Ground-State DFT

E.K.U. Gross
Max-Planck Institute for Microstructure Physics

Many-Body Schrödinger Equation

$$
\hat{H} \Psi\left(r_{1}, r_{2}, \ldots, r_{N}\right)=E \Psi\left(r_{1}, r_{2}, \ldots, r_{N}\right)
$$

$$
\begin{array}{ll}
\hat{\mathrm{H}}=\hat{\mathrm{T}}+\hat{\mathrm{V}}+\hat{\mathrm{W}} & \hat{\mathrm{~T}}=\sum_{\mathrm{j}=1}^{\mathrm{N}}-\frac{\hbar^{2} \nabla_{\mathrm{j}}^{2}}{2 \mathrm{~m}} \\
\hat{\mathrm{~V}}=\sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{v}\left(\mathrm{r}_{\mathrm{j}}\right) & \hat{\mathrm{W}}=\frac{1}{2} \sum_{\substack{\mathrm{j}, \mathrm{k}=1 \\
\mathrm{j} \neq \mathrm{k}}}^{\mathrm{N}} \frac{\mathrm{e}^{2}}{\left|\mathrm{r}_{\mathrm{j}}-\mathrm{r}_{\mathrm{k}}\right|}
\end{array}
$$

Why don't we just solve the SE?

Why don't we just solve the SE?

Example: Oxygen atom (8 electrons)

$$
\Psi\left(\overrightarrow{\mathrm{r}}_{1}, \cdots, \overrightarrow{\mathrm{r}}_{8}\right) \text { depends on } 24 \text { coordinates }
$$

rough table of the wavefunction

10 entries per coordinate: $\Rightarrow 10^{24}$ entries
1 byte per entry: $\quad \Rightarrow 10^{24}$ bytes
5×10^{9} bytes per DVD: $\quad \Rightarrow 2 \times 10^{14}$ DVDs
10 g per DVD: $\quad \Rightarrow 2 \times 10^{15} \mathrm{~g}$ of DVDs
$=2 \times 10^{9} \mathrm{t}$ of DVDs

Two fundamentally different classes of ab-initio approaches:

- Wave function approaches
-- Quantum Monte Carlo
-- Configuration interaction
-- Tensor product decomposition
- "Functional Theories"

Two fundamentally different classes of ab-initio approaches:

- Wave function approaches
-- Quantum Monte Carlo
-- Configuration interaction
-- Tensor product decomposition
- "Functional Theories"

Write total energy as functional of a simpler quantity and minimize

"Functional Theories"

MBPT

RDMFT

DFT

$$
\mathrm{G}\left(\mathrm{r}, \mathrm{r}^{\prime}, \mathrm{t}-\mathrm{t}^{\prime}\right) \quad \gamma\left(\mathrm{r}, \mathrm{r}^{\prime}\right)=\mathrm{G}\left(\mathrm{r}, \mathrm{r}^{\prime}, 0^{+}\right) \quad \rho(\mathrm{r})=\gamma(\mathrm{r}, \mathrm{r})
$$

"Functional Theories"

MBPT

RDMFT

DFT
$\mathrm{G}\left(\mathrm{r}, \mathrm{r}^{\prime}, \mathrm{t}-\mathrm{t}^{\prime}\right) \quad \gamma\left(\mathrm{r}, \mathrm{r}^{\prime}\right)=\mathrm{G}\left(\mathrm{r}, \mathrm{r}^{\prime}, 0^{+}\right) \quad \rho(\mathrm{r})=\gamma(\mathrm{r}, \mathrm{r})$

Functional: Functional:
$\Phi_{\mathrm{xc}}[\mathrm{G}]$
or $\Sigma_{\mathrm{xc}}[\mathrm{G}]$
$\mathrm{E}_{\mathrm{xc}}[\gamma]$

Functional: $\mathrm{E}_{\mathrm{xc}}[\rho]$
or $\mathrm{v}_{\mathrm{xc}}[\rho]$

"Functional Theories"

MBPT
 RDMFT
 DFT

$\mathrm{G}\left(\mathrm{r}, \mathrm{r}^{\prime}, \mathrm{t}-\mathrm{t}^{\prime}\right) \quad \gamma\left(\mathrm{r}, \mathrm{r}^{\prime}\right)=\mathrm{G}\left(\mathrm{r}, \mathrm{r}^{\prime}, 0^{+}\right) \quad \rho(\mathrm{r})=\gamma(\mathrm{r}, \mathrm{r})$

Functional: Functional:
$\Phi_{\mathrm{xc}}[\mathrm{G}]$
or $\Sigma_{\mathrm{xc}}[\mathrm{G}]$
easy (e.g. GW)
difficult

Functional: $\mathrm{E}_{\mathrm{xc}}[\rho]$
or $\mathrm{V}_{\mathrm{xc}}[\rho]$
very difficult

"Functional Theories"

MBPT
 RDMFT
 DFT

$\mathrm{G}\left(\mathrm{r}, \mathrm{r}^{\prime}, \mathrm{t}-\mathrm{t}^{\prime}\right) \quad \gamma\left(\mathrm{r}, \mathrm{r}^{\prime}\right)=\mathrm{G}\left(\mathrm{r}, \mathrm{r}^{\prime}, 0^{+}\right) \quad \rho(\mathrm{r})=\gamma(\mathrm{r}, \mathrm{r})$

Functional: Functional: $\Phi_{\mathrm{xc}}[\mathrm{G}]$
or Σ_{xc} [G] easy (e.g. GW)
difficult numerically
heavy

Each of these functional theories comes in two versions:

- a ground-state (or equilibrium) version
- a time-dependent (or non-equilibrium) version

ESSENCE OF DENSITY-FUNTIONAL THEORY

- Every observable quantity of a quantum system can be calculated from the density of the system ALONE
- The density of particles interacting with each other can be calculated as the density of an auxiliary system of non-interacting particles

ESSENCE OF DENSITY-FUNTIONAL THEORY

- Every observable quantity of a quantum system can be calculated from the density of the system ALONE
- The density of particles interacting with each other can be calculated as the density of an auxiliary system of non-interacting particles

Hohenberg-Kohn theorem (1964) Kohn-Sham theorem (1965) (for the ground state)

compare ground-state densities $\rho(\mathrm{r})$ resulting from different external potentials $\mathrm{v}(\mathrm{r})$.

QUESTION:
Are the ground-state densities coming from different potentials always different?

single-particle potentials having nondegenerate ground state
ground-state wavefunctions
ground-state densities

Hohenberg-Kohn-Theorem (1964)
$\mathrm{G}: \mathrm{v}(\mathrm{r}) \rightarrow \rho(\mathrm{r})$ is invertible

Proof

Step 1: Invertibility of map A

Solve many-body Schrödinger equation for the external potential:

$$
\begin{aligned}
& \hat{\mathrm{V}}=\frac{\left(\mathrm{E}-\hat{\mathrm{T}}-\hat{\mathrm{W}}_{\mathrm{ee}}\right) \Psi}{\Psi} \\
& \sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{v}\left(\mathrm{r}_{\mathrm{j}}\right)=-\frac{\hat{T} \Psi}{\Psi}-\mathrm{W}_{\mathrm{ee}}\left(\overrightarrow{\mathrm{r}}_{1} \ldots \overrightarrow{\mathrm{r}}_{\mathrm{N}}\right)+\text { constant }
\end{aligned}
$$

This is manifestly the inverse map: A given Ψ uniquely yields the external potential.

Step 2: Invertibility of map Ã

Given: two (nondegenerate) ground states $\Psi, \Psi ’$ satisfying

$$
\begin{array}{lll}
\hat{\mathrm{H}} \Psi=\mathrm{E} \Psi \\
\hat{\mathrm{H}}^{\prime} \Psi^{\prime}=\mathrm{E}^{\prime} \Psi^{\prime}
\end{array} \quad \text { with } \quad \hat{\mathrm{H}}=\hat{\mathrm{T}}+\hat{\mathrm{W}}+\hat{\mathrm{V}}, ~ \hat{\mathrm{H}}=\hat{\mathrm{T}}+\hat{\mathrm{W}}+\hat{\mathrm{V}}^{\prime} . ~ \$
$$

to be shown: $\quad \Psi \neq \Psi^{\prime} \Rightarrow \rho \neq \rho^{\prime}$

cannot happen

Use Rayleigh-Ritz principle:

$$
\begin{aligned}
\wedge \mathrm{E}= & \langle\Psi| \hat{\mathrm{H}}|\Psi\rangle\left\langle\left\langle\Psi^{\prime}\right| \hat{\mathrm{H}} \mid \Psi^{\prime}\right\rangle=\left\langle\Psi \Psi^{\prime}\right| \mathrm{H}^{\prime}+\mathrm{V}-\mathrm{V}^{\prime}\left|\Psi^{\prime}\right\rangle \\
& =\mathrm{E}^{\prime}+\int \mathrm{d}^{3} \mathrm{r} \rho^{\prime}(\mathrm{r})\left[\mathrm{v}(\mathrm{r})-\mathrm{v}^{\prime}(\mathrm{r})\right] \\
* \mathrm{E}^{\prime}= & \left\langle\Psi^{\prime}\right| \hat{\mathrm{H}}^{\prime}\left|\Psi^{\prime}\right\rangle<\langle\Psi| \hat{\mathrm{H}}|\Psi\rangle \\
& =\mathrm{E}+\int \mathrm{d}^{3} \mathrm{r} \rho(\mathrm{r})\left[\mathrm{v}^{\prime}(\mathrm{r})-\mathrm{v}(\mathrm{r})\right]
\end{aligned}
$$

Reductio ad absurdum:
Assumption $\rho=\rho^{\prime}$. Add $\boldsymbol{\lambda}$ and $* \Rightarrow \mathrm{E}+\mathrm{E}^{\prime}<\mathrm{E}+\mathrm{E}^{\prime} \quad$ 〈

Consequence

Every quantum mechanical observable is completely determined by the ground state density.

$$
\text { Proof: } \quad \rho \xrightarrow{\mathrm{G}^{-1}} \mathrm{v}[\rho] \xrightarrow{\text { solve S.E. }} \Phi_{\mathrm{i}}[\rho]
$$

Hermitian operator \hat{B}

$$
\mathrm{B}_{\mathrm{i}}[\rho]=\left\langle\Phi_{\mathrm{i}}[\rho]\right| \hat{\mathrm{B}}\left|\Phi_{\mathrm{i}}[\rho]\right\rangle
$$

e.g. excitation spectrum: $\mathrm{E}_{\mathrm{i}}[\rho]$

What is a FUNCTIONAL?

Generalization:
$\mathrm{V}_{\overrightarrow{\mathrm{r}}}[\rho]=\mathrm{V}[\rho](\overrightarrow{\mathrm{r}}) \quad$ functional depending parametrically on $\overrightarrow{\mathrm{r}}$

$$
\psi_{\vec{r}_{1} \ldots \vec{r}_{\mathrm{N}}}[\rho]=\psi[\rho]\left(\overrightarrow{\mathrm{r}}_{1} \ldots \overrightarrow{\mathrm{r}}_{\mathrm{N}}\right) \text { or on } \quad\left(\overrightarrow{\mathrm{r}}_{1} \ldots \overrightarrow{\mathrm{r}}_{\mathrm{N}}\right)
$$

Explicit construction of the HK map $\mathbf{v}_{s} \longleftrightarrow \rho$ for non-interacting particles

$$
\begin{array}{l|l}
\left(-\frac{h^{2} \nabla^{2}}{2 m}+V_{s}(r)\right) \varphi_{i}=\epsilon_{i} \varphi_{i} & \sum_{i} \varphi_{i}^{*} \\
\sum_{i=1}^{N} \varphi_{i}^{*}\left(-\frac{h^{2} \nabla^{2}}{2 m}\right) \varphi_{i}+V_{s}(r) \rho(r)=\sum_{i=1}^{N} \epsilon_{i}\left|\varphi_{i}(r)\right|^{2} \\
\Rightarrow V_{s}(r)=\frac{1}{\rho(r)} \cdot \sum_{i=1}^{N}\left(\epsilon_{i}\left|\varphi_{i}(r)\right|^{2}-\varphi_{i}^{*}\left(-\frac{h^{I} \nabla^{2}}{2 m}\right) \varphi_{i}\right)
\end{array}
$$

Iterative procedure

$\rho_{0}(\mathrm{r})$ given (e.g. from experiment)
Start with an initial guess for $\mathrm{v}_{\mathrm{s}}(\mathrm{r}) \quad$ (e.g. GGA potential)

$$
\begin{aligned}
\text { solve } & \left(-\frac{\hbar^{2} \nabla^{2}}{2 \mathrm{~m}}+\mathrm{v}_{\mathrm{s}}(\mathrm{r})\right) \varphi_{\mathrm{i}}=\epsilon_{\mathrm{i}} \varphi_{\mathrm{i}} \\
& \mathrm{~V}_{\mathrm{s}}^{\mathrm{new}}(\mathrm{r})=\frac{1}{\rho_{0}(\mathrm{r})} \cdot \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\epsilon_{\mathrm{i}}\left|\varphi_{\mathrm{i}}(\mathrm{r})\right|^{2}-\varphi_{\mathrm{i}}^{*} *\left(-\frac{\frac{\hbar}{}^{2} \nabla^{2}}{2 \mathrm{~m}}\right) \varphi_{\mathrm{i}}\right)
\end{aligned}
$$

solve SE with v_{s} new and iterate, keeping $\rho_{0}(\mathrm{r})$ fixed

QUESTION:

How to calculate ground state density $\rho_{\mathrm{o}}(\overrightarrow{\mathrm{r}})$ of a given system (characterized by the external potential $\mathrm{V}_{0}=\sum v_{0}(\overrightarrow{\mathrm{r}})$) without recourse to the Schrödinger Equation?

Theorem:
There exists a density functional $\mathrm{E}_{\mathrm{HK}}[\rho]$ with properties

$$
\text { i) } \mathrm{E}_{\mathrm{HK}}[\rho]>\mathrm{E}_{0} \text { for } \rho \neq \rho_{\mathrm{o}}
$$

ii) $\mathrm{E}_{\mathrm{HK}}\left[\rho_{0}\right]=\mathrm{E}_{0}$
where $E_{0}=$ exact ground state energy of the system
Thus, Euler equation $\frac{\delta}{\delta \rho(\overrightarrow{\mathrm{r}})} \mathrm{E}_{\mathrm{HK}}[\rho]=0$
yields exact ground state density ρ_{0}.

proof:

formal construction of $E_{H K}[\rho]$:
for arbitrary ground state density $\rho(\overrightarrow{\mathrm{r}}) \xrightarrow{\tilde{\mathrm{A}}^{-1}} \Psi[\rho]$
define: $\quad \mathrm{E}_{\mathrm{HK}}[\rho] \equiv\langle\Psi[\rho]| \hat{\mathrm{T}}+\hat{\mathrm{W}}+\hat{\mathrm{V}}_{\mathrm{o}}|\Psi[\rho]\rangle$

$$
>\mathbf{E}_{\mathbf{0}} \text { for } \rho \neq \rho_{o}
$$

$$
=\mathbf{E}_{\mathbf{o}} \text { for } \rho=\rho_{o} \quad \text { q.e.d. }
$$

$$
\mathbf{E}_{\mathbf{H K}}[\rho]=\int \mathbf{d}^{3} \mathbf{r} \rho(\mathbf{r}) \boldsymbol{v}_{\mathbf{0}}(\mathbf{r})+\underbrace{\langle\Psi[\rho]| \hat{\mathrm{T}}+\hat{\mathrm{W}}|\Psi[\rho]\rangle}_{\mathbf{F}[\rho] \text { is universal }}
$$

HOHENBERG-KOHN THEOREM

1. $\mathrm{V}(\mathrm{r}) \stackrel{1-1}{\longleftrightarrow} \rho(\mathrm{r})$ one-to-one correspondence between external potentials $\mathrm{v}(\mathrm{r})$ and ground-state densities $\rho(\mathrm{r})$
2. Variational principle

Given a particular system characterized by the external potential $\mathbf{v}_{\mathbf{0}}(\mathbf{r})$. Then the solution of the Euler-Lagrange equation

$$
\frac{\delta}{\delta \rho(\mathrm{r})} \mathrm{E}_{\mathrm{HK}}[\rho]=0
$$

yields the exact ground-state energy E_{0} and ground-state density $\rho_{0}(\mathbf{r})$ of this system
3. $E_{H K}[\rho]=F[\rho]+\int \rho(r) v_{0}(r) d^{3} r$
$F[\rho]$ is UNIVERSAL. In practice, $F[\rho]$ needs to be approximated

Four steps needed

Step 1: Basic Theorems, exact features
Step 2: Find approximate functionals for $\mathrm{v}_{\mathrm{xc}}\left[\rho\left(\mathrm{r}^{\prime}\right)\right](\mathrm{r})$

Step 3: Write code that solves the equations

Step 4: Run code for interesting systems/questions

Expansion of $\mathrm{F}[\rho]$ in powers of e^{2}

$F[\rho]=F^{(0)}[\rho]+e^{2} F^{(1)}[\rho]+e^{4} F^{(2)}[\rho]+\cdots$
where: $\mathrm{F}^{(0)}[\rho]=\mathrm{T}_{\mathrm{s}}[\rho] \quad$ (kinetic energy of non-interacting particles)

$$
\begin{aligned}
& \mathrm{e}^{2} \mathrm{~F}^{(1)}[\rho]=\frac{\mathrm{e}^{2}}{2} \iint \frac{\rho(\mathrm{r}) \rho\left(\mathrm{r}^{\prime}\right)}{\left|\mathrm{r}-\mathrm{r}^{\prime}\right|} \mathrm{dr}^{3} \mathrm{~d}^{3} \mathrm{r}^{\prime}+\mathrm{E}_{\mathrm{x}}[\rho] \quad \text { (Hartree + exchange energies) } \\
& \sum_{\mathrm{i}=2}^{\infty}\left(\mathrm{e}^{2}\right)^{\mathrm{i}} \mathrm{~F}^{(i)}[\rho]=\mathrm{E}_{\mathrm{c}}[\rho] \quad \text { (correlation energy) } \\
& \Rightarrow \quad \mathbf{F}[\rho]=\mathbf{T}_{\mathrm{s}}[\rho]+\frac{\mathbf{e}^{2}}{2} \iint \frac{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \mathbf{d}^{3} \mathbf{r} \mathbf{d}^{3} \mathbf{r}^{\prime}+\mathbf{E}_{\mathbf{x}}[\rho]+\mathbf{E}_{\mathrm{c}}[\rho]
\end{aligned}
$$

TOWARDS THE EXACT FUNCTIONAL

$$
F[\rho]=T_{s}[\rho]+\frac{1}{2} \int d^{3} r \int d^{3} r^{\prime} \frac{\rho(r) \rho\left(r^{\prime}\right)}{\left|r-r^{\prime}\right|}+E_{x}[\rho]+E_{c}[\rho]
$$

$1^{\text {st }}$ generation of DFT: Use approximate functionals (LDA/GGA) for $\mathrm{T}_{\mathrm{s}}, \mathrm{E}_{\mathrm{x}}$ and E_{c} e.g.

$$
\mathrm{T}_{\mathrm{s}}[\rho]=\int \mathrm{d}^{3} \mathrm{r}\left(\mathrm{a} \mathrm{\rho}(\mathrm{r})^{5 / 3}+\mathrm{b} \frac{(\nabla \rho)^{2}}{\rho}+\cdots\right)
$$

\Rightarrow Thomas-Fermi-type equation has to be solved
$\underline{2^{\text {nd }}}$ generation of DFT: Use exact functional $\mathrm{T}_{\mathrm{s}}{ }^{\text {exact }}[\rho]$ and LDA/GGA for E_{x} and E_{c}
\Rightarrow KS equations have to be solved

$$
\mathrm{T}_{\mathrm{s}}^{\text {exact }}[\rho]=\sum_{\mathrm{j}_{\mathrm{occ}}} \int \mathrm{~d}^{3} \mathrm{r} \varphi_{\mathrm{j}}^{*}[\rho](\mathrm{r})\left(-\frac{\nabla^{2}}{2}\right) \varphi_{\mathrm{j}}[\rho](\mathrm{r})
$$

3 ${ }^{\text {rd }}$ generation of DFT: Use $T_{s}^{\text {exact }}[\rho]$, and an orbital functional $\mathrm{E}_{\mathrm{xc}}\left[\varphi_{1}, \varphi_{2}, \ldots\right]$

$$
\begin{aligned}
& \text { e.g. } E_{x}^{\text {exact }}[\rho]=-\sum_{\sigma=\uparrow \uparrow \mathfrak{j}, \mathrm{k}} \sum_{\mathrm{N} \sigma}^{N \sigma} \frac{\varphi_{\mathrm{kc}}^{*}[\rho]\left(\mathrm{r}^{\prime}\right) \varphi_{\mathrm{k} \mathrm{\sigma}}(\mathrm{r}) \varphi_{\mathrm{rj}}^{*}(\mathrm{r}) \varphi_{\mathrm{jo}}\left(\mathrm{r}^{\prime}\right)}{\left|\mathrm{r}-\mathrm{r}^{\prime}\right|} \mathrm{d}^{3} \mathrm{rd}^{3} \mathrm{r}^{\prime}
\end{aligned}
$$

\Rightarrow KS equations have to be solved self-consistently with OEP integral equation

DF correlation energy versus traditional QC correlation energy

$$
\mathrm{E}_{\mathrm{c}}^{\mathrm{QC}}:=\mathrm{E}_{\mathrm{tot}}-\mathrm{E}_{\mathrm{tot}}{ }^{\mathrm{HF}}\left[\varphi_{\mathrm{j}}^{\mathrm{HF}}\right]
$$

details see: E.K.U.G., M.Petersilka, T.Grabo, in: Chemical Applications of Density Functional Theory, B.B. Laird, R.B. Ross, T. Ziegler, eds., ACS Symposium Series 629, 42 (1996).

single-particle potentials having nondegenerate ground state
ground-state wavefunctions
ground-state densities

Hohenberg-Kohn-Theorem (1964)
$\mathrm{G}: \mathrm{v}(\mathrm{r}) \rightarrow \rho(\mathrm{r})$ is invertible

By construction, the HK mapping is well-defined for all those functions $\rho(\mathbf{r})$ that are ground-state densities of some potential (so called V-representable functions $\rho(\mathbf{r})$).

QUESTION: Are all "reasonable" functions $\rho(r)$ V-representable?

V-representability theorem (Chayes, Chayes, Ruskai, J Stat. Phys. 38, 497 (1985)) On a lattice (finite or infinite), any normalizable positive function $\rho(\mathbf{r})$, that is compatible with the Pauli principle, is (both interacting and noninteracting) ensemble-V-representable.

In other words: For any given $\rho(\mathbf{r})$ (normalizable, positive, compatible with Pauli principle) there exists a potential, $\mathbf{v}_{\text {ext }}[\rho](r)$, yielding $\rho(r)$ as interacting ground-state density, and there exists another potential, $\mathrm{v}_{\mathrm{s}}[\rho](\mathrm{r})$, yielding $\rho(r)$ as non-interacting ground-state density.

In the worst case, the potential has degenerate ground states such that the given $\rho(r)$ is representable as a linear combination of the degenerate ground-state densities (ensemble-V-representable).

Kohn-Sham Theorem

Let $\rho_{0}(r)$ be the ground-state density of interacting electrons moving in the external potential $v_{0}(r)$. Then there exists a unique local potential $v_{s, 0}(r)$ such that noninteracting particles exposed to $v_{s, 0}(r)$ have the ground-state density $\rho_{0}(r)$, i.e.

$$
\left(-\frac{\nabla^{2}}{2}+\mathbf{v}_{\mathbf{s}, \mathbf{0}}(\mathbf{r})\right) \varphi_{\mathbf{j}}(\mathbf{r})=\in_{\mathbf{j}} \varphi_{\mathbf{j}}(\mathbf{r}), \quad \boldsymbol{\rho}_{\mathbf{0}}(\mathbf{r})=\sum_{\substack{\mathbf{j}\left(\mathbf{w i t h} \\ \text { lowest } \epsilon_{\mathbf{j}}\right)}}^{\mathbf{N}}\left|\varphi_{\mathbf{j}}(\mathbf{r})\right|^{2}
$$

proof: $\quad \mathbf{V}_{\mathrm{s}, \mathbf{0}}(\mathbf{r})=\mathbf{V}_{\mathrm{s}}\left[\rho_{\mathrm{o}}\right](\mathbf{r})$
Uniqueness follows from HK 1-1 mapping
Existence follows from V-representability theorem

Define $\mathbf{v}_{\mathrm{xc}}[\boldsymbol{\rho}](\mathbf{r})$ by the equation

$$
\mathbf{v}_{\mathbf{s}}[\boldsymbol{\rho}](\mathbf{r})=: \mathbf{v}_{\text {ext }}[\boldsymbol{\rho}](\mathbf{r})+\underbrace{\int \frac{\rho\left(\mathrm{r}^{\prime}\right)}{\left|\mathrm{r}-\mathrm{r}^{\prime}\right|} \mathrm{d}^{3} \mathrm{r}^{\prime}}_{\mathbf{v}_{\mathbf{H}}[\boldsymbol{\rho}](\mathbf{r})}+\mathbf{v}_{\mathbf{x c}}[\mathbf{\rho}](\mathbf{r})
$$

KS equations

$$
\begin{aligned}
& (-\frac{\nabla^{2}}{2}+\underbrace{\mathbf{v}_{\text {ext }}\left[\boldsymbol{\rho}_{\mathbf{o}}\right](\mathbf{r})}_{\begin{array}{c}
\mathbf{v}_{\mathbf{0}}(\mathbf{r}) \\
\text { fixed }
\end{array}}+\mathbf{v}_{\mathbf{H}}\left[\boldsymbol{\rho}_{\mathbf{o}}\right](\mathbf{r})+\mathbf{v}_{\mathrm{xc}}\left[\boldsymbol{\rho}_{\mathbf{o}}\right](\mathbf{r})) \varphi_{\mathbf{j}}(\mathbf{r})=\epsilon_{\mathbf{j}} \varphi_{\mathbf{j}}(\mathbf{r}) \\
& \text { to be solved selfconsistently with } \boldsymbol{\rho}_{\mathbf{o}}(\mathbf{r})=\sum\left|\varphi_{\mathbf{j}}(\mathbf{r})\right|^{2}
\end{aligned}
$$

Note: The KS equations do not follow from the variational principle. They follow from the HK 1-1 mapping and the V-representability theorem.

Variational principle gives an additional property of \mathbf{v}_{xc} :

$$
\mathbf{v}_{\mathrm{xc}}\left[\boldsymbol{\rho}_{\mathbf{o}}\right](\mathbf{r})=\left.\frac{\boldsymbol{\delta} \mathbf{E}_{\mathrm{xc}}[\boldsymbol{\rho}]}{\boldsymbol{\delta} \boldsymbol{\rho}(\mathbf{r})}\right|_{\mathbf{\rho}_{\mathbf{o}}}
$$

where $E_{\text {xc }}[\rho]:=F[\rho]-\frac{1}{2} \int \frac{\rho(r) \rho\left(r^{\prime}\right)}{\left|r-r^{\prime}\right|} d^{3} r^{3} r^{\prime}-T_{s}[\rho]$

Consequence:
Approximations can be constructed either for $\mathrm{E}_{\mathrm{xc}}[\rho]$ or directly for $\mathbf{v}_{\mathrm{xc}}[\rho](\mathrm{r})$.

Proof: $\mathbf{E}_{\mathrm{HK}}[\boldsymbol{\rho}]=\mathbf{T}_{\mathrm{s}}[\boldsymbol{\rho}]+\int \boldsymbol{\rho}(\mathbf{r}) \mathbf{v}_{\mathbf{o}}(\mathbf{r}) \mathbf{d}^{3} \mathbf{r}+\mathbf{E}_{\mathrm{H}}[\boldsymbol{\rho}]+\mathbf{E}_{\mathrm{xc}}[\boldsymbol{\rho}]$

$$
0=\left.\frac{\delta \mathrm{E}_{\mathrm{HK}}[\rho]}{\delta \rho(\mathrm{r})}\right|_{\mathrm{p}_{0}}=\left.\frac{\delta \mathrm{T}_{\mathrm{s}}}{\delta \rho(\mathrm{r})}\right|_{\mathrm{p}_{0}}+\mathrm{v}_{\mathrm{o}}(\mathrm{r})+\mathrm{v}_{\mathrm{H}}\left[\rho_{\mathrm{o}}\right](\mathrm{r})+\left.\frac{\delta \mathrm{E}_{\mathrm{xc}}}{\delta \rho(\mathrm{r})}\right|_{\mathrm{p}_{\mathrm{o}}}
$$

$\delta \mathrm{T}_{\mathrm{s}}=$ change of T_{s} due to a change $\delta \rho$ which corresponds to a change $\delta \mathrm{v}_{\mathrm{s}}$

$$
=\delta \sum_{i} \int \varphi_{j}[\rho](\mathrm{r})\left(-\frac{\nabla^{2}}{2}\right) \varphi_{j}[\rho](\mathrm{r}) \mathrm{d}^{3} \mathrm{r}
$$

$$
=\underbrace{\sum_{j} \delta \epsilon_{\mathrm{j}}-\int \delta \rho(\mathrm{r}) \mathrm{v}_{\mathrm{s}}(\mathrm{r}) \mathrm{d}^{3} \mathrm{r}-\int \rho(\mathrm{r}) \delta \underbrace{}_{\mathrm{s}}(\mathrm{r}) \mathrm{d}^{3} \mathrm{r}}
$$

$$
\sum_{\mathrm{j}}\left\langle\varphi_{i}(\mathrm{r}) v_{\mathrm{s}}(\mathrm{r}) \mid \varphi_{\mathrm{j}}(\mathrm{r})\right\rangle
$$

$$
=-\int \delta \rho(\mathrm{r}) \mathrm{v}_{\mathrm{s}}(\mathrm{r}) \mathrm{d}^{3} \mathrm{r}
$$

$$
\Rightarrow \quad \frac{\delta T_{s}}{\delta \rho(\mathrm{r})}=-\mathrm{v}_{\mathrm{s}}[\rho](\mathrm{r})
$$

$$
\begin{aligned}
& \Rightarrow 0=-\mathrm{v}_{\mathrm{s}}\left[\rho_{\mathrm{o}}\right](\mathrm{r})+\mathrm{v}_{\mathrm{o}}(\mathrm{r})+\mathrm{v}_{\mathrm{H}}\left[\rho_{\mathrm{o}}\right](\mathrm{r})+\left.\frac{\delta \mathrm{E}_{\mathrm{xc}}}{\delta \rho(\mathrm{r})}\right|_{\mathrm{p}_{\mathrm{o}}} \\
& \Rightarrow \mathrm{v}_{\mathrm{xc}}\left[\rho_{\mathrm{o}}\right](\mathrm{r})=\left.\frac{\delta \mathrm{E}_{\mathrm{xc}}}{\delta \rho(\mathrm{r})}\right|_{\mathrm{p}_{\mathrm{o}}}
\end{aligned}
$$

Approximations of the xc functional

Three generations of approximations

1. Local Density Approximation (LDA):

$$
\mathrm{E}_{\mathrm{xc}}[\rho]=\int \mathrm{d}^{3} \mathrm{re}_{\mathrm{xc}}^{\mathrm{hom}}(\rho(\mathrm{r}))
$$

2. Generalized Gradient Approximation (GGA):

$$
\mathrm{E}_{\mathrm{xc}}[\rho]=\int \mathrm{d}^{3} \mathrm{r}_{\mathrm{xc}}(\rho, \nabla \rho, \ldots)
$$

3. Orbital functionals (Meta-GGA, hybrid functionals, hyper-GGA...)

$$
\mathrm{E}_{\mathrm{xc}}=\mathrm{E}_{\mathrm{xc}}\left[\varphi_{1} \ldots \varphi_{\mathrm{N}}\right]
$$

SUCCESSES OF LDA

Quantity
Typical deviation from expt

- Atomic \& molecular ground $<0.5 \%$ state energies
- Molecular equilibrium

$$
<5 \%
$$ distances

- Band structure of metals
few \% Fermi surfaces
- Lattice constants
$<2 \%$

Generalized Gradient Approximation (GGA)

Detailed study of molecules (atomization energies)
B. G. Johnson, P. M. W. Gill, J. A. Pople, J. Chem. Phys. 97, 7847 (1992)

Atomization energies (kcal/mol) from:

	$\mathrm{E}_{\mathrm{x}}^{\mathrm{B}}+\mathrm{E}_{\mathrm{c}}^{\mathrm{VWN}}$	$\mathrm{E}_{\mathrm{x}}^{\mathrm{B}}+\mathrm{E}^{\text {c }}$	HF
mean deviation from experiment	0.1	1.0	-85.8
mean absolute deviation	4.4	5.6	85.8
for comparison:	MP2		
	-22.4		
	22.4		

LIMITATIONS OF LDA/GGA

- Not free from spurious self-interactions KS potential decays more rapidly than \mathbf{r}^{-1}
Consequences: - no Rydberg series
- negative atomic ions not bound
- ionization potentials (if calculated from highest occupied orbital energy) too small
- Dispersion forces cannot be described
$\mathbf{W}_{\text {int }}(\mathbf{R}) \longrightarrow \mathbf{e}^{-\mathrm{R}}$ (rather than R^{-6})
- band gaps too small:

$$
\mathrm{E}_{\text {gap }}{ }^{\text {LDA }} \approx 0.5 \mathrm{E}_{\text {gap }}{ }^{\exp }
$$

- Cohesive energies of bulk metals not satisfactory

$$
\begin{aligned}
& \text { in LDA overestimated } \\
& \text { in GGA underestimated }
\end{aligned}
$$

- Wrong ground state for strongly correlated solids, e.g. $\mathrm{FeO}, \mathrm{La}_{2} \mathrm{CuO}_{4}$ predicted as metals

More "densities"

DENSITY-FUNTIONAL THEORY OF MAGNETIC SYSTEMS

Quantity of interest: Spin magnetization m(r)

In principle, Hohenberg-Kohn theorem guarantees that $\mathrm{m}(\mathrm{r})$ is a functional of the density: $m(r)=m[\rho](r)$. In practice, $m[\rho]$ is not known.

Include $\mathrm{m}(\mathrm{r})$ as basic variable in the formalism, in addition to the density $\rho(r)$.

DFT for spin-polarized systems

$$
\hat{H}_{v, \overline{\mathrm{~B}}}=\hat{\mathrm{T}}+\hat{\mathrm{W}}+\int \hat{\rho}(\mathrm{r}) \mathrm{v}(\mathrm{r}) \mathrm{d}^{3} \mathrm{r}-\int \hat{\overrightarrow{\mathrm{m}}}(\mathrm{r}) \cdot \overrightarrow{\mathrm{B}}(\mathrm{r}) \mathrm{d}^{3} \mathrm{r}
$$

$$
\overrightarrow{\mathrm{m}}=\text { spin magnetization : } \hat{\mathrm{m}}(\mathrm{r})=-\mu_{\mathrm{o}} \sum_{\alpha \beta} \hat{\mathrm{\psi}}_{\alpha}^{+}(\mathrm{r}) \vec{\sigma}_{\alpha \beta} \hat{\Psi}_{\beta}(\mathrm{r})
$$

HK theorem

$$
[\rho(\mathrm{r}), \overrightarrow{\mathrm{m}}(\mathrm{r})] \stackrel{\longleftrightarrow-1}{\longleftrightarrow}[\psi]
$$

total energy:

$$
\mathrm{E}_{\mathrm{v}, \overrightarrow{\mathrm{~B}}}[\rho, \overrightarrow{\mathrm{~m}}]=\underset{\text { universal }}{\mathrm{F}[\rho, \overrightarrow{\mathrm{~m}}]+\int \mathrm{d}^{3} \mathrm{r}(\mathrm{v}(\mathrm{r}) \rho(\mathrm{r})-\overrightarrow{\mathrm{B}}(\mathrm{r}) \cdot \overrightarrow{\mathrm{m}}(\mathrm{r}))}
$$

$$
\begin{gathered}
\text { For simplicity: } \quad \overrightarrow{\mathrm{B}}(\mathrm{r})=\left(\begin{array}{c}
0 \\
0 \\
\mathrm{~B}(r)
\end{array}\right), \quad \overrightarrow{\mathrm{m}}(r)=\left(\begin{array}{c}
0 \\
0 \\
\mathrm{~m}(r)
\end{array}\right) \\
\left(-\frac{\nabla^{2}}{2 \mathrm{~m}}+\left[\mathrm{v}(\mathbf{r})+\mathrm{v}_{\mathrm{H}}(\mathbf{r})+\mathrm{v}_{\mathrm{xc}}(\mathrm{r})\right] \pm \mu_{\mathrm{o}}\left[\mathrm{~B}(\mathbf{r})-\mathbf{B}_{\mathrm{xc}}(\mathbf{r})\right]\right) \varphi_{ \pm}^{j}(\mathbf{r})=\epsilon_{ \pm}^{j} \varphi_{ \pm}^{j}(\mathbf{r}) \\
\mathbf{v}_{\mathrm{xc}}[\rho, \mathrm{~m}]=\delta \mathrm{E}_{\mathrm{xc}}[\rho, \mathrm{~m}] / \delta \rho \quad \mathbf{B}_{\mathrm{xc}}[\rho, \mathrm{~m}]=\delta \mathrm{E}_{\mathrm{xc}}[\rho, \mathrm{~m}] / \delta \mathrm{m} \\
\rho(\mathbf{r})=\rho_{+}(\mathbf{r})+\rho_{-}(\mathbf{r}), \mathbf{m}(\mathbf{r})=\rho_{+}(\mathbf{r})-\rho_{-}(\mathbf{r}), \rho_{ \pm}=\Sigma\left|\varphi_{j_{ \pm}}\right|^{2}
\end{gathered}
$$

$B \longrightarrow 0$ limit

These equations do not reduce to the original KS equations for $B \rightarrow \mathbf{0}$ if, in this limit, the system has a finite $\mathbf{m}(r)$.

Traditional DFT: $\mathrm{E}_{\mathrm{xc}}[\rho] \quad \mathrm{v}_{\mathrm{xc}}(\mathrm{r})=\frac{\delta \mathrm{E}_{\mathrm{xc}}[\rho]}{\delta \rho(\mathrm{r})}$

Traditional DFT: $\mathrm{E}_{\mathrm{xc}}[\rho]$

$$
\mathrm{v}_{\mathrm{xc}}(\mathrm{r})=\frac{\delta \mathrm{E}_{\mathrm{x}}[\rho]}{\delta \rho(\mathrm{r})}
$$

Collinear SDFT: $\quad \mathrm{E}_{\mathrm{xc}}[\rho, \mathrm{m}] \quad \mathrm{v}_{\mathrm{xc}}(\mathrm{r})=\frac{\delta \mathrm{E}_{\mathrm{x}}[\rho, \mathrm{m}]}{\delta \rho(\mathrm{r})} \quad \mathrm{B}_{\mathrm{xc}}(\mathrm{r})=-\frac{\delta \mathrm{E}_{\mathrm{x}}[\rho, \mathrm{m}]}{\delta \mathrm{m}(\mathrm{r})}$

Traditional DFT: $\mathrm{E}_{\mathrm{xc}}[\rho] \quad \mathrm{v}_{\mathrm{xc}}(\mathrm{r})=\frac{\delta \mathrm{E}_{\mathrm{xc}}[\rho]}{\delta \rho(\mathrm{r})}$
Collinear SDFT: $\quad \mathrm{E}_{\mathrm{xc}}[\rho, \mathrm{m}] \quad \mathrm{v}_{\mathrm{xc}}(\mathrm{r})=\frac{\delta \mathrm{E}_{\mathrm{xc}}[\rho, \mathrm{m}]}{\delta \rho(\mathrm{r})} \quad \mathrm{B}_{\mathrm{xc}}(\mathrm{r})=-\frac{\delta \mathrm{E}_{\mathrm{xc}}[\rho, \mathrm{m}]}{\delta \mathrm{m}(\mathrm{r})}$ Non-Collinear SDFT: $\mathrm{E}_{\mathrm{xc}}[\rho, \overrightarrow{\mathrm{m}}] \quad \mathrm{V}_{x \mathrm{c}}(\mathrm{r})=\frac{\delta \mathrm{E}_{x}[\rho, \overrightarrow{\mathrm{~m}}]}{\delta \rho(\mathrm{r})} \quad \overrightarrow{\mathrm{B}}_{x c}(\mathrm{r})=-\frac{\delta \mathrm{E}_{x}[\rho, \overrightarrow{\mathrm{~m}}]}{\delta \overrightarrow{\mathrm{m}}(\mathrm{r})}$

Traditional DFT: $\mathrm{E}_{\mathrm{xc}}[\rho]$

$$
\mathrm{v}_{\mathrm{xc}}(\mathrm{r})=\frac{\delta \mathrm{E}_{\mathrm{x}}[\rho]}{\delta \rho(\mathrm{r})}
$$

Collinear SDFT: $\quad \mathrm{E}_{\mathrm{xc}}[\rho, \mathrm{m}] \quad \mathrm{v}_{\mathrm{xc}}(\mathrm{r})=\frac{\delta \mathrm{E}_{\mathrm{x}}[\rho, \mathrm{m}]}{\delta \rho(\mathrm{r})} \quad \mathrm{B}_{\mathrm{xc}}(\mathrm{r})=-\frac{\delta \mathrm{E}_{\mathrm{x}}[\rho, \mathrm{m}]}{\delta \mathrm{m}(\mathrm{r})}$ Non-Collinear SDFT: $\mathrm{E}_{\mathrm{xc}}[\rho, \overrightarrow{\mathrm{m}}] \quad \mathrm{v}_{\mathrm{xc}}(\mathrm{r})=\frac{\delta \mathrm{E}_{\mathrm{x}}[\rho, \overrightarrow{\mathrm{m}}]}{\delta \rho(\mathrm{r})} \quad \overrightarrow{\mathrm{B}}_{\mathrm{xc}}(\mathrm{r})=-\frac{\delta \mathrm{E}_{\mathrm{xc}}[\rho, \overrightarrow{\mathrm{m}}]}{\delta \overrightarrow{\mathrm{m}}(\mathrm{r})}$ Collinear CSDFT: $\mathrm{E}_{\mathrm{xc}}\left[\rho, \mathrm{m}, \overrightarrow{\mathrm{j}}_{\mathrm{p}}\right] \quad \mathrm{v}_{\mathrm{xc}}(\mathrm{r})=\frac{\delta \mathrm{E}_{\mathrm{xc}}\left[\rho, \mathrm{m}, \overrightarrow{\mathrm{j}}_{p}\right]}{\delta \rho(\mathrm{r})} \quad \mathrm{B}_{\mathrm{xc}}(\mathrm{r})=-\frac{\delta \mathrm{E}_{\mathrm{xc}}\left[\rho, \mathrm{m}, \overrightarrow{\mathrm{j}}_{\mathrm{p}}\right]}{\delta \mathrm{m}(\mathrm{r})}$

$$
\overrightarrow{\mathrm{A}}_{\mathrm{xc}}(\mathrm{r})=\mathrm{c} \frac{\delta \mathrm{E}_{\mathrm{xc}}\left[\rho, \mathrm{~m}, \overrightarrow{\mathrm{j}}_{\mathrm{p}}\right]}{\delta \overrightarrow{\mathrm{j}}_{\mathrm{p}}(\mathrm{r})}
$$

Traditional DFT: $\mathrm{E}_{\mathrm{xc}}[\rho]$

$$
\mathrm{v}_{\mathrm{xc}}(\mathrm{r})=\frac{\delta \mathrm{E}_{\mathrm{x}}[\rho]}{\delta \rho(\mathrm{r})}
$$

Collinear SDFT: $\quad \mathrm{E}_{\mathrm{xc}}[\rho, \mathrm{m}] \quad \mathrm{v}_{\mathrm{xc}}(\mathrm{r})=\frac{\delta \mathrm{E}_{\mathrm{x}}[\rho, \mathrm{m}]}{\delta \rho(\mathrm{r})} \quad \mathrm{B}_{\mathrm{xc}}(\mathrm{r})=-\frac{\delta \mathrm{E}_{\mathrm{x}}[\rho, \mathrm{m}]}{\delta \mathrm{m}(\mathrm{r})}$ Non-Collinear SDFT: $\mathrm{E}_{\mathrm{xc}}[\rho, \overrightarrow{\mathrm{m}}] \quad \mathrm{v}_{\mathrm{xc}}(\mathrm{r})=\frac{\delta \mathrm{E}_{\mathrm{x}}[\rho, \overrightarrow{\mathrm{m}}]}{\delta \rho(\mathrm{r})} \quad \overrightarrow{\mathrm{B}}_{\mathrm{xc}}(\mathrm{r})=-\frac{\delta \mathrm{E}_{\mathrm{xc}}[\rho, \overrightarrow{\mathrm{m}}]}{\delta \overrightarrow{\mathrm{m}}(\mathrm{r})}$ Collinear CSDFT: $\mathrm{E}_{\mathrm{xc}}\left[\rho, \mathrm{m}, \overrightarrow{\mathrm{j}}_{\mathrm{p}}\right] \quad \mathrm{v}_{\mathrm{xc}}(\mathrm{r})=\frac{\delta \mathrm{E}_{\mathrm{xc}}\left[\rho, \mathrm{m}, \overrightarrow{\mathrm{j}}_{\mathrm{p}}\right]}{\delta \rho(\mathrm{r})} \quad \mathrm{B}_{\mathrm{xc}}(\mathrm{r})=-\frac{\delta \mathrm{E}_{\mathrm{xc}}\left[\rho, \mathrm{m}, \overrightarrow{\mathrm{j}}_{\mathrm{p}}\right]}{\delta \mathrm{m}(\mathrm{r})}$

$$
\overrightarrow{\mathrm{A}}_{\mathrm{xc}}(\mathrm{r})=\mathrm{c} \frac{\delta \mathrm{E}_{\mathrm{xc}}\left[\mathrm{p}, \mathrm{~m}, \overrightarrow{\mathrm{j}}_{\mathrm{p}}\right]}{\left.\delta \overrightarrow{\mathrm{j}}_{\mathrm{p}} \mathrm{r}\right)}
$$

Non-Col. CSDFT: $\mathrm{E}_{\mathrm{xc}}\left[\rho, \overrightarrow{\mathrm{m}}, \overrightarrow{\mathrm{j}}_{\mathrm{p}}\right] \quad \mathrm{v}_{\mathrm{xc}}(\mathrm{r})=\frac{\delta \mathrm{E}_{\mathrm{xc}}\left[\rho, \overrightarrow{\mathrm{m}}, \vec{j}_{p}\right]}{\delta \rho(\mathrm{r})} \overrightarrow{\mathrm{B}}_{\mathrm{xc}}(\mathrm{r})=-\frac{\delta \mathrm{E}_{\mathrm{xc}}\left[\rho, \overrightarrow{\mathrm{m}}, \overrightarrow{\mathrm{j}_{p}}\right]}{\delta \overrightarrow{\mathrm{m}}(\mathrm{r})}$

$$
\overrightarrow{\mathrm{A}}_{\mathrm{xc}}(\mathrm{r})=\mathrm{c} \frac{\delta \mathrm{E}_{\mathrm{xc}}\left[\mathrm{\rho}, \overrightarrow{\mathrm{~m}}, \overrightarrow{\mathrm{j}}_{\mathrm{p}}\right]}{\delta \overrightarrow{\mathrm{j}}_{\mathrm{p}}(\mathrm{r})}
$$

Most general magnetic situation: KS equation of non-collinear Current-Spin -DFT (CSDFT):

$$
\left[\frac{1}{2}\left(-\mathrm{i} \vec{\nabla}+\frac{1}{\mathrm{C}} \overrightarrow{\mathrm{~A}}_{\mathrm{s}}(\mathrm{r})\right)^{2}+\mathrm{V}_{\mathrm{s}}(\mathrm{r})+\mu_{\mathrm{B}} \vec{\sigma} \cdot \overrightarrow{\mathrm{~B}}_{\mathrm{s}}(\mathrm{r})\right] \Phi_{\mathrm{i}}(\mathrm{r})=\varepsilon_{\mathrm{i}} \Phi_{\mathrm{i}}(\mathrm{r})
$$

$$
\mathrm{V}_{\mathrm{s}}(\mathrm{r})=\mathrm{V}_{0}(\mathrm{r})+\mathrm{V}_{\mathrm{H}}(\mathrm{r})+\mathrm{V}_{\mathrm{xc}}(\mathrm{r})+\frac{1}{2 \mathrm{c}^{2}}\left[\mathrm{~A}_{0}^{2}(\mathrm{r})-\mathrm{A}_{\mathrm{s}}^{2}(\mathrm{r})\right]
$$

$$
\overrightarrow{\mathrm{B}}_{\mathrm{s}}(\mathrm{r})=\overrightarrow{\mathrm{B}}_{0}(\mathrm{r})+\overrightarrow{\mathrm{B}}_{\mathrm{xc}}(\mathrm{r}) \quad \overrightarrow{\mathrm{A}}_{\mathrm{s}}(\mathrm{r})=\overrightarrow{\mathrm{A}}_{0}(\mathrm{r})+\overrightarrow{\mathrm{A}}_{\mathrm{xc}}(\mathrm{r})
$$

$$
\rho(\mathrm{r})=\sum_{\mathrm{i}=1}^{\mathrm{N}} \Phi_{\mathrm{i}}^{\dagger}(\mathrm{r}) \Phi_{\mathrm{i}}(\mathrm{r}) \quad \overrightarrow{\mathrm{m}}(\mathrm{r})=-\mu_{\mathrm{B}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \Phi_{\mathrm{i}}^{\dagger}(\mathrm{r}) \vec{\sigma} \Phi_{\mathrm{i}}(\mathrm{r})
$$

$$
\overrightarrow{\mathrm{j}}_{\mathrm{p}}(\mathrm{r})=\frac{1}{2 \mathrm{i}} \sum_{\mathrm{i}=1}^{\mathrm{N}}\left[\Phi_{\mathrm{i}}^{\dagger}(\mathrm{r}) \vec{\nabla} \Phi_{\mathrm{i}}(\mathrm{r})-\left(\vec{\nabla} \Phi_{\mathrm{i}}^{\dagger}(\mathrm{r})\right) \Phi_{\mathrm{i}}(\mathrm{r})\right]
$$

Functionals available:

Ordinary LSDA yields GLOBAL collinearity

$$
\overrightarrow{\mathrm{B}}_{\mathrm{xc}}(\mathrm{r})=\left(\begin{array}{c}
0 \\
0 \\
\mathrm{~B}_{\mathrm{xc}}(\mathrm{r})
\end{array}\right) \quad \overrightarrow{\mathrm{m}}(\mathrm{r})=\left(\begin{array}{c}
0 \\
0 \\
\mathrm{~m}(\mathrm{r})
\end{array}\right)
$$

$\overrightarrow{\mathrm{B}}_{x x}, \overrightarrow{\mathrm{~m}}$ parallel to $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ everywhere in space
$\int \rho(\mathrm{r}) \mathrm{v}(\mathrm{r}) \mathrm{d}^{\mathrm{B}} \mathrm{r}-\int \overline{\mathrm{m}}(\mathrm{r}) \cdot \overrightarrow{\mathrm{B}}(\mathrm{r}) \mathrm{d}^{\mathrm{B}} \mathrm{r}$

$$
\equiv \sum_{\alpha, \beta=1} \rho_{\alpha, \beta}(r) v_{\alpha, \beta}(\mathrm{r})
$$

$\{\rho(\mathrm{r}), \overrightarrow{\mathrm{m}}(\mathrm{r})\}: 4$ independent functions
$\rho_{\alpha \beta}$ is Hermitian $\Rightarrow 4$ independent functions

Non-collinear LSDA:

(Kübler, Sandratskii '80s)
$\overrightarrow{\mathrm{r}}$ given point in space:
(1) Find unitary matrix $U(r)$ such that

$$
\mathrm{U}^{+}(\mathrm{r})\left(\rho_{\alpha \beta}\right) \mathrm{U}(\mathrm{r})=\left(\begin{array}{cc}
\mathrm{n}_{\uparrow}(\mathrm{r}) & 0 \\
0 & \mathrm{n}_{\downarrow}(\mathrm{r})
\end{array}\right)
$$

(2) Calculate $\mathrm{v}_{\mathrm{xc}}^{\uparrow}(\mathrm{r})$ and $\mathrm{v}_{\mathrm{xc}}^{\downarrow}(\mathrm{r})$ from $\left\{\mathrm{n}_{\uparrow}, \mathrm{n}_{\downarrow}\right\}$ using the normal LSDA expressions
(3) $\left(\mathrm{v}_{\mathrm{xc}}^{\mathrm{a} \mathrm{\beta}}\right)=\mathrm{U}(\mathrm{r})\left(\begin{array}{cc}\mathrm{v}_{\mathrm{xc}}^{\uparrow}(\mathrm{r}) & 0 \\ 0 & \mathrm{v}_{\mathrm{xc}}^{\downarrow}(\mathrm{r})\end{array}\right) \mathrm{U}^{+}(\mathrm{r})$

S. Sharma, J.K. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N. Helbig, S. Pittalis, S. Shallcross, L. Nordstroem E.K.U.G., Phys. Rev. Lett. 98, 196405 (2007)

S. Sharma, J.K. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N. Helbig, S. Pittalis, S. Shallcross, L. Nordstroem E.K.U.G., Phys. Rev. Lett. 98, 196405 (2007)
in this approximation $\overrightarrow{\mathrm{B}}_{\mathrm{xc}}(\mathrm{r})$ and $\overrightarrow{\mathrm{m}}(\mathrm{r})$ may change their direction in space, but locally they are always parallel

Why is that important?

Ab-initio description of spin dynamics:
microscopic equation of motion (following from TDSDFT)

$$
\dot{\overrightarrow{\mathrm{m}}}(\overrightarrow{\mathrm{r}}, \mathrm{t})=\overrightarrow{\mathrm{m}}(\overrightarrow{\mathrm{r}}, \mathrm{t}) \times \overrightarrow{\mathrm{B}}_{\mathrm{xC}}(\overrightarrow{\mathrm{r}}, \mathrm{t})-\vec{\nabla} \cdot \overrightarrow{\mathrm{J}}_{\mathrm{S}}(\overrightarrow{\mathrm{r}}, \mathrm{t})+\mathrm{SOC}
$$

in absence of external magnetic field

Consequence of local collinearity: $\mathbf{m} \times \mathbf{B}_{\mathrm{xc}}=0$:
\rightarrow possibly wrong spin dynamics (e.g. spurious dynamics in ground state with non-vanishing J_{s})

Construction of a novel GGA-type functional

Traditional LSDA: Start from uniform electron gas in collinear magnetic state. Determine $\mathrm{e}_{\mathrm{xc}}(\mathrm{n}, \mathrm{m})$ from QMC or MBPT and parametrize this function to use in LSDA.

New non-collinear functional: Start from spin-spiral phase of e-gas. Determine $\mathrm{e}_{\mathrm{xc}}[\mathrm{n}, \overrightarrow{\mathrm{m}}]$ from MBPT and parametrize $\mathrm{e}_{\mathrm{XC}}[\mathrm{n}, \overrightarrow{\mathrm{m}}]$ to use as non-collinear GGA.
F.G. Eich and E.K.U. Gross, Phys. Rev. Lett. 111, 156401 (2013)

Illustration of spin spiral waves along one spatial coordinate for two different choices of wavevector $\mathrm{q}=\mathrm{k}_{1 / 2}$.

Magnetisation of a spin-spiral state in the uniform electron gas

$$
\mathrm{m}(\mathbf{r})=\mathrm{m}\left(\begin{array}{c}
\mathrm{s} \cos (\mathbf{q} \cdot \mathbf{r}) \\
\operatorname{s\operatorname {sin}(\mathbf {q}\cdot \mathbf {r})} \\
\sqrt{1-\mathrm{s}^{2}}
\end{array}\right) \quad \varepsilon_{\mathrm{xc}}^{\mathrm{sSW}}=\varepsilon_{\mathrm{xc}}^{\mathrm{sSW}}(\mathrm{n}, \mathrm{~m}, \mathrm{q}, \mathrm{~s})
$$

$$
\mathrm{E}_{\mathrm{xc}}^{\mathrm{GGA}}[\mathrm{n}, \overrightarrow{\mathrm{~m}}]=\int \mathrm{d}^{3} \mathrm{r} \mathrm{n}(\mathbf{r}) \varepsilon_{\mathrm{xc}}^{\mathrm{SSW}}(\mathrm{n}(\mathbf{r}), \mathrm{m}(\mathbf{r}), \mathrm{q}(\mathbf{r}), \mathrm{s}(\mathbf{r}))
$$

$$
\begin{aligned}
& \mathrm{s}^{2}(\mathbf{r})=\frac{\mathrm{D}_{\mathrm{T}}^{2}(\mathbf{r})}{\mathrm{D}_{\mathrm{T}}^{2}(\mathbf{r})+\mathrm{m}^{4}(\mathbf{r}) \mathrm{d}_{\mathrm{T}}(\mathbf{r})} \quad \mathrm{q}^{2}(\mathbf{r})=\frac{\mathrm{D}_{\mathrm{T}}^{2}(\mathbf{r})+\mathrm{m}^{4}(\mathbf{r}) \mathrm{d}_{\mathrm{T}}(\mathbf{r})}{\mathrm{m}^{4}(\mathbf{r}) \mathrm{D}_{\mathrm{T}}(\mathbf{r})} \\
& \mathrm{D}_{\mathrm{T}}(\mathbf{r})=|\overrightarrow{\mathrm{m}}(\mathbf{r}) \times(\nabla \otimes \overrightarrow{\mathrm{m}}(\mathbf{r}))|^{2} \quad \mathrm{~d}_{\mathrm{T}}(\mathbf{r})=\left|\overrightarrow{\mathrm{m}}(\mathbf{r}) \times\left(\nabla^{2} \overrightarrow{\mathrm{~m}}(\mathbf{r})\right)\right|^{2}
\end{aligned}
$$

F.G. Eich and E.K.U. Gross, Phys. Rev. Lett. 111, 156401 (2013)

$\mathbf{m} \times \mathbf{B}_{\mathbf{x c}}$ in non-coll. functional

EXTENSIONS

1. Relativistic systems

KS equations:

$$
\begin{aligned}
& {\left[\vec{\gamma} \cdot\left(-\mathrm{i} \hbar \vec{\nabla}-\overrightarrow{\mathbf{A}}_{\mathrm{s}}(\mathrm{r})\right)+\mathrm{mc}^{2}+\gamma_{\mathrm{o}} \mathrm{v}_{\mathrm{s}}(\mathrm{r})\right] \psi_{\mathrm{n}}(\mathrm{r})=\varepsilon_{\mathrm{n}} \gamma_{0} \psi_{\mathrm{n}}(\mathrm{r})} \\
& \overrightarrow{\mathbf{A}}_{s}(r)=-e\left\{\overrightarrow{\mathrm{~A}}_{\text {ext }}(\mathrm{r})+\int \mathrm{d}^{3} \mathrm{r}^{\prime} \frac{\overrightarrow{\mathrm{j}}\left(\mathrm{r}^{\prime}\right)}{\left|\mathrm{r}-\mathrm{r}^{\prime}\right|}+\frac{\delta \mathrm{E}_{\mathrm{xc}}[\rho, \vec{j}]}{\delta \dot{\mathrm{j}}(\mathrm{r})}\right\} \\
& \mathbf{v}_{\mathbf{s}}(\mathbf{r})=-e\{\underbrace{\mathrm{~A}_{\text {ext }}^{0}(\mathrm{r})}_{\mathbf{V}_{\text {nuc }}(r)}+\int d^{3} r^{\prime} \frac{\rho\left(r^{\prime}\right)}{\left|r-r^{\prime}\right|}+\frac{\delta E_{\text {xc }}[\rho, \vec{j}]}{\delta \rho(r)}\}
\end{aligned}
$$

KS orbitals are Dirac spinors
Local spin-density approximation and EXX-OPM available

EXTENSIONS

2. Finite temperature

KS equations:

$$
\begin{aligned}
& \left(-\frac{\hbar^{2} \nabla^{2}}{2 \mathrm{~m}}+\mathrm{V}_{\mathrm{nuc}}(\mathrm{r})+\int \frac{\rho\left(\mathrm{r}^{\prime}\right)}{\left|\mathrm{r}-\mathrm{r}^{\prime}\right|} \mathrm{d}^{3} \mathrm{r}^{\prime}+\mathrm{V}_{\mathrm{xc}}^{(\mathrm{T})}(\mathrm{r})\right) \varphi_{\mathrm{j}}(\mathrm{r})=\varepsilon_{\mathrm{j}} \varphi_{\mathrm{j}}(\mathrm{r}) \\
& \rho(\mathrm{r})=\sum_{\mathrm{j}} \underbrace{\mathbf{f}_{\mathrm{T}}\left(\varepsilon_{\mathrm{j}}\right)}_{\text {Fermi distribution }} \cdot\left|\varphi_{\mathrm{j}}(\mathrm{r})\right|^{2}
\end{aligned}
$$

3. Superconductors

$$
\mathbf{E}=\mathbf{E}[\rho, \chi]
$$

Superconductig order parameter

DENSITY-FUNTIONAL THEORY OF CONVENTIONAL SUPERCONDUCTORS

BASIC IDEA:

- Include order parameter, χ, characterising superconductivity as additional "density" L.N. Oliveira, E.K.U.G., W. Kohn, PRL 60, 2430 (1988)
- Include N-body density matrix, Γ, of the nuclei as additional "density"
T. Kreibich, E.K.U.G., PRL 86, 2984 (2001)

Electronic KS equation

$$
\begin{aligned}
& \left(-\frac{\nabla^{2}}{2}-\mu+\mathrm{v}_{\mathrm{s}}[\rho, \chi, \Gamma](\mathrm{r})\right) \mathrm{u}(\boldsymbol{r})+\int \Delta_{\mathrm{s}}[\rho, \chi, \Gamma]\left(\mathrm{r}, \mathrm{r}^{\prime}\right) \mathrm{v}\left(\boldsymbol{r}^{\prime}\right) \mathrm{d}^{3} \boldsymbol{r}^{\prime}=\operatorname{Eu}(\boldsymbol{r}) \\
& \int \Delta_{\mathrm{s}}^{*}[\rho, \chi, \Gamma]\left(\mathbf{r}, \boldsymbol{r}^{\prime}\right) \mathrm{u}\left(\boldsymbol{r}^{\prime}\right) \mathrm{d}^{3} \boldsymbol{r}^{\prime}-\left(-\frac{\nabla^{2}}{2}-\mu+\mathrm{v}_{\mathrm{s}}[\rho, \chi, \Gamma](\boldsymbol{r})\right) \mathrm{v}(\boldsymbol{r})=\operatorname{Ev}(\boldsymbol{r})
\end{aligned}
$$

Nuclear KS equation

$$
\left(\sum_{\alpha=1}^{\mathrm{N}_{\mathrm{n}}}-\frac{\nabla_{\alpha}^{2}}{2 \mathrm{M}_{\alpha}}+\mathrm{W}_{\mathrm{s}}[\rho, \chi, \Gamma](\underline{\mathrm{R}})\right) \psi(\underline{\underline{\mathrm{R}}})=\mathrm{E} \psi(\underline{\underline{\mathrm{R}}})
$$

3 KS potentials: $\quad \mathbf{v}_{\mathbf{s}} \Delta_{\mathrm{s}} \mathbf{W}_{\mathbf{s}}$

KS theorem: There exist functionals $\mathrm{v}_{s}[\rho, \chi, \Gamma], \Delta_{s}[\rho, \chi, \Gamma], \mathrm{W}_{s}[\rho, \chi, \Gamma]$, such that the above equations reproduce the exact densities of the interacting system

No approximation yet!

In a solid, the ions remain close to their equilibrium positions:

$$
\begin{aligned}
& \mathrm{W}_{s}(\underline{\underline{\mathrm{R}}})=\mathrm{W}_{s}\left(\underline{\underline{\mathrm{R}}}_{0}+\underline{\underline{\mathrm{U}}}\right) \\
& =W_{s}\left(\underline{\underline{R}}_{0}\right)+\underbrace{\left.\left(\underline{\nabla} \mathrm{W}_{s}\right)\right|_{\underline{\underline{R}}_{0}}}_{0 \text { (because forces vanish at }} \cdot \underline{\underline{\mathrm{U}}} \\
& \text { equilibrium positions) } \\
& +\left.\frac{1}{2} \sum_{i j}^{3} \sum_{\mu \nu}^{N_{n}}\left(\partial_{i}^{\mu} \partial_{\mathrm{j}}^{v} \mathrm{~W}_{\mathrm{s}}(\underline{\underline{\mathrm{R}}})\right)\right|_{\underline{\underline{\mathrm{R}}}} \mathrm{U}_{\mathrm{i}}^{\mu} \mathrm{U}_{\mathrm{j}}^{v}+\cdots \\
& \Rightarrow \quad \hat{\mathrm{H}}_{\mathrm{n}, \mathrm{KS}}=\cdots=\sum_{\mathrm{q}} \Omega_{\mathrm{q}}\left(\hat{\mathrm{~b}}_{\mathrm{q}}^{+} \hat{\mathrm{b}}_{\mathrm{q}}+\frac{3}{2}\right)+\mathrm{O}\left(\mathrm{U}^{3}\right)
\end{aligned}
$$

Isotope effect:

$T_{c} \propto M^{-\alpha}$

	Calculations		Experiment	
Pb	0.47		0.47	
Mo	0.37		0.33	

The deviations from BCS value $\alpha=0.5$ are correctly described

Jump of specific heat at T_{c}

	Theory	Experiment
Pb	2.93	$3.57-3.71$
Nb	2.87	$2.8-3.07$
Ta	2.64	2.63
Al	2.46	2.43

$\mathbf{M g B}_{2}$

 $\mathrm{T}_{\mathrm{c}}=39.5 \mathrm{~K}$2-D σ-bonding hole pockets 3-D π and π^{*} Fermi surfaces

Fermi Surface of MgB_{2}

Specific heat of $\mathbf{M g B}_{2}$

A. Floris et al, Phys. Rev. Lett. $\underline{94,} 037004$ (2005)

$\mathbf{M g B}_{2}$

A. Floris et al, Phys. Rev. Lett. 94, 037004 (2005)

Pb: Gap on the Fermi surface

Pb (Gap at $\mathbf{T}=0.01 \mathrm{~K})$

*llànoquanta Network of Excellence

Deutsche

SPP 1145
SFB 658

