TDDFT for extended systems I Plasmons

Carsten A. Ullrich
University of Missouri

Benasque, September 2016



Outline

» classical plasma oscillations
» experimental observation of plasmons

» The homogeneous electron gas:
how to calculate plasmons

» Plasmons in TDDFT
» Plasmon damping

» Nanoscale systems and plasmonics



3 —@ Classical bulk motion of charge in a solid
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A slab of electrons moving back and forth on top of
a slab of neutralizing positive charge: plasma oscillations.



4 —@ Classical bulk motion of charge in a solid

iy >/ 1/ Total charge on one side:
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Uniform electric field caused by surface charge: E = 47€No

Total force on all electrons: F = enVE = —47Zn262\/5

Set force equal to total mass times acceleration: F = Mo
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Plasma frequency: C()p| = m
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Some numbers

Table 2 Volume plasmon energies, in eV

Material

Metals
Li

Na

K

Mg

Al

Observed

1.12

5.71

3.72
10.6
15.3

Calculated

hw

P

8.02

5.95

4.29
10.9
15.8

ha

P

7.96
5.58
3.86

\

iIncludes
lonic
background



6 _' Plasmons

Incident electron

Scattered electron

Figure 6 Creation of a plasmon in a metal film by inelastic scat-
tering of an electron. The incident electron typically has an en-
ergy 1 to 10 keV; the plasmon energy may be of the order of
10 eV. An event is also shown in which two plasmons are created.

Plasmons are quantized excitations
of collective longitudinal waves
of the electron gas.

They are not optically excited, but by
scattering with electrons or photons.
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Figure 7 A spectrometer with electrostatic analyzer
for the study of plasmon excitation by electrons.
(After J. Daniels et al.)



Electron loss spectra
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Figure 8 Energy loss spectra for electrons reflected from films of (a) aluminum and (b) magnesium,
for primary electron energies of 2020 eV. The 12 loss peaks observed in Al are made up of combina-
tions of 10.3 and 15.3 eV losses, where the 10.3 eV loss is due to surface plasmons and the 15.3 eV
loss is due to volume plasmons. The ten loss peaks observed in Mg are made up of combinations of
7.1 eV surface plasmons and 10.6 eV volume plasmons. Surface plasmons are the subject of Prob-
lem 1. (After C. ]J. Powell and J. B. Swan.)



Electron loss spectra
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at low momentum: surface and
volume plasmon

at large momentum transfer:
e double scattering
e Landau damping

A. vom Felde, J. Sprosser-Prou,
and J. Fink, PRB 40, 10181 (1989)



9 E The history of plasmons

PHYSICAL REVIEW VOLUME 85, NUMBER 2 JANUARY 15, 1952

A Collective Description of Electron Interactions: II. Collective vs Individual
Particle Aspects of the Interactions

Davip PINES
Randal Morgan Laboratory of Physics, University of Pennsylvania, Philadelphia, Pennsylvania
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Palmer Physical Laboratory, Princeton University, Princeton, New Jersey

(Received September 28, 1951)

Plasmons: proposed by David Pines in 1952-55



10 E Excitations in finite and extended systems

. (W A(r o, (W (|, )

2(rro)=1lim >

+cC(w— -o)

07| 5 wo—E, +E;+17
_ , , |
QJ'
The full many-body response function has poles at the exact excitation energies
. A
Ime 4 finite Ime extendeg
A > | > >
T Rew o Rew

» Discrete single-particle excitations merge into a continuum
(branch cut in frequency plane)

» New types of collective excitations appear off the real axis
(finite lifetimes)




11 E The homogeneous electron gas

Kohn-Sham response function:

n(Ere) =S (f IPNAOAQUAWIAW

w-(&;—&)+In

@ (r) = %eik'r

Homogeneous electron gas:

Lindhard function:

d 3k O(k. —k) B O(k. —k)
272)}| w-k-q-0%/2+in wo+k-g+9°/2+in
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Giuliani and Vignale, Quantum Theory of the Electron Liquid (2005)



12 E The homogeneous electron gas

Full interacting response function:

Z:(0, w)

(4, 0) = 1-[v, + 1. (@ @)] . (0, @)

Poles of the full response function:



13 _@ The homogeneous electron gas

Full interacting response function:

EACE2)

x(0,®) =

1_[Vq T fxc ((h’ a))];{s (q’ C())

Poles of the full response function:

\4

Poles of the Lindhard function
give the particle-hole continuum



14 —@ Particle-hole continuum

®
In the ground state, all single-particle

states inside the Fermi sphere

are filled. A particle-hole excitation

connects an occupied single-particle
state inside the Fermi sphere with an
empty state outside.

d 3k { o(k. —k) O(k. —k) }

) :2 B
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q y g 2 2



15 —@ Particle-hole continuum

Denominator vanishes for
frequency range

4,




16 E The homogeneous electron gas

Full interacting response function:

2.(0, ®) .
11, + £ (@.0)]7.(0,0)]

(0, ®)

Poles of the full response function:

v
Vanishing denominator gives the plasmons

—> Vg + 1, (0, 0)]x,(9,0) =1




17 E Finding the plasmon dispersion

[Vq T 1’-xc (q1 w)];{s (q1 (0) =1

» numerically solution: for a given {, find that

@ which solves this equation.

» analytic solution: expand to second order in (

Random Phase Approximation (RPA):

‘Vqu (q1 a)) _1’: 0
1

RPA dielectric function




18 —@ Analytic plasmon dispersion
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19 _@ Analytic plasmon dispersion
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Plasmon dispersion




21 E Plasmon dispersion

0 025 05 075 1 125 15 175

K. Tatarczyk, A. Schindlmayr, and M. Scheffler, PRB 63, 235106 (2001)



22 —@ Plasmons in different dimensions

Bulk plasmon:

o(q) = o, +oq° +...

2D plasmon:

o(q) = B+/q +...

Intersubband plasmons:

(q) = (&, —&) T Ay +...

Q

3D

v

2D

V

ISB quantum well

charge




23 —@ Suggested exercises

1. Derive the small-g plasmon dispersions of an electron gas
in 3D, 2D, and 1D

2. Obtain plasmons starting from the Casida equation in TDDFT.
In other words, show that, for an electron gas,

(KA* AK*j[i((j:Q(_ol (1))(@ > Eﬂ fad'a(Q)}Zs(q ) =1

3. Convince yourself that the Tamm-Dancoff approximation
fails completely for plasmons.

4. Write a simple code to calculate the full plasmon dispersions.



24 —@ Excitations in nanostructures

Vertical excitations: no momentum change, k|| =0

Nonvertical excitations: finite momentum transfer, k|| >0



Inter- versus intrasubband dynamics

27z/ K,

intersubband
plasmon:
perpendicular
to the plane

Intrasubband

plasmon

(charge/spin-

density wave):
within the plane
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Intersubband plasmon dispersions
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27 —@ Inelastic light scattering

VOLUME 63, NUMBER 15 PHYSICAL REVIEW LETTERS 9 OCTOBER 1989

Large Exchange Interactions in the Electron Gas of GaAs Quantum Wells

A. Pinczuk, S. Schmitt-Rink, G. Danan, J. P. Valladares, L.. N. Pfeiffer, and K. W, West
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
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28 —@ Plasmon damping: adiabatic xc kernel

infinite plasmon
lifetime

Should have finite

A
?+

f2®(q)

Z:(q,0) =1

Adiabatic xc kernel: @ is real outside
the particle-hole continuum

Plasmon decays into individual
particle-hole excitations
(Landau damping)

(butlarge) lifetime! 5\ does TDDET do this?




29 _@ Intrinsic plasmon damping mechanism

single—particl
excitations

» Plasmon has energy and momentum
different from any single p-h pair
- plasmon is robust

» But, can find two p-h pairs at
right energy, and combined
right total momentum
- (weak) decay channel, requires
Coulomb correlation beyond ALDA



30 —@ The VK-functional of current-TDDFT

1 -
AL (r,0)= AL (0. 0) 96 0)

XC viscoelastic stress tensor:
2
GXC,,uv (C()) — nxc Vvul,,u + vyul,v o gv . uléyv + é'/xcV . ulé‘,uv

u(r,w)=j(r,)/n,(r) velocity field

G. Vignale and W. Kohn, PRL 77, 2037 (1996)
G. Vignale, C.A.U., and S. Conti, PRL 79, 4878 (1997)
C.A.U. and G. Vignale, PRB 65, 245102 (2002)

Gives correct description of plasmon damping, but tends
to overdamp as soon as the plasmon is less "hydrodnamic”.
Not recommended for excitations in atoms and molecules.
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Plasmon energy (eV)
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Plasmon excitations in bulk metals
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Quong and Eguiluz,

PRL 70, 3955 (1993) Gurtubay et al., PRB 72, 125114 (2005)

e In general, excitations in (simple) metals very well described by ALDA.
e Time-dependent Hartree (=RPA) already gives the dominant contribution

° fXC typically gives some (minor) corrections (damping!)
eThis is also the case for 2DEGs in doped semiconductor heterostructures

25



32 _@ Plasmon excitations in metal clusters
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Yabana and Bertsch, PRB 54, Calvayrac et al., Phys. Rep.
4484 (1996) 337, 493 (2000)

Surface plasmons (“Mie plasmon”) in metal clusters are very well reproduced

within ALDA.

Plasmonics: mainly using classical electrodynamics, not guantum response,
but TDDFT becoming more and more widely used



33 E Mie plasmons

O0000

Oscillation of a uniformly charged sphere against neutralizing background.

Surface charge density:
A standard result from electrostatics:

conducting sphere in a uniform electric field: O=—— Eo cosé
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34 _@ Mie plasmons

Displacing two charged spheres, we find
o=endcosd

This surface charge is identical to
what one gets in an electric field, so

& a:iEocosH:endcosé’

A
Total force on all electrons: | = enVEO — —? n%e?\/d

Set force equal to total mass times acceleration: F=mnVo

A7mne’ 4me’ o
D 6=— d | o = =r
3m sphere 3m 3




35 _@ Mie scattering

Rayleigh scattering: ﬂ, >> d

1+cos® @
/14

(explains why sky is blue)

Rayleigh scattering intensity: | ~ |

Rayleigh-Gans-Debye scattering: A <<d

Mie scattering: ﬂ, ~ d Gustav Mie
1869-1957

Metal nanoparticles: Q } diameter d- 1 — 100 nm
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M.A. van Dijk, PhD thesis (2007)




Localization of optical fields: nanoplasmonics

(a) Skin depth ~25 nm (c)
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Figure 4.4.: (a) Scattering cross section of a gold nanotriangle (55 x 50 x 8 nm, n,
= 1.34). The panels (b) and (c) show the electric field at the resonance energy of
792 nm at the particle surface and on the outside, respectively. (Also see Fig. 3.7.)

A. Trugler, PhD thesis (2011)



Hot spots
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Figure 3. Hot spots, nanoscale enhancements in the local electric field E compared to an
incident field E,, are calculated for certain metal nanostructures: (a) the sharp end of a gold
tip excited by a vertically polarized laser field (adapted from ref. 4); (b) a fractal cluster of silver nanoparticles (inset) whose reso-
nance enhancement and specific morphologies can magnify, at the hottest spot, the local fields by a factor of nearly 300 (adapted
from ref. 3); and (c) a self-similar nanolens whose geometrical arrangement of spheres concentrates optical energy, from bigger
spheres to smaller ones, in the tight gaps between them. In the hottest spot, the field is enhanced by a factor of 1200.

M.l. Stockman, Physics Today (2011)

Hot spots arise from the multiplication of the SP enhancement factors,
constructive interference of SP fields from different particles, and
additional enhancement due to sharp tips and small gaps.



Nanoplasmonics with TDDFT: local E-fields

Na,,, (unrelaxed, BCC) Na,g; (relaxed, 1)
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A. Varas, P. Garcia-Gonzalez, J. Feist, F.J. Garcia-Vidal & A. Rubio,
Nanophotonics (2016)



40 —@ Summary

» TDDFT is very good for collective plasmon
excitations in metallic systems (mostly
small corrections to RPA)

» There is a lot of activity applying TDDFT to
nanoplasmonics (beyond linear response!)

» Challenges for TDDFT:
e plasmon damping (nonadiabatic xc effects)

e collective spin modes (no RPA, purely xc,
hence very sensitive to choice of functional)

N. H. March and M. P. Tosi, Advances in Physics 44, 299 (1995)

S. M. Morton, D. W. Silverstein & L. Jensen, Chem. Rev. 111, 3962 (2011)
E. B. Guidez and C. M. Aikens, Nanoscale 6, 11512 (2014)

A. Varas, P. Garcia-Gonzalez, J. Feist, F.J. Garcia-Vidal & A. Rubio,

Nanophotonics (2016)
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