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Outline

This talk is about the internal geometry of 4-dimensional N = 1
supersymmetric compactifications of heterotic supergravity.

Classical ingredients of this geometry are complex manifolds (trivial
canonical bundle), Kähler-Ricci-flat metrics (∼ SU(3)-holonomy),
(stable) holomorphic bundles (prescribed Chern classes), ... all
shaken, not stirred.

In the presence of fluxes, the SU(3)-holonomy condition for the
metric is replaced by: 1. a balanced condition for a hermitian metric
and 2. the Bianchi identity, coupling the metric with the gauge field

ddcω = α′(tr R ∧ R − tr F ∧ F ).

Classical methods of algebraic and Kähler geometry, that lead to
important advances in the understading of Calabi-Yau compactifications,

no longer apply.
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Outline

Recent developments in the study of moduli of heterotic flux
compactifications shows that generalized geometry is an essential
ingredient of this new geometry (Melnikov-Sharpe ’11, de la Ossa-Svanes

’14, Anderson-Gray-Sharpe ’14, GF-Rubio-Tipler ’15).

Hope is that generalized geometry brings back some of the powerful
classical methods, with a different incarnation ...
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Part I: Heterotic flux compactifications
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Heterotic supergravity

The (bosonic) field content of heterotic supergravity is a Lorentz metric ĝ on

ten-dimensional space-time M10, dilaton φ ∈ C∞(M10), 3-form flux H and gauge

field A with field strength F

Ricĝij +2∇ĝ
i ∇

ĝ
j φ−

1

4
HiklH

kl
j − α′ tr FikF k

j + α′ tr RikRk
j + O(α′2) = 0, EM

d∗(e−2φH) + O(α′2) = 0,

d∗A(e−2φF ) +
e−2φ

2
∗ (F ∧ ∗H) + O(α′2) = 0,

∇−ε+ O(α′2) = 0, SUSY

(2dφ− H) · ε+ O(α′2) = 0,

F · ε+ O(α′2) = 0

dH − α′ (tr R ∧ R − tr F ∧ F ) + O(α′2) = 0, Bianchi
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ten-dimensional space-time M10, dilaton φ ∈ C∞(M10), 3-form flux H and gauge

field A with field strength F
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ĝ
j φ−

1

4
HiklH

kl
j − α′ tr FikF k

j + α′ tr RikRk
j + O(α′2) = 0, EM

d∗(e−2φH) + O(α′2) = 0,

d∗A(e−2φF ) +
e−2φ

2
∗ (F ∧ ∗H) + O(α′2) = 0,

∇−ε+ O(α′2) = 0, SUSY

(2dφ− H) · ε+ O(α′2) = 0,

F · ε+ O(α′2) = 0

dH − α′ (tr R ∧ R − tr F ∧ F ) + O(α′2) = 0, Bianchi

MGF (ICMAT) Killing spinors in generalized geometry Susy and Geom, Benasque 5 / 31



This slide may hurt your sensibilities

The (bosonic) field content of heterotic supergravity is a Lorentz metric ĝ on

ten-dimensional space-time M10, dilaton φ ∈ C∞(M10), 3-form flux H and gauge

field A with field strength F

Ricĝij +2∇ĝ
i ∇

ĝ
j φ−

1

4
HiklH

kl
j − α′ tr FikF k

j + α′ tr RikRk
j = 0, EM

d∗(e−2φH) = 0,

d∗A(e−2φF ) +
e−2φ

2
∗ (F ∧ ∗H) = 0,

∇−ε = 0, SUSY

(2dφ− H) · ε = 0,

F · ε = 0

dH − α′ (tr R ∧ R − tr F ∧ F ) = 0, Bianchi

In this talk, first order equations in α′-expansion taken as exact (my apologies).
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Calabi-Yau compactifications
In 1985, Candelas, Horowitz, Strominger and Witten showed that
metrics with SU(3) holonomy provide supersymmetric vacuum in
compactifications of the heterotic string (zero flux, constant dilaton).

Hol(g) ⊂ SU(3)

Combined with Yau’s solution of the Calabi Conjecture in 1976 this
led to important advances in heterotic model building and moduli
space.

Yau’s result relies in an important separation of parameters in killing
spinor equations (complex vs metric parameters): reduces the problem
to the complex Monge-Ampere equation for the Kähler potential:

log det ∂i∂jϕ = f

This ‘separation of variables’ produces complex and metric moduli
splitting in moduli space ⇒ algebraic methods.
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Hull-Strominger Geometry

In 1986 Hull and Strominger characterized warped 4d compactifications of the

heterotic string, with N = 1 supersymmetry and nonzero flux H 6= 0

M10 = R1,3 ×M6 ĝ = e2f · (η ⊕ g) f ∈ C∞(M10)

where (M6, g) compact Riemannian

PG → M10 G ⊂ SO(32),E8 × E8

Imposing N = 1 supersymmetry, on M6 we obtain:

SU(3)-structure (ψ, ω) with metric g and almost complex structure
J : TM6 → TM6, ψ ∈ Λ3,0, ω ∈ Λ1,1,

φ = f ∈ C∞(M6),

3-form H,

gauge field A with field strength F .
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Hull-Strominger Geometry

Imposing N = 1 supersymmetry, on M6 we obtain: an SU(3)-structure (ψ, ω)

with almost complex structure J : TM6 → TM6 and metric g , φ ∈ C∞(M6),

3-form H and gauge field A with field strength F , such that

dΩ = 0,

g i jFi j = 0, Fij = 0,

d∗ω − i(∂ − ∂) log ‖Ω‖ = 0,

2i∂∂ω − α′(tr R ∧ R − tr F ∧ F ) = 0,

where Ω = e2φψ, H = i(∂ − ∂)ω, φ = 1
8 log ‖Ω‖

Remark: The system is obtained taking Susy + Bianchi.
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Hull-Strominger geometry

dΩ = 0,

g i jFi j = 0, Fij = 0,

d∗ω − i(∂ − ∂) log ‖Ω‖ = 0,

2i∂∂ω − α′(tr R ∧ R − tr F ∧ F ) = 0,

where Ω = e2φψ, H = i(∂ − ∂)ω, φ = 1
8 log ‖Ω‖

Theorem (Fernandez-Ivanov-Ugarte-Villacampa ’08-’10)

EM + SUSY + Bianchi⇔ (⇑) and g i jRi j = 0, Rij = 0.
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The Strominger system

Strominger System (ST)

dΩ = 0, (1)

Fij = 0, Rij = 0, (2)

g i jFi j = 0, g i jRi j = 0, (3)

d∗ω − i(∂ − ∂) log ‖Ω‖ = 0, (4)

2i∂∂ω − α′(tr R ∧ R − tr F ∧ F ) = 0, (5)

where Ω = e2φψ, H = i(∂ − ∂)ω, φ = 1
8 log ‖Ω‖

First non-Kähler solutions of the Strominger system were found by Li
and Yau in 2005, and in non-Kählerian complex manifolds by Fu and
Yau in 2008.

Since then, a long list of people has been studying the existence
problem for the Strominger system ... still no analogue of Yau’s Thm.

Remark: Crucial symmetry between curvature 2-form R of ∇ and F !
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Part II: Moduli
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Moduli

In recent work (arXiv:1503.07562, GF-Rubio-Tipler) it is proved that
the Strominger system is an elliptic system of equations: an elliptic
complex S∗ of (multidegree, real) differential operators is constructed,
so that H1(S∗) is the infinitesimal moduli.

Previous work by de la Ossa-Svanes ’14, Anderson-Gray-Sharpe ’14

propose a (complex) vector space as infinitesimal moduli: the first
Dolbeault cohomology H1(Q) of a holomorphic double extension Q.

Let me explain the relation ...

MGF (ICMAT) Killing spinors in generalized geometry Susy and Geom, Benasque 13 / 31



Moduli

In recent work (arXiv:1503.07562, GF-Rubio-Tipler) it is proved that
the Strominger system is an elliptic system of equations: an elliptic
complex S∗ of (multidegree, real) differential operators is constructed,
so that H1(S∗) is the infinitesimal moduli.

Previous work by de la Ossa-Svanes ’14, Anderson-Gray-Sharpe ’14

propose a (complex) vector space as infinitesimal moduli: the first
Dolbeault cohomology H1(Q) of a holomorphic double extension Q.

Let me explain the relation ...

MGF (ICMAT) Killing spinors in generalized geometry Susy and Geom, Benasque 13 / 31



Moduli

In recent work (arXiv:1503.07562, GF-Rubio-Tipler) it is proved that
the Strominger system is an elliptic system of equations: an elliptic
complex S∗ of (multidegree, real) differential operators is constructed,
so that H1(S∗) is the infinitesimal moduli.

Previous work by de la Ossa-Svanes ’14, Anderson-Gray-Sharpe ’14

propose a (complex) vector space as infinitesimal moduli: the first
Dolbeault cohomology H1(Q) of a holomorphic double extension Q.

Let me explain the relation ...

MGF (ICMAT) Killing spinors in generalized geometry Susy and Geom, Benasque 13 / 31



Moduli

In recent work (arXiv:1503.07562, GF-Rubio-Tipler) it is proved that
the Strominger system is an elliptic system of equations: an elliptic
complex S∗ of (multidegree, real) differential operators is constructed,
so that H1(S∗) is the infinitesimal moduli.

Previous work by de la Ossa-Svanes ’14, Anderson-Gray-Sharpe ’14

propose a (complex) vector space as infinitesimal moduli: the first
Dolbeault cohomology H1(Q) of a holomorphic double extension Q.

Let me explain the relation ...

MGF (ICMAT) Killing spinors in generalized geometry Susy and Geom, Benasque 13 / 31



The flux map

In an ideal situation (obstructions!), given a solution of the Strominger
system we obtain an open patch in the moduli space

H1(S∗) ⊃ U ⊂MST

Using the transgression formula for the Chern-Simons three-form: well
defined map given by flux charge

MST ⊃ U → H3(M,R)

Idea: (neglect ∇, take A abelian) given by (A′ = A + a)

flux : (Ω′,A′, ω′) 7→ [dc
J′ω
′ − dcω + 2α′a ∧ FA′ ]

Flux quantization: restricts to flux−1(H3(M,Z)) (string theory)
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The flux map

MST ⊃ U → H3(M,R)

given by (A′ = A + a)

flux : (Ω′,A′, ω′) 7→ [dc
J′ω
′ − dcω + 2α′a ∧ FA′ ]

Flux quantization: restricts to flux−1(H3(M,Z)) (string theory)

The exterior derivative δ = dflux defines a closed H3(M,R)-valued 1-form

δ ∈ Ω1(MST ,H
3(M,R)),

and hence natural foliation on the moduli space integrating Ker δ.

Fact: the leaf of the foliation passing trough a point in MST , can be
identified with a local moduli space of solutions of natural killing spinor
equations in generalized geometry.

MGF (ICMAT) Killing spinors in generalized geometry Susy and Geom, Benasque 15 / 31



The flux map

MST ⊃ U → H3(M,R)

given by (A′ = A + a)

flux : (Ω′,A′, ω′) 7→ [dc
J′ω
′ − dcω + 2α′a ∧ FA′ ]

Flux quantization: restricts to flux−1(H3(M,Z)) (string theory)

The exterior derivative δ = dflux defines a closed H3(M,R)-valued 1-form

δ ∈ Ω1(MST ,H
3(M,R)),

and hence natural foliation on the moduli space integrating Ker δ.

Fact: the leaf of the foliation passing trough a point in MST , can be
identified with a local moduli space of solutions of natural killing spinor
equations in generalized geometry.

MGF (ICMAT) Killing spinors in generalized geometry Susy and Geom, Benasque 15 / 31



The flux map

Flux quantization: restricts to flux−1(H3(M,Z)) (string theory)

Fact: the leave of the foliation passing trough p, can be identified with a
local moduli space M̊ST of solutions of natural killing spinor equations in
generalized geometry

M̊ST
//MST

δ // H3(X ,R).

Idea: flux : (Ω′,A′, ω′) = 0 implies

dc
J′ω
′ − dcω + 2α′a ∧ FA′ = db

and (ω, b,A) determine a generalized metric on T ⊕ T ∗ ⊕ . . ..

Remark: flux quantization is a mechanism which ‘kills moduli’, as
expected in string theory folklore.
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Moduli of Killing spinors

The local moduli space M̊ST of solutions of the killing spinor equations is
constructed using generalized diffeomorphisms. Restricting to the inner
generalized diffeomorphisms, obtain and H2(X ,R)-bundle M̂ST over M̊ST

H2(X ,R) // M̂ST

��
M̊ST

//MST
δ // H3(X ,R).

Key: M̂ST is an even dimensional manifold.

Conjecture

The moduli M̂ST carries a natural Kähler structure.

Evidence: there is a natural map TpM̂ST → H1(Q) (complex).
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Part III: Generalized geometry
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Basics on generalized geometry

Given a smooth manifold M, T ⊕ T ∗ has canonical pairing and bracket

〈X + ξ,X + ξ〉 = Xiξi , [X + ξ,Y + η] = [X ,Y ] + LXη − Yidξ[ij]

It has structure group O(n, n), and symmetries Ω2
cl o Diff(M), with

B-fields acting by
X + ξ 7→ X + ξ + XiB[ij]

Twisted version: an exact Courant algebroid

0→ T ∗ → E → T → 0.

is isomorphic to

(T + T ∗, 〈, 〉, [, ]H = [, ] + XiYjH[ijk])

for some H ∈ Ω3
cl(M) (whose class [H] ∈ H3(M) parameterizes E ).
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Generalized metrics

A metric is a reduction of the frame bundle from GL(n) to O(n).

A generalized metric is a reduction from O(n, n) to O(n)×O(n) ∼= a rank
n positive-definite subbundle V+ ⊂ E .

A generalized metric on an exact Courant algebroid is actually equivalent
to a usual metric g together with two-form b-field,

V+ = {X + Xigij + Xibij}.

It determines a closed 3-form H̃ = H + db.
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Generalized connections

A connection on E is a differential operator

D : Γ(E )→ Γ(T ∗ ⊗ E ),

satisfying the Leibniz rule (De fe′ = π(e)(f )e′ + fDee) and compatible with the
metric (π(e)〈e′, e′′〉 = 〈Dee′, e′′〉+ 〈e′,Dee′′〉).

The space of connections is affine, modelled on Γ(E ∗ ⊗ o(E )).

There is a well-defined torsion TD ∈ Λ3E

TD(e1, e2, e3) = 〈De1e2 − De2e1 − [e1, e2], e3〉+ 〈De3e1, e2〉

MGF (ICMAT) Killing spinors in generalized geometry Susy and Geom, Benasque 21 / 31



Generalized connections

A connection on E is a differential operator

D : Γ(E )→ Γ(T ∗ ⊗ E ),

satisfying the Leibniz rule (De fe′ = π(e)(f )e′ + fDee) and compatible with the
metric (π(e)〈e′, e′′〉 = 〈Dee′, e′′〉+ 〈e′,Dee′′〉).

The space of connections is affine, modelled on Γ(E ∗ ⊗ o(E )).

There is a well-defined torsion TD ∈ Λ3E

TD(e1, e2, e3) = 〈De1e2 − De2e1 − [e1, e2], e3〉+ 〈De3e1, e2〉

MGF (ICMAT) Killing spinors in generalized geometry Susy and Geom, Benasque 21 / 31



Generalized connections

A generalized connection on E is a differential operator

D : Γ(E )→ Γ(E ∗ ⊗ E ),

satisfying the Leibniz rule (De fe′ = π(e)(f )e′ + fDee) and compatible with the
metric (π(e)〈e′, e′′〉 = 〈Dee′, e′′〉+ 〈e′,Dee′′〉).

The space of connections is affine, modelled on Γ(E ∗ ⊗ o(E )).

There is a well-defined torsion TD ∈ Λ3E

TD(e1, e2, e3) = 〈De1e2 − De2e1 − [e1, e2], e3〉+ 〈De3e1, e2〉

MGF (ICMAT) Killing spinors in generalized geometry Susy and Geom, Benasque 21 / 31



Generalized connections

A generalized connection on E is a differential operator

D : Γ(E )→ Γ(E ∗ ⊗ E ),

satisfying the Leibniz rule (De fe′ = π(e)(f )e′ + fDee) and compatible with the
metric (π(e)〈e′, e′′〉 = 〈Dee′, e′′〉+ 〈e′,Dee′′〉).

The space of connections is affine, modelled on Γ(E ∗ ⊗ o(E )).

There is a well-defined torsion TD ∈ Λ3E

TD(e1, e2, e3) = 〈De1e2 − De2e1 − [e1, e2], e3〉+ 〈De3e1, e2〉

MGF (ICMAT) Killing spinors in generalized geometry Susy and Geom, Benasque 21 / 31



Generalized connections

A generalized connection on E is a differential operator

D : Γ(E )→ Γ(E ∗ ⊗ E ),

satisfying the Leibniz rule (De fe′ = π(e)(f )e′ + fDee) and compatible with the
metric (π(e)〈e′, e′′〉 = 〈Dee′, e′′〉+ 〈e′,Dee′′〉).

The space of connections is affine, modelled on Γ(E ∗ ⊗ o(E )).

There is a well-defined torsion TD ∈ Λ3E

TD(e1, e2, e3) = 〈De1e2 − De2e1 − [e1, e2], e3〉+ 〈De3e1, e2〉

MGF (ICMAT) Killing spinors in generalized geometry Susy and Geom, Benasque 21 / 31



An example: the Gualtieri-Bismut connection

Let V+ be a generalized metric (recall V± ∼= T ). Define, by projecting, a
map C : E → E , C (V+) = V−, C (V−) = V+ and

DB
e e ′ := [e−, e

′
+]+ + [e+, e

′
−]− + [Ce−, e

′
−]− + [Ce+, e

′
+]+,

The connection DB preserves V± and has totally skew torsion

TDB = π∗+H + π∗−H.

Projecting to T , DB encodes two metric connections with totally skew
symmetric torsion

∇± = ∇g ± 1

2
g−1H
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The canonical Levi-Civita connection

Given a metric V+, we can define the Levi-Citiva connection

DLC = DB −
1

3
TDB

.

which encodes four different metric connections on M:

∇± = ∇g ± 1

2
g−1H,

∇±
1
3 = ∇g ± 1

6
g−1H.

Remark: not unique torsion-free connection compatible with V+! (∼
conformal generalized geometry).
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Killing spinors and Calabi-Yau metrics
If M is spin and dim M = 2n, by V+

∼= T , we can talk about the spinor
bundle S±(V+), so that the restrictions DLC

± : V+ → V+ ⊗ (V±)∗, extend
to a differential operator on spinors

DLC
± : S+(V+)→ S+(V+)⊗ (V±)∗,

with associated Dirac operator

/D
LC
+ : S+(V+)→ S−(V+).

The Killing spinor equations for a spinor η ∈ S+(V+) are

DLC
+ η = 0, /D

LC
− η = 0.

Proposition ( ,Rubio,Tipler)

If (V+, η) is a solution to the Killing spinor eq. with η 6= 0 pure, then
H = 0 and g is a metric with holonomy contained in SU(n).
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Killing spinors and Calabi-Yau metrics

The Killing spinor equations for a spinor η ∈ S+(V+) are

DLC
+ η = 0, /D

LC
− η = 0.

Proposition ( ,Rubio,Tipler)

If dim M = 2n and (V+, η) is a solution to the Killing spinor eq. with η 6= 0
pure, then H = 0 and g is a metric with holonomy contained in SU(n).

Proof: Reduces to Ivanov-Papadopoulos No-Go Theorem.

Remark: embedded in generalized geometry, deformations of Calabi-Yau
metrics encode closed B-fields providing natural complexification Kähler
cone.

V+ = {X + Xigij + Xibij},
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Killing spinors and the Strominger system
Using the bundle of frames of the internal manifold M6, jointly with gauge
bundle, construct a principal G -bundle P over the internal manifold with
vanishing first Pontryagin class.

p1(P) = 0.

Choice of invariant class

[Ĥ] ∈ H3(P,R)G .

determines an equivariant (twisted) exact Courant algebroid

0→ T ∗P → Ê → TP → 0,

that can be reduced to a non-exact Courant algebroid E → M. As a
vector bundle, E ∼= T + ad P + T ∗, but not canonically.

Theorem ( ,Rubio,Tipler)

A solution to the Killing spinor eq. on E with η 6= 0 is equivalent to a
solution of the Strominger system.
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[Ĥ] ∈ H3(P,R)G .

determines an equivariant (twisted) exact Courant algebroid

0→ T ∗P → Ê → TP → 0,
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The Courant algebroid

More explicitely: assume for simplicity that gauge bundle is
SU(r)-bundle, with associated hermitian vector bundle V . Then

E = TM ⊕ End TM ⊕ Endskw V ⊕ T ∗M

Pairing: for e = X + s + t + ξ

〈e, e〉 = Xiξi − α′ tr ss + α′ tr tt.

Recall: B-field transformations act on E by

Y → Y + YiB[ij].

Bracket: the B-field part of [e, ·] is

Bij = −∂[iξj] + Yk(dcω)[kij] − 2α′ tr(Rij , s) + 2α′ tr(Fij , t)
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A unifying framework

Generalized geometry is a unifying framework for the theory of the
Strominger system and the well-stablished theory for metrics with
SU(n)-holonomy.

dΩ = 0,

Fij = 0, Rij = 0,

g i jFi j = 0, g i jRi j = 0,

d∗ω − i(∂ − ∂) log ‖Ω‖ = 0,

2i∂∂ω − α′(tr R ∧ R − tr F ∧ F ) = 0,

Remark: for simplicity, I have assumed that ‖Ω‖ = 1 (constant dilaton).
General case requires conformal generalized geometry.
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In the next episode ...
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Twisted heterotic supergravity

Conformal generalized geometry suggests a new class of heterotic
compactifications where the dilaton is only a locally defined function
on the internal manifold (GF-Shahbazi).

Present very interesting features:

compactifications to 6d with non-zero flux at zero order in α′ (∼
Maldacena-Nuñez)
very small moduli space
explicit examples in Hopf surfaces (∼ WZW model).
toy model for analysis of standard compactifications.
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Thank you!
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