely, eleven-dimensional supergravity) and type IIB:

M-theory: @↵4 6= 0 , @
45

6= 0 and @↵5 = @↵� = 0 ,

type IIB: @↵� 6= 0 and @↵4 = @↵5 = @
45

= 0 .
(2.16)

The massless IIA case is obtained by further restricting to only three coordinates in the M-theory

solution. We choose to set @
45

= 0 .

3The entries in Y mnpq
rs tu are 0,±1 . Therefore, whenever an index pair mn is contracted, a factor of 1

2
must

be explicitly included.

7
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• Massive IIA is not embedded in EFT

• Solutions of the section constraint only yield 11d or massless type II

• A clear obstruction comes from the p-form gauge variations: 
 
 
 

• Terms without derivatives,  
but action of ξμ and ΛM in EFT contain derivatives in every term!

mIIA vs. EFT

The SL(5) EFT contains 10

0 vector fields AM
µ ⌘ Amn

µ that transform under a generalised

di↵eomorphism as in (2.9). Using the massless IIA solution of the section constraint (@↵4 6= 0),

we can identify the field content and gauge parameters of the supergravity theory with those of

the EFT:

Amn
µ = (A↵5

µ , A↵4
µ , A↵�

µ , A45

µ ) = ( 1

2

✏↵�� Cµ�� , Bµ
↵ , ✏↵�� Cµ� , Cµ ) ,

⇤mn = (⇤↵5 , ⇤↵4 , ⇤↵� , ⇤45 ) = ( 1

2

✏↵�� ✓�� , ⇠↵ , ✏↵�� ⌅� , � ) ,

@mn = ( @↵5 , @↵4 , @↵� , @45 ) = ( 0 , @↵ , 0 , 0 , 0 ) .

(2.17)

After imposing the massless IIA solution of the section constraint, an explicit computation of

the vector field transformations directly from (2.9) reproduces (2.13). A similar analysis can

be repeated for the other types of fields like the scalars or the two- and three-form potentials.

However, the vector gauge transformations are enough for our purposes in the next section.

2.3 Massive IIA gauge transformations from a deformed Lie derivative

Let us now look at the gauge transformations of the ten-dimensional massive IIA supergravity

also in the 7+3 dimensional splitting. After performing the field redefinitions (2.11) and (2.12),

the internal gauge transformations are modified by the Romans mass mR, yielding

�Bµ
↵ = (@µ �Bµ

� @�) ⇠↵ + ⇠� @�Bµ
↵ ,

�Cµ = ⇠� @�Cµ + (@µ �Bµ
� @�)��mR Bµ

� ⌅� ,

�Cµ� = ⇠� @�Cµ� + Cµ� @�⇠� + (@µ �Bµ
� @�)⌅� +Bµ

� @� ⌅� ,

�Cµ�� = ⇠� @�Cµ�� + 2Cµ�[� @�]⇠
� + (@µ �Bµ

� @�) ✓�� + 2Bµ
� @

[�| ✓�|�]

+2Cµ @
[�⌅�] � 2Cµ[� @�]�� 2mR Cµ[� ⌅�] .

(2.18)

Note that the extra terms in (2.18) compared to (2.13) do not contain internal derivatives.

This poses an obstruction to recovering such variations from a standard EFT/generalised ge-

ometry Lie derivative like (2.1), whose terms always contain derivatives of either the gauge

parameter or the field it acts on. However, the fact that massive IIA supergravity is a geomet-

rically well-defined theory means that an exceptional generalised geometry describing it should

still exist. This suggests that the solution to the above obstruction is to implement mR as a

deformation of L , thus modifying the notion of covariance in the exceptional generalised geom-

etry associated with type IIA supergravity. The procedure we follow to deduce this deformation

is the converse of what we discussed in the previous section: we still use the dictionary (2.17)

for the SL(5) EFT, but we now repackage (2.18) into an expression

�
⇤

Amn
µ = @µ⇤

mn + eL
⇤

Amn
µ , (2.19)

where eL
⇤

accounts for mR and reduces to the standard EFT Lie derivative in the limit

mR ! 0 . We stress that vector fields transform faithfully under internal generalised di↵eo-

morphisms, so that by covariance this procedure uniquely identifies the deformation induced by

8
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• We could take the non-geometric route (violate section condition),

• BUT: massive IIA is a fine maximal Sugra!  
There must be an exceptional generalised geometry for it.

• Which means: new EFTs  
with solutions of the section condition that yield massive IIA

• We reverse-engineered these new EFTs by comparing gauge trfs 
 
Trick: it is sufficient to do it on a subset of fields transforming faithfully  
under Ξ(1) variations, the rest follows by covariance.

IIA vs. EFT
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L�µ(x,y)

L�M (x,y)

�
��

�
( �µ̂ )

p ( �(0), �(1), �(2) )
��

IIA vs. EFT

Massless IIA

�� Turn on mR

�Aµ̂ = �µ̂� + mR �µ̂

�Bµ̂�̂ = 2 �[µ̂ ��̂]

�Aµ̂�̂�̂ = 3 �[µ̂ ��̂�̂] � 3A[µ̂�̂ ��̂]� � 3mR B[µ̂�̂��̂]

��
Deduce

L�µ(x,y)

�L�M (x,y)

�

• External diffeos, section condition and dictionary don’t change,

• only the generalised Lie derivative does, let’s see how



Gianluca Inverso The exceptional form of massive IIA,   Benasque 2016

•       now contains non-derivative terms:

• X is a constant object encoding mR , which we know for all EFTs :

• It appears in the D-dimensional maximal gauged supergravity 
obtained by torus reduction of massive IIA.

• It’s a special case of  embedding tensor.  
(this is not an assumption, it’s a result.)

• Crucial: we deduced this keeping only certain {ym} internal coords, 
we can now promote to {YM} and find the new section conditions

Deformed EFT (“XFT”)
L�µ(x,y)

�L�M (x,y)

�

�L�V M = L�V M � XNP
M �N V P
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• In standard EFT closure and Jacobi of     require section condition

• We need to repeat the same procedure for     . 
Several constraints:

•                                            is unmodified (good!)

•            has same constraints as embedding tensor in gauged sugra

• δ            = 0 under all gauge transformations (i.e.: it’s not a tensor!)

• Mixed condition: 

Deformed EFT: consistency

L

Y MN
PQ �M � �N = 0

�L

Y MN
PQ �M � �N = 0

�L�V M = L�V M � XNP
M �N V P

�L�V M = L�V M � XNP
M �N V P

X M
NP �M = 0 (in particular : not a torsion!)
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• The structure of EFTs is that of gauged maximal sugras  
with infinitely many fields and internal symmetries

• It is only natural to superpose it with a standard gauging

• Just like in gauged sugra, X breaks the global En(n) explicitly  
(solving the section constraint does, too)

• Romans mass was a deformation already in 10d, 
instead of finding its “origin”, we deformed EFT to implement it.

Deformed EFT: interpretation

�L�V M = L�V M � XNP
M �N V P

standard EFT  
internal syms

Gauged Sugra 
internal syms

Deformed EFT (XFT)
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Deformed EFT: interpretation

• Let’s help us with an example: D=9 EFT,   E2(2)=SL(2)×R+

• Coordinates: external x 
μ and

• Section condition                     :  11d sugra or type IIB

• New constraint:  
 
kills 11d coordinate, left with massive IIA, and IIB (with F1 flux)

Y M = (y�=1,2 , z)
11d type IIB

�� � �z = 0

�L�V M = L�V M � XNP
M �N V P ,   with Xz 2 1 = mR

mR � �1 = 0

T-dual
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Deformed EFT: interpretation

• Same analysis in D=4:

• section condition + X∂–condition have several 10d/11d solutions: 
 
 
massive IIA,  type IIB,  massless IIA (with constant RR flux)  
and  
11d Sugra with Freund–Rubin parameter

• except for mIIA, other constant fluxes can be removed  
by redefinition of gauge potentials & gauge-parameters

T-duality

six “windings” of original massive IIA coordinates, plus a seventh “dual M-theory circle”
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The XFT action in D=4

S =

�
d4x d56Y e

�
R̂(X) +

1

48
gµ� DµMMN D�MMN

� 1

8
MMN Fµ�MFµ�

N + e�1 L (X) � V (M, g, X)
�

Covariance determines the variation of AM
µ to be

�
⇤

Aµ
M = Dµ⇤

M ' @µ⇤
M + eL

⇤

Aµ
M , (4.12)

where the equivalence holds up to the addition of a trivial gauge parameter, to be reabsorbed in

other gauge transformations higher up in the tensor hierarchy. This is completely in line with

the situation for the undeformed EFT.

Following the construction of the tensor hierarchy in the original EFT’s, we first define the

field strength for the vector fields Aµ
M as

Fµ⌫
M = 2 @

[µA⌫]
M � ⇥

Aµ, A⌫

⇤M
X

. (4.13)

Since the Jacobiator of the X-bracket does not vanish, the above expression does not transform

covariantly under generalised di↵eomorphisms. The procedure to restore gauge covariance is

analogous to those of gauged supergravity and EFT. In fact, it turns out to be a superposition

of the two cases. We define a modified field strength by introducing the two-form fields Bµ⌫ ↵

and Bµ⌫M in the form of the two trivial parameters (4.6) and (4.7)

Fµ⌫
M = Fµ⌫

M � 12 [t↵]MN@NBµ⌫ ↵ � 2ZM,↵Bµ⌫ ↵ � 1

2
⌦MNBµ⌫N , (4.14)

where Bµ⌫K is a covariantly contrained field as in (4.9) and (4.10). Note that this construction

only deviates from EFT by the term proportional to ZM,↵ , which is precisely the one needed

to make contact with gauged supergravities when all the fields are taken to be yM -independent.

It is easy to verify that, since Fµ⌫
M only di↵ers from Fµ⌫

M by a trivial parameter, we have

⇥Dµ,D⌫

⇤
= �2 eL@[µA⌫]

+ 2 eLA[µ
eLA⌫]

= �eLFµ⌫ = �eLFµ⌫ . (4.15)

Using the explicit expression for the symmetric X-bracket (4.5), the general variation of the

modified field strength (4.14) now reads

�Fµ⌫
M = 2D

[µ�A⌫]
M � 12 [t↵]MN@N�Bµ⌫ ↵ � 2ZM,↵�Bµ⌫ ↵ � 1

2
⌦MN �Bµ⌫N , (4.16)

where, as in EFT, we have defined

�Bµ⌫ ↵ = �Bµ⌫ ↵ + [t↵]NPA
[µ
N�A⌫]

P ,

�Bµ⌫N = �Bµ⌫N + ⌦PQ

⇥
A

[µ
Q@N�A⌫]

P + @NA
[µ
P �A⌫]

Q
⇤
.

(4.17)

We define the vector gauge variations of the two-forms as follows13:

�
⇤

Bµ⌫ ↵ = [t↵]NP⇤
NFµ⌫

P ,

�
⇤

Bµ⌫N =⌦PQ

⇥
⇤Q@NFµ⌫

P + Fµ⌫
Q@N⇤P

⇤
.

(4.18)

Substituting the above variations back in (4.16) and making use of (4.5) and (4.15) yields

�
⇤

Fµ⌫
M =

⇥Dµ,D⌫

⇤
⇤M + 2

�
⇤,Fµ⌫

 M
X

= eL
⇤

Fµ⌫
M , (4.19)

13It will be convenient for compatibility with [2] to take �⇤Aµ
M = Dµ⇤

M as the variation for the vector fields

under generalised di↵eomorphisms (cfr. the discussion below (4.12)).
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(twisted-self-dual) satisfies sec. constraint algebraically, 
and part of the X-constraint

4.3 Bosonic action

In analogy with ref. [2], the full dynamics of the theory can be encoded into an E
7(7)

covariant

(pseudo-)action supplemented by a first-order duality equation for the 56 gauge fields AM
µ

Fµ⌫
M = �1

2

e "µ⌫⇢� ⌦
MN MNKF⇢�

K , (4.27)

where e denotes the determinant of the vierbein and MMN is the scalar matrix parameterising

the coset space E
7(7)

/SU(8) . This ensures that only half of the vectors are independent.

The field equations can be conveniently derived by varying the following gauge invariant

pseudo-action, and subsequently imposing (4.27):

SXFT =

Z
d4x d56y e

⇥
R̂(X) +

1

48
gµ⌫ DµMMN D⌫MMN

� 1

8
MMN Fµ⌫MFµ⌫

N + e�1 L
top

(X)� VXFT(M, g,X)
⇤
.

(4.28)

While the general form of the action matches the one of EFT, the di↵erences with the latter lie

in the expressions of the field strengths, the covariant derivatives and the ‘scalar potential’ which

explicitly depend on the X-deformation. As in EFT, the XFT action is uniquely determined

by requiring gauge invariance under the bosonic symmetries. More specifically, each term in

(4.28) is invariant under internal generalised di↵eomorphisms while the relative coe�cients are

fixed by external di↵eomorphisms.

In what follows we discuss the invariance of the di↵erent terms under vector (i.e. generalised

di↵eomorphisms) and tensor gauge transformations. In the forthcoming computations we will

consistently drop all the vector gauge transformations of scalar density of weight 1. Indeed,

these take the form of boundary terms in the extended space.

The kinetic terms: The first term in the action is the Einstein-Hilbert term. As in EFT, it

is built from a modified Riemann tensor

R̂µ⌫
ab(X) = Rµ⌫

ab[!] + Fµ⌫
M ea⇢ @Me⇢

b , (4.29)

where the curvature of the four dimensional spin connection !µ
ab reads

Rµ⌫
ab[!] = 2D

[µ!⌫]
ab � 2!

[µ
ac !⌫]c

b . (4.30)

The second term in (4.29) has been added in order for the modified Riemann tensor to trans-

form covariantly under the four dimensional local Lorentz transformations acting on the spin

connection as ��!µ
ab = �Dµ�ab. The spin connection can in turn be expressed via Cartan’s

(covariantised) first structure equation in terms of the vierbein eµa which is an E
7(7)

scalar

of weight 1

2

. Consequently, the spin connection and the Riemann tensor both carry weight 0.

Furthermore, using the section constraint and the X-constraint, it is straightforward to show

that the internal derivative of an E
7(7)

scalar S of weight �(S) transforms under vector gauge

transformations as

�
⇤

(@MS) = eL
⇤

(@MS) + �(S)S @M@N⇤N , with weight �(@MS) = �(S)� 1

2

. (4.31)
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The deformed EFT requires to impose the section- and the X-constraint (3.16). In D = 4

the latter can be decomposed into the 133 + 1539 irreps, corresponding to X
(MN)

P@P and

X
[MN ]

P@P respectively. Using representation theory it is possible to find other equivalent ways

to express these constraints. Two such expressions are particularly useful

⌦MN⇥M
↵@N = 0 , ⇥M

(↵[t�)]MN@N = 0 , (4.4)

and correspond to the 133 and 1539, respectively.

The construction of the E
7(7)

XFT tensor hierarchy relies on the form of certain trivial

parameters appearing in the symmetric X-bracket (3.12). Specifically, for two arbitrary gener-

alised vectors of weight ! we have

�
U, V

 M
X

= � 6 [t↵]
MN [t↵]PQ @N

⇥
UPV Q

⇤� UNV PX
(NP )

M

� 1

4
⌦MN ⌦PQ

⇥
V Q @NUP + UQ @NV P

⇤
.

(4.5)

Both lines of (4.5) are trivial parameters provided all fields satisfy the section constraint and the

symmetric part of theX-constraint (3.17). This ensures that the Jacobi identity for eL is satisfied.

More generally, the following generic parameters do not generate generalised di↵eomorphisms:

⇤M = [t↵]MN@N�↵ +
1

6
ZM,↵ �↵ , (4.6)

⇤M = ⌦MN�N , (4.7)

for arbitrary �↵ . The intertwining tensor ZM,↵ is constructed from XMN
P making use of the

linear constraint:

ZM,↵ = �XPQ
M [t↵]PQ = �1

2
⌦MN⇥N

↵ . (4.8)

Similarly to the EFT case, �M is covariantly constrained in the sense that it must itself satisfy

the section constraints:

�
P1+133

�MN
�M@N = 0 =

�
P1+133

�MN
�M�N , (4.9)

where P1+133 denotes the projector onto the 1�133 representation of the 56⌦56 . In XFT,

the field �M is further covariantly constrained by

X
(MN)

P�P = 0 , (4.10)

or equivalently by ⌦MN⇥M
↵ �N = 0 . The importance of the covariantly constrained parame-

ters (4.7) will become apparent when constructing the tensor hierarchy.

4.2 Yang-Mills sector and tensor hierarchy

Analogously to EFT, we introduce an external derivative which is covariant under modified

internal generalised di↵eomorphisms

Dµ ⌘ @µ � eLAµ . (4.11)
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This is always a direct superposition of EFT and Gauged N=8 Sugra
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The XFT scalar potential in D=4

Hence, the modified Riemann tensor does not transform covariantly due to the second term in

(4.29). The non-covariant part of the variation vanishes when contracted with vierbeine and

therefore, the modified Ricci scalar R̂(X) is a scalar of weight 0. This proves the invariance of

the XFT Einstein-Hilbert term under gauge transformations.

The second and third term in (4.28) are respectively the kinetic terms for the scalars and

the vector fields. They only di↵er from the ones in EFT by the implicit presence of the X

deformation. The scalar matrix MMN is a tensor of weight 0 while Fµ⌫
N carries weight 1

2

.

Using (4.19) and �
⌅

Fµ⌫
M = 0 , it is clear that both terms are invariant under vector and tensor

gauge transformations.

The topological term: Following ref. [2], we present the topological term as a surface term

in five spacetime dimensions

S
top

(X) = � 1

24

Z

⌃

5

d5x

Z
d56y "µ⌫⇢�⌧Fµ⌫

M D⇢F�⌧ M

⌘
Z

@⌃5

d5x

Z
d56yL

top

(X) ,
(4.32)

where once again the di↵erence with EFT lies in the definition of the field strength and the

covariant derivative. Although this term is manifestly gauge invariant, its general variation is

needed to derive the field equations for the vectors and two-forms

�L
top

= �1

4
"µ⌫⇢�

⇥
�AµD⌫F⇢�M

+ Fµ⌫M

�
6 [t↵]MN@N�B⇢� ↵ + ZM,↵�B⇢� ↵ + 1

4

⌦MN�B⇢�N

�⇤
.

(4.33)

This requires to use the Bianchi identity (4.26) and the fact that for any three vectors of weight
1

2

the following identity holds

⌦MN UM
�
V,W

 N
X
+ cyclic = 12 [t↵]

(M
Q[t↵]NP )

@Q(U
MV NWP ) . (4.34)

The X-dependent part of the l.h.s. vanishes using (4.2), and hence the identity takes the same

form as in EFT. Using these results one can explicitly verify that (4.33) vanishes for vector and

tensor gauge transformations.

The potential: The scalar potential of XFT takes the following form

VXFT(M, g,X) = VEFT(M, g) + VSUGRA(M, X) + Vcross(M, X) , (4.35)

where the scalar potential of EFT is independent of the X deformation

VEFT = � 1

48
MMN @MMKL @NMKL +

1

2
MMN @MMKL @LMNK

� 1

2
g�1@Mg @NMMN � 1

4
MMN g�1@Mg g�1@Ng � 1

4
MMN @Mgµ⌫ @Ngµ⌫ ,

(4.36)

while the parts exclusive to XFT are

VSUGRA =
1

168

⇥
XMN

PXQR
SMMQMNRMPS + 7XMN

PXQP
NMMQ

⇤
, (4.37)
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Hence, the modified Riemann tensor does not transform covariantly due to the second term in

(4.29). The non-covariant part of the variation vanishes when contracted with vierbeine and

therefore, the modified Ricci scalar R̂(X) is a scalar of weight 0. This proves the invariance of

the XFT Einstein-Hilbert term under gauge transformations.

The second and third term in (4.28) are respectively the kinetic terms for the scalars and

the vector fields. They only di↵er from the ones in EFT by the implicit presence of the X

deformation. The scalar matrix MMN is a tensor of weight 0 while Fµ⌫
N carries weight 1

2

.

Using (4.19) and �
⌅

Fµ⌫
M = 0 , it is clear that both terms are invariant under vector and tensor

gauge transformations.

The topological term: Following ref. [2], we present the topological term as a surface term

in five spacetime dimensions

S
top

(X) = � 1
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d5x
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M D⇢F�⌧ M

⌘
Z
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d5x

Z
d56yL

top

(X) ,
(4.32)

where once again the di↵erence with EFT lies in the definition of the field strength and the

covariant derivative. Although this term is manifestly gauge invariant, its general variation is

needed to derive the field equations for the vectors and two-forms

�L
top

= �1

4
"µ⌫⇢�

⇥
�AµD⌫F⇢�M

+ Fµ⌫M

�
6 [t↵]MN@N�B⇢� ↵ + ZM,↵�B⇢� ↵ + 1

4

⌦MN�B⇢�N

�⇤
.
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This requires to use the Bianchi identity (4.26) and the fact that for any three vectors of weight
1

2

the following identity holds
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 N
X
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(M
Q[t↵]NP )

@Q(U
MV NWP ) . (4.34)

The X-dependent part of the l.h.s. vanishes using (4.2), and hence the identity takes the same

form as in EFT. Using these results one can explicitly verify that (4.33) vanishes for vector and

tensor gauge transformations.

The potential: The scalar potential of XFT takes the following form

VXFT(M, g,X) = VEFT(M, g) + VSUGRA(M, X) + Vcross(M, X) , (4.35)

where the scalar potential of EFT is independent of the X deformation

VEFT = � 1
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1

2
MMN @MMKL @LMNK
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g�1@Mg @NMMN � 1
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while the parts exclusive to XFT are

VSUGRA =
1

168

⇥
XMN

PXQR
SMMQMNRMPS + 7XMN

PXQP
NMMQ

⇤
, (4.37)
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Hence, the modified Riemann tensor does not transform covariantly due to the second term in

(4.29). The non-covariant part of the variation vanishes when contracted with vierbeine and

therefore, the modified Ricci scalar R̂(X) is a scalar of weight 0. This proves the invariance of

the XFT Einstein-Hilbert term under gauge transformations.

The second and third term in (4.28) are respectively the kinetic terms for the scalars and

the vector fields. They only di↵er from the ones in EFT by the implicit presence of the X

deformation. The scalar matrix MMN is a tensor of weight 0 while Fµ⌫
N carries weight 1

2

.

Using (4.19) and �
⌅

Fµ⌫
M = 0 , it is clear that both terms are invariant under vector and tensor

gauge transformations.

The topological term: Following ref. [2], we present the topological term as a surface term

in five spacetime dimensions

S
top

(X) = � 1
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Z
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⌘
Z
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Z
d56yL

top
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where once again the di↵erence with EFT lies in the definition of the field strength and the

covariant derivative. Although this term is manifestly gauge invariant, its general variation is

needed to derive the field equations for the vectors and two-forms

�L
top

= �1

4
"µ⌫⇢�

⇥
�AµD⌫F⇢�M

+ Fµ⌫M

�
6 [t↵]MN@N�B⇢� ↵ + ZM,↵�B⇢� ↵ + 1

4

⌦MN�B⇢�N

�⇤
.

(4.33)

This requires to use the Bianchi identity (4.26) and the fact that for any three vectors of weight
1

2

the following identity holds

⌦MN UM
�
V,W

 N
X
+ cyclic = 12 [t↵]

(M
Q[t↵]NP )

@Q(U
MV NWP ) . (4.34)

The X-dependent part of the l.h.s. vanishes using (4.2), and hence the identity takes the same

form as in EFT. Using these results one can explicitly verify that (4.33) vanishes for vector and

tensor gauge transformations.

The potential: The scalar potential of XFT takes the following form

VXFT(M, g,X) = VEFT(M, g) + VSUGRA(M, X) + Vcross(M, X) , (4.35)

where the scalar potential of EFT is independent of the X deformation

VEFT = � 1

48
MMN @MMKL @NMKL +

1

2
MMN @MMKL @LMNK

� 1

2
g�1@Mg @NMMN � 1

4
MMN g�1@Mg g�1@Ng � 1

4
MMN @Mgµ⌫ @Ngµ⌫ ,

(4.36)

while the parts exclusive to XFT are

VSUGRA =
1

168

⇥
XMN

PXQR
SMMQMNRMPS + 7XMN

PXQP
NMMQ

⇤
, (4.37)
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and

Vcross =
1

12
MMNMKLXMK

R @NMRL . (4.38)

The full potential evidently boils down to the one of EFT when the X deformation is set to

zero. Additionally, it precisely reduces to the potential of gauged maximal supergravity (4.37)

when the fields are taken to be yM -independent.14 The term in (4.38) is a purely novel feature

as it is absent in both EFT and gauged maximal supergravity.

We finally give a few guidelines on the construction of the XFT potential. The various terms

and coe�cients in (4.35) are uniquely determined by requiring invariance under vector gauge

transformations up to boundary terms, while each term is manifestly invariant under tensor

gauge transformations. Throughout the computation, one has to repeatedly make use of the

section constraint, the linear (or representation) constraint and the X-constraint. The starting

point is the variation of the EFT potential under vector gauge transformations which can easily

be computed using (4.31) and

�
⇤

(@MMKL) = eL
⇤

(@MMKL) + 2MN(K @L)@M⇤N +MKL @M@N⇤N

� 2Y QR
N(KML)Q @M@R ⇤N + 2XN(K

QML)Q @M⇤N ,
(4.39)

where �(@MMKL) = 1

2

. After the cancellations described in ref. [2], the only non-covariant

variations remaining are the ones depending (linearly) on the X deformation. In order to

cancel them, one needs to add counterterms to the potential which are of first order in the

derivatives and the X. The only term15 of this type which does not vanish by virtue of the

various constraints is (4.38). At this stage of the computation, it is important to realise that

both the X and the combination M�1XM take value in the E
7(7)

Lie algebra. Consequently,

the adjoint projector satisfies

(P133)
M

N
K

LXPK
L =XPN

M ,

(P133)
M

N
K

LMLPXQP
RMRK = MMPXQP

RMRN .
(4.40)

The vector gauge transformation of (4.38) also yields additional non-covariant variations which

are quadratic in X. These must be cancelled by extending further the potential with countert-

erms quadratic in X and that do not contain derivatives. It again turns out that (4.37) are the

only non-vanishing terms of this type.

5 Relation to EFT and (non-)geometry

The main focus of this article is to describe deformations of EFT which are able to capture

the exceptional generalised geometry of massive IIA supergravity, amongst other things. It

is interesting to note that the Romans mass was implemented in DFT non-geometrically by

introducing a dependence of a RR potential on a dual (winding) coordinate [18]. This was

14The di↵erent normalisation of VSUGRA with respect to ref. [30] is due to the di↵erent normalisation of the

Einstein–Hilbert term.
15Up to equivalent rewriting using the linear constraint for the X deformation.
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New cross-term!



Gianluca Inverso The exceptional form of massive IIA,   Benasque 2016

mR from EFT and non-geometry

• In DFT mR can be sourced by a RR C(1) potential  
with linear dependence on a winding coordinate

• The structure of EFT is more restrictive:  
violating section condition can be done (locally), but requires care.

• We relax the section condition of EFT, and factorise its fields: 
 
 
 
where E are twist matrices such that

• Notice that Λ, V do not satisfy sec. cnd., but Λ and V satisfy XFT ones 
Thus, E can introduce non-geometric coordinate dependence in EFT

VM
EFT(x, Y ) = V A

XFT(x, Y ) EA
M (Y )

LEAE M
B = �X C

AB E M
C

L�VM = (�L�V A)E M
A

non-geom.
EFT XFT

Hohm, Kwak - 2011
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mR from EFT and non-geometry

• This non-geometric extension of EFT allows e.g. to source mR 

• Crucial point: we are extending to non-geometric coordinates, 
without truncating any of the physical ones (not a SS reduction!)

• !! Meaning of locally non-geometric backgrounds is still unclear, 
while XFT solutions are globally well-defined (because mIIA is)

VM
EFT(x, Y ) = V A

XFT(x, Y ) EA
M (Y ) L�VM = (�L�V A)E M

A

E(Y ) M
A = E(Y P̂ ) M

A = �M
A � 1

c� Y
P̂ X

P̂A
M P̂

A single winding coord.
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Outline

• A Gauged Supergravity Appetizer

• Consistent truncations, EFT & EGG

• Massless IIA vs. EFT

• The Romans mass & deformed EFT

• Relation to (non-)geometric EFT

• massive IIA on spheres
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Concluding

• Exceptional Field Theories admit deformations 
which still preserve 10- and 11-dim. solutions of section conditions

• one such deformation implements massive IIA 

• This is now a new tool in its own right.

• These deformations are more general than the Romans mass!! 
we have classified all those allowing for 10d/11d solutions 
(we could easily go further and recover higher dim. gauged sugras)

• We can (locally) implement a “SS extension Ansatz” 
to non-geometrically map EFT and XFT.

• Future:  susy;  D8 and 7-branes (& T/S-dualities);  D=3;  
and of course: more solutions!

Thank you!


