Ehrenfest Molecular Dynamics: one simple
example of photo-dissociation with a laser
pulse

1 Introduction

In these exercises, we will do some simulations on laser matter irradiation.
Due to the limited time, we will work with a one-electron system, but the level
of theory we will be aiming at is that of non-adiabatic Molecular Dynamics
(MD) based on time-dependent density-functional theory (TDDFT) and the
Ehrenfest equations. In fact, if time permits and your computer can, it will
be an easy exercise to add one electron and do a “real” TDDFT calculation.
If you don’t know much about these topics: Refs [1, 2, 3, 5] are some example
references for the combination of TDDFT and non-adiabatic first principles
MD.

2 A molecule irradiated with a laser pulse.

We will simulate the irradiation of a molecule with a laser field. Since we
cannot do heavy calculations in little time, let us use a simple one, the
Na; molecule, which only has one valence electron. octopus uses pseudo-
potentials, and therefore we will only be dealing with that one valence elec-
tron (all other inner electrons are supposed to be “frozen” and do not par-
ticipate in the chemistry).

First, we need to get the ground state of the molecule, which can be done
by making use of file inp. 1:

HHE
# Ground state of the Na2+ molecule
CalculationMode = gs

FromScratch = yes

BoxShape = sphere



Spacing = 0.
Radius = 20.0

TheoryLevel = independent_particles

ExcessCharge = 1

%Coordinates

"Na" | -3.282843 | 0 | ©O
"Na" | 3.282843 | 0 | O
%

EigenSolver = cg

EigenSolverMaxIter = 250

EigenSolverTolerance = 1.0e-6

ConvRelDens = 1.0e-6
A

Note the presence of the ExcessCharge variable. The code computes the
number of electron that it needs according to the type of atoms. In this case,
since Na only has one valence electron, and we have two Na atoms, in princi-
ple the code would use two electrons. However, if we want to have a charged
system, we need to specify it by setting this variable. The EigenSolver. ..
and ConvRelDens variables refer to the degree of numerical convergence that
should be achieved in the diagonalization of the Hamiltonian for these ground
state calculations. You can learn about them in the variables description of
the web page, or by running the oct-help command.

e One should perform a convergence analysis to be sure that the Spacing
and Radius are correct. If your are too lazy to to this by hand, you
can find a sample bash script to to this job for you on the tutorial page
(section Nitrogen atom).

e By changing the bond-length given in the block Coordinates, you can
check whether or not the system is at the equilibrium geometry. You
can vary the bond length in several consecutive calculations, and plot
the total energy and forces on the ions as a function of bond-length.

e In fact, to be even more sure, you can perform a geometry optimization
run (CalculationMode = go), and find the right equilibrium geometry.

We will need to know which are the excitation energies of the system, and
therefore we will need once again to perform a calculation in the CalculationMode
= unocc mode with the inp.?2 file:



it
# Calculation of excited states of Na2+ molecule.
CalculationMode = unocc

ExtraStates = 4

FromScratch = yes

BoxShape = sphere
Spacing = 0.7
Radius = 20.0

TheoryLevel = independent_particles

ExcessCharge = 1

%Coordinates

"Na" | -3.282843 | 0 | O
"Na" | 3.282843 | 0 | O
%

EigenSolver = cg

EigenSolverMaxIter = 250

EigenSolverTolerance = 1.0e-6

ConvRelDens = 1.0e-6
S s

Now we will perform time-dependent simulations. Take a look at file
inp.3:

HESFHH R
# Ground state of the Na2+ molecule
CalculationMode = td

FromScratch = yes

BoxShape = sphere
Spacing = 0.7
Radius = 20.0

TheoryLevel = independent_particles

ExcessCharge = 1

%Coordinates

"Na" | -3.282843 | 0 | O
"Na" | 3.282843 | 0 | O
%

TDEnergyUpdateIlter = 1

TDPropagator = exp_mid



TDExponentialMethod = lanczos
TDExpOrder = 20

AbsorbingBoundaries = mask
AbWidth = 4.0

MovelIons = no

omega = 0.1
electric_amplitude = 0.05
taul = 2x(2xpi)/omega

t0 = 2% (2*pi)/omega
totaltime = tO+taul

TDTimeStep = totaltime / 250
TDMaximumIter = totaltime/TDTimeStep

%TDExternalFields

electric_field | i | 0 | O | omega | "envelope_function"

YA

%TDFunctions

"envelope_function" | tdf_cosinoidal | electric_amplitude | tau0 | tO
)

TDOutput = multipoles + laser + energy
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Here are the novelties:

e The equations are propagated by discretizing the time interval that

is going to be simulated in smaller pieces or time steps. TDTimeStep
determines the size of this time step. If this value is too large, the
propagations will be unstable. But the larger it is, the faster we will
simulate the system. Change it and see how your total simulation times
vary.

The TDPropagator variable sets which propagation algorithm is used.
You may read about this topic in Ref. [6], and also consult the various
options in the variable description of the web page. The exponential
midpoint rule, which is the option chosen in the input file, is given by:

ot + At) = exp{—iAtH (t + At/2)}o(t) . (1)

Even though the propagation scheme is now fixed, it requires of an
algorithm to compute the action of the exponential of a matrix on a



wave function, which is a non-trivial task when the dimension is large.
The algorithm to do this is chosen by the TDExponentialMethod and
TDExpOrder variables.

e When the electrons are propagated in time with an intense laser field,
some ionization may occur. In order to account for this, one has to add
absorbing boundaries to the simulation box. This is done, in this case,
by applying a “mask function” (AbsorbingBoundaries = mask) that
at each time step cancels a part of the wave function that is close to
the simulation box boundary.

e Movelons = no means that we will perform the calculation with the
nuclei fixed to their original position. We will relax this condition in
the next section.

e Finally, the external field (that simulates the electric field created by
a laser pulse) is described through the blocks TDExternalFields and
TDFunctions. These are reasonably well described in the code web
page, so we will not repeat the explanations here. Note only that the
applied electric field has the form:

E(t) = Re[f(t)e"'p], (2)

where f(t) is the envelope funciton, w is the carrier frequency (omega
in the inp file), and p is the polarization vector, which can be complex.

e The total simulation time is specified through the line TDMaxSteps =
totaltime/TDTimeStep: the total time totaltime is divided by the
time step, to yield the number of time steps.

Now it is time to analyze the results. Take a look at the variable TDOutput:
it orders the code to create some output files, with information about the
multipoles of the system (monopole — i.e. the total electronic charge present
in the simulation box — and the dipole), the laser field, or the energy as the
system evolves in time. You will find the files in the directory td.general.

You should try to plot these files with some plotting program (gnuplot
should be installed in your computers). For example, the second column of
the file multipoles contains the time at each time step, whereas the third
column contains the electronic charge in the simulatin box. One of the most
relevant information to learn from this simulation is the ionization yield, as
a function of time.

You can also plot the laser field that you have used in this simulation:
column number two of the file laser is the time, whereas column number
three is the z component of the electric field.



e The total ionization is strongly dependent on the peak electric am-
plitude of the laser pulse. You can analyze this effect by performing
various runs at varying values of this value.

e The polarization of the laser pulse is also relevant: how does this aspect
affect the total ionization for this system? The effect of this parameter
will be specially visible in the evolution of the dipole of the system.
You can check this by looking at the multipoles file.

e Are we well converged with respect to the simulation box? This is
especially difficult in cases where one studies ionization (in fact, it is
impossible to obtain perfect convergence).

3 Photo-dissocation — or not.

In the previous calculation, the nuclei were frozen at their equilibrium po-
sition. In reality, they should move. To simulate this, we will utilize the
Ehrenfest model, which is simply turned on by setting MoveIons = yes.
The goals of this section are the following:

e The inp.4 files contains the specification of a non-resonant calcula-
tion: the frequency of the laser field is not tuned to any of the excita-
tion energies of the system (transition from the ground state to any of
the excited states). What are the effects of this pulse on the system?
Specifically, does it lead to the ionization of the system or not? And
finally, how is the movement of the two nuclei? You may look at it in
the coordinates file.

e Tune the laser frequency to the first resonance of the system, and check
now whether or not the system dissociates. Is this dissociation accom-
panied of simultaneous ionization of the system?

e What happens if you keep the resonant frequency, but change the po-
larization direction of the laser field?
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