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Many-Body Schrödinger Equation
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Why don't we just solve the SE?



Why don't we just solve the SE?

Example: Oxygen atom (8 electrons)

depends on 24 coordinates

rough table of the wavefunction

10 entries per coordinate: ⇒ 1024 entries
1 byte per entry: ⇒ 1024 bytes
5×109 bytes per DVD: ⇒ 2×1014 DVDs
10 g per DVD: ⇒ 2×1015 g of DVDs

= 2×109 t of DVDs
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Two fundamentally different classes of ab-initio approaches:

• Wave function approaches

-- Quantum Monte Carlo
-- Configuration interaction
-- Tensor product decomposition

• “Functional Theories”



Two fundamentally different classes of ab-initio approaches:

• Wave function approaches

-- Quantum Monte Carlo
-- Configuration interaction
-- Tensor product decomposition

• “Functional Theories”

Write total energy as functional 
of a simpler quantity and minimize
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Motivation
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)r,r()r( γ=ρ

Functional:
Φxc[G]

or  Σxc[G]
easy (e.g. GW)
numerically

heavy

Functional:
Exc[γ]

difficult

moderate

Functional:
Exc[ρ]

or  vxc[ρ]
very difficult

light 



Each of these functional theories comes in two
versions: 

• a ground-state (or equilibrium) version

• a time-dependent (or non-equilibrium) version 



ESSENCE OF DENSITY-FUNTIONAL THEORY

• Every observable quantity of a
quantum system can be calculated
from the density of the system
ALONE

• The density of particles interacting
with each other can be calculated as
the density of an auxiliary system of
non-interacting particles



ESSENCE OF DENSITY-FUNTIONAL THEORY

• Every observable quantity of a
quantum system can be calculated
from the density of the system
ALONE

• The density of particles interacting
with each other can be calculated as
the density of an auxiliary system of
non-interacting particles

Hohenberg-Kohn theorem (1964)
Kohn-Sham theorem (1965) 
(for the ground state)



compare ground-state densities  ρ(r) resulting from different 
external potentials  v(r).

QUESTION: Are the ground-state densities coming from 
different potentials always different?

ρ(r)

v(r)



v(r) Ψ (r1…rN)
ρ (r)

single-particle
potentials having
nondegenerate 
ground state

ground-state
wavefunctions

ground-state
densities

Hohenberg-Kohn-Theorem (1964)

G: v(r)  → ρ (r)   is invertible

A
G

Ã



Proof

Step 1:  Invertibility of map A

Solve many-body Schrödinger equation for the external potential:

This is manifestly the inverse map:    A given Ψ uniquely yields the 
external potential.
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Step 2:  Invertibility of map Ã

Given: two (nondegenerate) ground states Ψ, Ψ’ satisfying 

Ψ=Ψ EĤ

''E''Ĥ Ψ=Ψ
with

V̂ŴT̂Ĥ ++=

'V̂ŴT̂'Ĥ ++=

to be shown: '    ' ρ≠ρ⇒Ψ≠Ψ

Ψ 

Ψ’ 
 ρ = ρ’

cannot happen



Use Rayleigh-Ritz principle:
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Reductio ad absurdum:
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Every quantum mechanical observable is completely 
determined by the ground state density.

Proof:  [ ] [ ]ρΦ →ρ→ρ
−
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Consequence

Hermitian operator

e.g. excitation spectrum: Ei[ρ]   

B̂



What is a FUNCTIONAL?

E[ρ]

functional

set of functions set of real numbers

ρ(r) R

Generalization:

[ ] [ ]( )rvv r


 ρ=ρ

[ ] [ ]( )N1r...r r...r
N1


 ρψ=ρψ ( )N1 r...r 

functional depending parametrically on r
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Explicit construction of the HK map vs ρ
for non-interacting particles  

Iterative procedure

ρ0(r) given (e.g. from experiment) 
Start with an initial guess for vs(r)      (e.g. GGA potential) 

solve (– + vs(r) )  ϕi = ∈i ϕi

vs
new(r) =          · Σ (∈iϕi(r)2– ϕi* (- ) ϕi) 

1
ρ0( r) i = 1

N
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2m
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2m

solve SE with  vs
new and iterate, keeping ρ0(r) fixed
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QUESTION:

How to calculate ground state density of a given system 
(characterized by the external potential  ) 
without recourse to the Schrödinger Equation?

Theorem:
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There exists a density functional  EHK[ρ]  with properties 
i)   EHK[ρ] > Eo for  ρ ≠ ρo

ii)   EHK[ρo] = Eo
where  Eo = exact ground state energy of the system 

Thus, Euler equation

yields exact ground state density ρo.
( ) [ ] 0E
r HK =ρ

δρ
δ
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proof:

formal construction of EHK[ρ] :  

for arbitrary ground state density         

define: [ ] [ ] [ ]ρΨ++ρΨ≡ρ oHK V̂ŴT̂ E

( ) [ ]ρΨ→ρ
−1A~r

> Eo for  ρ ≠ ρo
= Eo for  ρ = ρo

EHK[ρ] = d3r ρ(r) vo(r) [ ] [ ]ρΨ+ρΨ ŴT̂ +

F[ρ]  is    universal

q.e.d.



HOHENBERG-KOHN THEOREM

1. v(r)                  ρ(r)
one-to-one correspondence between external potentials v(r) and ground-state 
densities ρ(r)

2. Variational principle
Given a particular system characterized by the external potential v0(r).  Then the 
solution of the Euler-Lagrange equation

yields the exact ground-state energy E0 and ground-state density ρ0(r) of this 
system 

3. EHK[ρ] = F [ρ] +    ρ(r) v0(r) d3r

F[ρ] is  UNIVERSAL. In practice,  F[ρ] needs to be approximated

1—1

( ) [ ] 0E
r HK =ρ

δρ
δ



Four steps needed

Step 1: Basic Theorems, exact features

Step 2: Find approximate functionals for

Step 3: Write code that solves the equations

Step 4: Run code for interesting systems/questions

( ) ( )xcv r ' r ρ 



Expansion of  F[ρ] in powers of e2

F[ρ] = F(0)[ρ] + e2 F(1)[ρ] + e4 F(2)[ρ] + ···

where: F(0)[ρ] = Ts [ρ] (kinetic energy of non-interacting particles)

⇒ F[ρ] = Ts [ρ] +                                d3r d3r' +  Ex [ρ] + Ec[ρ]
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(correlation energy)



TOWARDS THE EXACT FUNCTIONAL 

1st generation of DFT: Use approximate functionals (LDA/GGA) for Ts, Ex and 
Ec e.g.

⇒ Thomas-Fermi-type equation has to be solved

2nd generation of DFT: Use exact functional Ts
exact[ρ] and LDA/GGA for Ex and 

Ec

⇒ KS equations have to be solved

3rd generation of DFT: Use Ts
exact[ρ], and an orbital functional Exc[ϕ1, ϕ2, ...]

e.g.

⇒ KS equations have to be solved self-consistently with OEP integral equation
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DF correlation energy versus traditional QC correlation energy

Ec
QC := Etot – Etot

HF[ϕj
HF]

Ec
DFT = F   – Ts – d3r d3r' – Ex

HF[ϕj
KS]

+   ρ vext – ρ vext

1 ρ (r) ρ (r')
2         r - r'

Ec
DFT := Etot – Etot

HF[ϕj
KS]

Etot
HF[ϕj

HF] ≤  Etot
HF[ϕj

KS]

⇒ Ec
DFT ≤  Ec

QC

-0.039821
-0.042044
-0.044267

-0.04195
-0.042107
-0.044274

H –

He
Be2+

Ec
QCEc

DFT

details see: E.K.U.G., M.Petersilka, T.Grabo, in: Chemical Applications of Density Functional 
Theory, B.B. Laird, R.B. Ross, T. Ziegler, eds., ACS Symposium Series 629, 42 (1996). 

in Hartree units
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G: v(r)  → ρ (r)   is invertible
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By construction, the HK mapping is well-defined for all those functions ρ(r)
that are ground-state densities of some potential (so called V-representable
functions ρ(r)).

QUESTION:  Are all “reasonable” functions ρ(r) V-representable?

V-representability theorem (Chayes, Chayes, Ruskai, J Stat. Phys. 38, 497 (1985))
On a lattice (finite or infinite), any normalizable positive function ρ(r), that
is compatible with the Pauli principle, is (both interacting and non-
interacting) ensemble-V-representable.

In other words: For any given ρ(r) (normalizable, positive, compatible with
Pauli principle) there exists a potential, vext[ρ](r), yielding ρ(r) as interacting
ground-state density, and there exists another potential, vs[ρ](r), yielding
ρ(r) as non-interacting ground-state density.

In the worst case, the potential has degenerate ground states such that the
given ρ(r) is representable as a linear combination of the degenerate
ground-state densities (ensemble-V-representable).



[ ]( )rρvext ( )rρ [ ]( )rρvs

HK 1-1 mapping for 
interacting particles

HK 1-1 mapping for 
non-interacting particles

Kohn-Sham Theorem

Let ρo(r) be the ground-state density of interacting electrons moving in the external
potential vo(r). Then there exists a unique local potential vs,o(r) such that non-
interacting particles exposed to vs,o(r) have the ground-state density ρo(r), i.e.
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proof:

Uniqueness follows from HK 1-1 mapping
Existence follows from V-representability theorem
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Define vxc[ρ](r)  by the equation
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r r 's ext xcv ρ r v ρ r v ρ r
ρ

= + +
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[ ]( )Hv ρ r
vs[ρ] and vext[ρ] are well 

defined through HK.

KS equations

Note: The KS equations do not follow from the variational principle.
They follow from the HK 1-1 mapping and the V-representability
theorem.
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Variational principle gives an additional property of vxc:
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Consequence: 
Approximations can be constructed either for Exc[ρ] or  
directly for  vxc[ρ](r).
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Three generations of approximations

1.  Local Density Approximation  (LDA):

[ ] ( )( )∫ ρ=ρ re rdE hom
xc

3
xc

2. Generalized Gradient Approximation (GGA):

[ ] ( )∫ ρ∇ρ=ρ ,,g rdE xc
3

xc

3. Orbital functionals (Meta-GGA, hybrid functionals, hyper-GGA…)

[ ]N1xcxc E  E ϕϕ= 

Approximations of the xc functional



SUCCESSES OF LDA

Quantity Typical deviation from expt 
• Atomic & molecular ground 

state energies 
< 0.5 % 

• Molecular equilibrium 
distances 

< 5 % 

• Band structure of metals 
Fermi surfaces 

few % 

• Lattice constants < 2 % 

  
 

 



Generalized Gradient Approximation (GGA)

Detailed study of molecules (atomization energies)

32 molecules (all neutral diatomic with first-row atoms only + H2 )

B. G. Johnson, P. M. W. Gill, J. A. Pople, J. Chem. Phys. 97, 7847 (1992)

Atomization energies (kcal/mol) from:

mean deviation from experiment   0.1  1.0 -85.8
mean absolute deviation 4.4  5.6 85.8

VWN
c

B
x EE + LYP

c
B
x EE + HF

for comparison:   MP2
-22.4
22.4



LIMITATIONS OF  LDA/GGA

• Not free from spurious self-interactions KS potential decays more 
rapidly than r-1

Consequences: – no Rydberg series
– negative atomic ions not bound
– ionization potentials (if calculated from highest 

occupied orbital energy) too small

• Dispersion forces cannot be described
Wint (R)           e-R (rather than R-6)

• band gaps too small: 
Egap

LDA ≈ 0.5 Egap
exp

• Cohesive energies of bulk metals not satisfactory
in LDA overestimated
in GGA underestimated

• Wrong ground state for strongly correlated solids, e.g. FeO, La2CuO4
predicted as metals



More "densities"



DENSITY-FUNTIONAL THEORY OF
MAGNETIC SYSTEMS

In principle, Hohenberg-Kohn theorem guarantees that m(r) is a 
functional of the density:  m(r) = m[ρ](r). In practice, m[ρ] is
not known. 

Quantity of interest: Spin magnetization m(r)

Include m(r) as basic variable in the formalism, in addition 
to the density ρ(r).



DFT for spin-polarized systems
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KS scheme

For simplicity: ,

vxc[ρ,m] = δExc[ρ,m]/δ ρ Bxc[ρ,m] = δExc[ρ,m]/δ m

ρ (r) = ρ+ (r) + ρ- (r)  , m (r) = ρ+ (r) - ρ- (r)  , ρ± = Σϕ j
± 2

B → 0  limit
These equations do not reduce to the original KS equations for
B → 0 if, in this limit, the system has a finite m(r).
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Traditional DFT:   Exc[ρ]
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Most general magnetic situation: KS equation of non-collinear 
Current-Spin –DFT (CSDFT):



Ordinary LSDA yields GLOBAL collinearity
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Functionals available:
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ρ 4 independent functions

ραβ is Hermitian  ⇒ 4 independent functions



Non-collinear LSDA:
(Kübler, Sandratskii ’80s)

r given point in space:

 Find unitary matrix U(r) such that

 Calculate


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S. Sharma, J.K. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N. Helbig, S. Pittalis, 
S. Shallcross, L. Nordstroem E.K.U.G., Phys. Rev. Lett. 98, 196405 (2007)

Cr monolayer



S. Sharma, J.K. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N. Helbig, S. Pittalis, 
S. Shallcross, L. Nordstroem E.K.U.G., Phys. Rev. Lett. 98, 196405 (2007)

in this approximation              and             may change their 
direction in space, but locally they are always parallel

( )rBxc


( )rm

Cr monolayer



Why is that important?

Ab-initio description of spin dynamics:

microscopic equation of motion (following from TDSDFT)

XC Sm(r, t) m(r, t) B (r, t) J (r, t) SOC= × − ∇ ⋅ +
       

in absence of external magnetic field

Consequence of local collinearity:  m×Bxc = 0:     
→ possibly wrong spin dynamics (e.g. spurious 

dynamics in ground state with non-vanishing Js )



Construction of a novel GGA-type functional

Traditional LSDA:  Start from uniform electron gas 
in collinear magnetic state.  Determine  exc(n,m)
from QMC or MBPT and parametrize this function to
use in LSDA.

New non-collinear functional: Start from spin-spiral
phase of e-gas. Determine                     from MBPT and
parametrize                       to use as non-collinear GGA.

XCe [n,m]

XCe [n,m]

F.G. Eich and E.K.U. Gross, Phys. Rev. Lett. 111, 156401 
(2013)
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q r
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Magnetisation of a spin-spiral state in the uniform electron gas

SSW SSW
xc xc (n,m,q,s)ε = ε

Illustration of spin spiral waves 
along one spatial coordinate for two 
different choices of wavevector 
q=k1/2.
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F.G. Eich and E.K.U. Gross, Phys. Rev. Lett. 111, 156401 
(2013)



m×Bxc

in non-coll.
functional



EXTENSIONS

1.  Relativistic systems
KS equations:

vs(r)( )[ ] ( ) ( )rr        mc        i nonno
2 ψγε=ψγ++−∇−⋅γ
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Local spin-density approximation and EXX-OPM available
KS orbitals are Dirac spinors



2.  Finite temperature
KS equations:

( T )( ) ( ) ( ) ( ) ( )rrrv'rd
'rr

'rrv
m2 jjj   xc

3
nuc

22
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
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−
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− ∫
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( ) ( ) 2

j
j

r          r ϕ⋅=ρ ∑fT(ε j)

Fermi distribution

3.  Superconductors

E = E [ ρ , χ ]

Superconductig order parameter

EXTENSIONS



DENSITY-FUNTIONAL THEORY OF 
CONVENTIONAL SUPERCONDUCTORS

• Include order parameter, χ , characterising 
superconductivity as additional “density”

BASIC IDEA:

L.N. Oliveira, E.K.U.G., W. Kohn, PRL 60, 2430 (1988)

• Include N-body density matrix, Γ, of the     
nuclei as additional “density” 
T. Kreibich, E.K.U.G., PRL 86, 2984 (2001)



Electronic KS equation

vs[ρ,χ,Γ](r) ∆s[ρ,χ,Γ](r,r’)( ) ( ) ( )rrrr Eu'd'v                          u                     
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Nuclear KS equation
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=α α

α Ws[ρ,χ,Γ](R)

3 KS potentials: vs ∆s Ws

KS theorem: There exist functionals vs[ρ,χ,Γ], ∆s[ρ,χ,Γ], Ws[ρ,χ,Γ], such that
the above equations reproduce the exact densities of the
interacting system No approximation yet!



In a solid, the ions remain close to their equilibrium positions:

0 (because forces vanish at 
equilibrium positions)
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Full Green fctn KS Green fctn 



Isotope effect: 

Calculations Experiment
Pb 0.47 0.47
Mo 0.37 0.33

The deviations from BCS value 
α=0.5 are correctly described 

cT M α−∝



Jump of specific heat at Tc



2MgB



MgB2

2-D σ-bonding hole pockets 
3-D π and π∗ Fermi surfaces

σσ π

π

A

Tc= 39.5 K

π∗σ



Fermi Surface of MgB2



Specific heat of MgB2

C
el

/ γ
T

T / Tc
A. Floris et al, Phys. Rev. Lett. 94, 037004 (2005)



MgB2

∆
[ m

eV
]

T [ K]
A. Floris et al, Phys. Rev. Lett. 94, 037004 (2005)





Pb: Gap on the Fermi surface



Pb   ( Gap at T = 0.01 K)
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