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° Green’s function: Definition and Physics



Quantum many-body problem

Main object: System of many (V) interacting electrons
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@ x = (r,0): space-spin coordinate
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Quantum many-body problem

Main object: System of many (V) interacting electrons
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x = (r,0): space-spin coordinate
¥1(x), ¥ (x): electron creation and annihilation operators

HWY) = EY|UY),

|w2) is the ground state (GS) wave function

Equilibrium (GS at T = 0) MBPT is aimed at studying ground state
properties and some simple/typical weakly exited states J




GF: Definition and physics

Formal definition of one-particle Green function

Time-ordered 1-particle Green function at zero temperature
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@ |U)): N-particle ground state of H: H|¥Y) = EY|¥Y)
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Formal definition of one-particle Green function
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GF: Definition and physics

Formal definition of one-particle Green function

Time-ordered 1-particle Green function at zero temperature

G(Xu tv xl7 tl) = _Z<\IIéV|T[1[}H(X7 t)@;[ <XI7 t/)]|\IléV>

@ |U}): N-particle ground state of H: H|UY) = EN|wY)

® Yu(x,t) = efl(x)e 1t and i, (x,t) = e i) (x)e 1
electron field operators in Heisenberg picture

@ T': time-ordering operator

) X bt x' /
T[¢H(x7t)zﬁg(x’7t’)]:{ Vn (%, )0y (X 1), £ >
H

G, t;x', 1) = =0(t = )i T [ (x, )P (', ¢) | 7))
(¢ = )i T [P () dm (%, £) | 7))




GF: Definition and physics

Physical meaning of Green function: Propagator

iG(t, 1) = 0(t =) (b () (%, 1)) = 0(t = ) (W (X, ') (x, 1))

[Taken from Quantum Theory of Many- Body Systems by
A. M. Zagoskin, Springer 1998]

t>t:

Propagation of a particle
added to the system

t<t

Propagation of a hole after
one particle is removed



GF: Definition and physics

Spectral information contained in Green function

Time evolution/propagation in QM is described by em it —
_iet —~,t Fourier 1
G(t) ~me e —— Gw) ¥~ ———
w— €+ 1y
Poles of G(w) should correspond to the energies of particle/hole
excitations propagating through the system.

On experimental side G(w) is expected to be related to the spectra of
direct/inverse photoemission (experimental electron removal/addition)

hv
hv c
N—— ~—
v D
Y,

direct photoemission inverse photoemission



GF: Definition and physics

Observables from the Green function

Green function is directly related to the 1-particle density matrix

p(x,x') = (Toldf ()9 (x) | o) = —i lim G(x,t:x',¢') = ~iG(x,t;x,t")
t'—t4+0

In general from 1-particle Green function we can extract:

@ ground-state expectation values of any single-particle operator
O = [dxdx' T (x)o(x,x")(x')
e.g., the ground state density n(r) = =iy G(ro,t;ro,th)

@ ground-state energy of the system

Galitski-Migdal formula

' o V2
N _3/ : : .0 S
Ey = 5 dx lim lim (z—at = )G(ra,t,ra,t)

t'—>tt r'—r

@ spectrum of system: direct/inverse photoemission
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@ Green's function: Some Mathematical Properties



GF: Math properties

Green function of noninteracting system |

. : B N 3 N \%
For noninteracting system H = 3 ." ; h(r;) = >, [—71 + vext(rj)]

Particles occupy single-particle states ¢;(r) with energies ¢; up to Er

h(r)pi(r) = eipi(r)

Examples:
@ Homogeneous system [v.,:(r) = 0]: plane wave states | = k
_ 1 _ikr
Qi(r) = Narae

@ Periodic system [ve:(r + R) = veqt(r)]: Bloch states I = n, k
oi(r) = ﬁukn(r)elkr



GF: Math properties

Green function of noninteracting system |

. : B N 3 N \%
For noninteracting system H = 3 ." ; h(r;) = >, [—71 + vext(rj)]

Particles occupy single-particle states ¢;(r) with energies ¢; up to Er

h(r)pi(r) = eipi(r)

Examples:
@ Homogeneous system [v.,:(r) = 0]: plane wave states | = k
_ 1 _ikr
Qi(r) = Narae

@ Periodic system [ve:(r + R) = veqt(r)]: Bloch states I = n, k
oi(r) = ﬁukn(r)elkr
Time dependence of field operators is very simple (no interactions!):

b ) =Y e Sl )a, D)= ety (r)af

l l

{CALI, ap} = oy



GF: Math properties

Green function of noninteracting system Il

iGo(r,t; v/, t') = (0|7 [ (x, 1)L (v, #)]]0)

= > [0t =) 0laaf]0) - 0" — ) 0lafan/0) ] (x)i (x)e <1~

l



GF: Math properties

Green function of noninteracting system Il

iGo(r,t; v/, t') = (0|7 [ (x, 1)L (v, #)]]0)

= > [0 = )0laa] 0) — 0t ~ 1)(0laal0) | r(x)ei (x)e )
l

unocc occ

=0(t—t") Y pi(r)p;(x')e e o(t' —t) Zw Jeiert=t)

l

propagation of extra particle propagation of extra hole



GF: Math properties

Green function of noninteracting system Il

iGo(r, t;x, 1) = (O[T (s (x, )}y (¢, )]]0)

= 37 [0~ #0010 — 000  (0fafl0) a0 =)
l

unocc occ

:e(t—t’) Z @l(r)gof(r') —ig (t—t") ZSOZ —zal(t—t’)

l

propagation of extra particle propagation of extra hole
Using the completeness relation >, ;(r)y; (r') = 6(r — r’) we find

[iat - ﬁ(r)} Golr, t;x/,t') = 8(t — t')o(r — 1)

For noninteracting system Gy (r, ¢; 1, ') is the usual “mathematical”
Green'’s function of the Schrédinger operator L = i9; — h(r) J




GF: Math properties

Green function of noninteracting system llI

Fourier transform: G(x,x’,w) = [*_d(t — t')G(x,x/,t — t')e™ (1)

Spectral representation of noninteracting Green function

unocc occ

Go(r,r',w) = pi(m)er (r
o ) ; w—el—l—m ; —sl—m

electron part hole part

Spectral functions (spectral densities) of particle and hole excitations:

unocc

Ac(r,r'w) = Y i(r)gf (F)3(w — e + p)
l

(r,r',w) Z(pl Mw+e —p)

w—p—w+in w—p+w —in

o A 0P
Go(r,r',w) :/ dw’ { Ac(r,r' ') N Ap(r, v’ W) } J
0




GF: Math properties

Green function of interacting many-particle system

use completeness relation 1 =Y, , [Ty ) (T ™+ —

iG(x, t;x,t') = (U | T lm (v, )91 ()] )

= 0t =) ) gu (g (x ye T EN )
k

—0(t' = 1) > Fi () fu(x)eH B —ETTH=)

k

with quasiparticle amplitudes
fo(x) = (U (01EY) s (%) = (W [T ()0

gr(x) = (U ()W), gi(x) = (U (o) [0



GF: Math properties

Green function of interacting many-particle system

use completeness relation 1 =Y, , [Ty ) (T ™+ —

iG(x, t;x,t') = (U | T lm (v, )91 ()] )

= 0t =) ) gu (g (x ye T EN )
k

—0(t' = 1) > Fi () fu(x)eH B —ETTH=)

k

with quasiparticle amplitudes
fo(x) = (U (01EY) s (%) = (W [T ()0
gk (%) = (TP gi(x) = (BT (%) [0
In the noninteracting limit g, (x) and fx(x) reduce to the orbitals ¢y (x)

gr(x) = @p™C(x),  fr(x) = @2 (x)



GF: Math properties

Lehmann representation of Green function

G(x,x';t—1) Fourler, G(x,x";w)

Spectral (Lehmann) representation

hole

gr(%)gi(x') +Z

w— (BY* - EY) +in

part

G(x,x;w) = Z

k

I (%) f (%)
w= (B = BN —in

k




GF: Math properties

Lehmann representation of Green function

G(x,x';t—1) Fourler, G(x,x";w)

Spectral (Lehmann) representation

e e () g5 (x') X )
G5 = 2 ey~ ) v o o= (8~ B =

Rewrite energy differences in the denominators:
E,Jf“ EN (EN+1 Eé\““l) _ (Eév _ Eé\”“l) _ 5kN+1 A

B = g = (@ )= (@ = )=

Here A — electron affinity, and Z — ionization potential

“Thermodynamic” fundamental energy gap: E, =7 — A
Chemical potential at 7 — 0: u = —3(Z + A) J




GF: Math properties

Analytic structure of Green function

Spectral functions of particle and hole excitations:

part
N+1 1
(r,r',w) ng r)gr(r)o(w —ep ™ — 3Ey)

hole

(r,r',w) ka r)fr(r feglf%Eg)

e b oo A,
G(r,r’,w)z/ dw’[ Ae(r, T’ W) N Ap(r, v/ W) ] J
0

w—p—w+in w—p+w —in

N-| PO . o
&) (hole excitations) A Re(m)
...XXXXXXXXXXXXXXXXXXXXXXX):Il!'n i I
LT
11 XXXXXXXXXXXXXXXX
7 M

o (particle excitations)

In extended systems poles merge into branch cut



Outline

e Basics of MBPT: Introduction to Feynman diagrams



Diagrammatics |

Perturbation theory for Green functions

Green function G(x, t;x/, ') = —i(UY | Ty (x,)u (X', )]0 is a
very complicated object, it involves many-body ground state [¥))

— perturbation theory to calculate Green function:

1. split Hamitonian in two parts

H=Hy+W=T4V+ W J

2. treat interaction 1/ as perturbation

— machinery of many-body perturbation theory: Wick’s theorem,
Gell-Mann-Low theorem, and, most importantly, Feynman diagrams
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Perturbation theory for Green functions

Green function G(x, t;x/, ') = —i(UY | Ty (x,)u (X', )]0 is a
very complicated object, it involves many-body ground state [¥))

— perturbation theory to calculate Green function:

1. split Hamitonian in two parts

H=Hy+W=T4V+ W J

2. treat interaction 1V as perturbation

— machinery of many-body perturbation theory: Wick’s theorem,
Gell-Mann-Low theorem, and, most importantly, Feynman diagrams

On the other hand, Green function is a very intuitive object (propaga-
tor) and the structure of the perturbation theory can be easily under-
stood from qualitative/physical arguments



Diagrammatics |

Scattering of noninteracting particles by a potential |

Wr) = =% +uo(r) + 01 (r) = ho + v
— treat additional potential v, () as a perturbation
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— free propagation
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——=—— — full propagation



Diagrammatics |

Scattering of noninteracting particles by a potential |

Wr) = =% +uo(r) + 01 (r) = ho + v
— treat additional potential v, () as a perturbation

I. Qualitative consideration

x, t xt .
— free propagation
e '
[ X
'x ¢ . X
EEN — scattering event
X, 1 Xt

——=—— — full propagation

xtoox't' oxr x'\t' xt
1 +

Integration over all intermediate coordinates = summing up all
trajectories connecting points (x,t) and (x',t’)



Diagrammatics |

Scattering of noninteracting particles by a potential |l

Il. Where diagrams formally come from

[0, — ho(x) —v1(x)]G(x,t; %/, ') = 6(t — ') (x — X)
N————

Gyt



Diagrammatics |

Scattering of noninteracting particles by a potential |l

Il. Where diagrams formally come from

[0, — ho(x) —v1(x)]G(x,t; %/, ') = 6(t — ') (x — X)
N————’
Gyt

Equivalent integral equation:
G(X,t;xl,t/) = Go(X,t;X/,tl)+/ dtldle()(X,t;Xl,tl)’Ul(Xl)G(Xl,tl;X/,t/)

[i0, —ho—0]G=1 — G=Go+ GG



Diagrammatics |

Scattering of noninteracting particles by a potential |l

Il. Where diagrams formally come from
[0, — ho(x) —v1(x)]G(x,t; %/, ') = 6(t — ') (x — X)
N———
Gyt

Equivalent integral equation:

G(x,t;x',t') = Go(x,t;x’,t')—i—/ dt1dx1Go(x, t;x1,t1)v1(x1)G (%1, t1; %', t)

[i@t —ho—UﬂG:I — G:G0+G0’U1G

G = Go + Gov1Go + Gov1Gov1 Go + Gov1 Gov1 Gov1 Go + . ...
o

r

| -xy[ -xvtl rootr
x,)l/\ = v](x) . :Go(x,t;x,t)



Diagrammatics |

Feynman diagrams in interacting system

Feynman diagrams: graphical representation of perturbation series
elements of diagrams:

x,t — »  xt Green function G of noninteracting system

x,t ———xt Green function G of interacting system

X"M"‘ Coulomb interaction vg(x, t;x',t') = ‘Sl(rt:f,‘)




Diagrammatics |

Perturbation series for Green function

Perturbation series for G(x, ¢;x’,t'): sum of all connected diagrams

R A S

to each elementary vertex gﬁx we assign a space-time point (x, t)
and integrate over coordinates of all intermediate points

@ Mathematically each diagram is a multidimensional integral
@ Physically it corresponds to a particular propagation “path”



Diagrammatics |

Feynman diagrams for Fourier transformed G

In equilibrium all functions depend only on time difference:
Gx,t;x,t') = Gx,x, t —t'), va(x,t;x/',t") = §(t — t')ve(|x — X'|)

— Fourier transform in time: G(x,x’,w), vc(|x —x/|)

Elements of Fourier transformed diagrams:

w ,
Y~ noninteracting Green function Gy (x,x’, w)

w f . . .
X =—=—=—=X Green function G(x,x’,w) of interacting system

wm-& w'+e . . , 1
XMY/ Coulomb interaction ve (x,x',w) = o
@ € '

&
@ ateach vertex 7x frequency is conserved
@ integral over all intermediate coordinates and frequencies



Diagrammatics |

Self energy and Dyson equation

Sorting out diagrams: 1-particle irreducible/reducible

N R o i




Diagrammatics |

Self energy and Dyson equation

Sorting out diagrams: 1-particle irreducible/reducible

—— e ) + O + ...
,@,= 2 L I +%+§:>§ T

Y (x,x’',w) —sum of all 1-particle irreducible (1PI) diagrams



Diagrammatics |

Self energy and Dyson equation

Sorting out diagrams: 1-particle irreducible/reducible

—— e ) + O + ...
,@,= 2 L I +%+§:>§ T

Y (x,x’',w) —sum of all 1-particle irreducible (1PI) diagrams

Dyson equation:

==:—>—+—@>==

G(X7X/7w) = GO(X7X17w)+/ dxldXQGO(Xa Xlaw)z(xlaXQ?W)G(X%X/aw)



Diagrammatics |

Dyson equation and quasiparticle energies

G(x,x',w) = Go(x,x'7w)—|—/ dx1dx2Go(x, X1, w)B(x1, X2, w)G(x2, X', w)

Energies ¢,, of 1-particle excitations:
poles of G(w) or, equivalently, zeros of G~ (w) = [Gy ' (w) — Z(w)] "

[en — ho(X)]dn(x) — /dx'Z(x, x' en)on(x') =0
———
Gal(sn)

3 (x,x’,w) —interaction correction to effective 1-particle Hamiltonian



Diagrammatics |

Dyson equation and quasiparticle energies

G(x,x',w) = Go(x,x'7w)—|—/ dx1dx2Go(x, X1, w)B(x1, X2, w)G(x2, X', w)

Energies ¢,, of 1-particle excitations:
poles of G(w) or, equivalently, zeros of G~ (w) = [Gy ' (w) — Z(w)] "

[en — ho(X)]dn(x) — /dx’E(x, x' en)on(x') =0
———
G(Tl(En)

3 (x,x’,w) —interaction correction to effective 1-particle Hamiltonian

Approximation strategies

@ Approximate ¥(w) (e.g., by truncating diagrammatic series)
@ Solve Dyson equation for G(w)

By keeping a few diagrams for ¥ we generate infinite series for G
— “partial summation” — most useful diagrammatic trick



Diagrammatics |

Skeletons and dressed skeletons

Skeleton diagram: self-energy diagram which does contain no other
self-energy insertions except itself J

Skeltons: %} T o N

No skeletons: % [:j % % % .....

Dressed skeleton: replace all Gy-lines in a skeleton by G-lines — J

Self energy ¥(w): sum of all dressed skeleton diagrams

— X becomes functional of G: ¥ = X[G] (to be approximated)



Hartree-Fock approximation

First order skeleton diagrams for ¥ — Hartree-Fock

@-Q.em

Ypr(r,r’) =6(r —r)vg(r) + X, (r,r') is frequency independent

/
r) = /dr’vc(r —r')n(r') = /dr’ n(r )/ — Hartree potential

r—r/|
second term X, (r,r’) — nonlocal Fock exchange potential

HF-Dyson equation is solved by the HF Green function Gy r:

unocc (p occ (p (P
l PUL)FI\E )

Gup(r,r’
wr(rr,w) Z el—l—m zz: —51—277

where ¢;(r) and ¢; — HF orbitals and energies




Outline

e More on diagrammatics: GW, Hedin, etc...



Diagrammatics |1

Approximations beyond Hartree-Fock

I. Simplest w-dependent X: 2nd-order Born approximation

& -8 oo

Strictly valid for dilute gases with short-range interaction




Approximations beyond Hartree-Fock

I. Simplest w-dependent X: 2nd-order Born approximation

& -8 oo

Strictly valid for dilute gases with short-range interaction

II. Dynamically screened interaction and GW approximation

G- £

— X =GW, W =uvc+vcGGW

GW = “dynamically screened exchange”:

Interaction is screened by virtual e-h pairs (series of e-h bubbles)
Screening is extremely important in extended Coulomb systems like
plasmas and solids (more on practical GW comes soon).



Vertex insertions

Diagrams missing in GW: interaction lines in the “corners”

Vertex insertion

(part of a) diagram with one external incoming and one outgoing
Go-line, and one external interaction line

Reducible vertex insertions: %vv@m ﬁ«m %\
Irreducible vertex insertions: »w ?«m }w m/\

Only irreducible vertex insertions are missing in GW approximation!




Hedin’s equations (exact!)




Diagrammatics Il

Hedin’s equations (exact!)

@ £
MR = A T AT

Ci> = <_{1)
E”:W+ vl (T

[-7-8-F -

v = % — effective irreducible electron-hole interaction




Diagrammatics |1

GW from Hedin’s equations

Full system of Hedin’s equations

¥ =GWT
W = ve + vclIW
II=GGT

0%
=1+ EGGI‘

<

Hedin’s equations can be “solved” iteratively by setting v = % =0on
the first step of iterations. On this step we recover GW approximation

Initial step of Hedin’s iterations — GW approximation

r=1— X$=GW, I=GG




Concluding remarks

Beyond the scope of this lecture:

@ Finite temperature (Matsubara) Green functions
@ Nonequilibrium (Keldysh) Green functions

Both in Matsubara and in Keldysh formalisms the structure of
diagrammatic series remains the same.

All changes can be attributed to time integration — extension to a
complex “time” plane and integration over different time-contours.



Outline

e GW in practice



Dyson equation

[w — ho(x1)]G(x1, X2, w) — /ngE(Xl,Xg,OJ)G(X37X2,W) = 0(x1 — X2)

v

Analytic continuation of G: Biorthonormal representation

Gl ) = 3 Dl

A

ho(x1)® (x1,2) + /dXQE(Xl,XQ,Z)q))\(XQ,Z) = E)\(2)Px(x1,2)

ho(x1)®x(x1,2) + /dXQé)\(XQ,Z)Z(XQ,Xl,Z) = Ex(2)®x(x1, 2)

/dx&b\(x, Z)@,\/(X, Z) = 5>\)\/




Dyson equation

Complex poles of G — Quasiparticles
en—Exen) =0 = &, =E\(e,)
(bn(x) = (I)A(X,sn)

Analytic continuation of G: Biorthonormal representation

Gl ) = 3 Dl

A

ho(x1)® (x1,2) + /dXQE(Xl,XQ,Z)q))\(XQ,Z) = E)\(2)Px(x1,2)

ho(x1)®x(x1,2) + /dXQé)\(XQ,Z)Z(XQ,Xl,Z) = Ex(2)®x(x1, 2)

/dx&b\(x, Z)@,\/(X, Z) = 5>\)\/




GoW,: Perturbative QP corrections

Standard perturbative G, corrections to the KS-DFT spectrum
ho(%)i(%) + Viee (%) 0i(%) = €npi(x)
ho()6:() + [ xS0 = B)onx) = B
First order perturbative correction with ¥ = GW

E; — & = (pi| B(E;) — Vaeli)

E(Ei) = X(ei) + (B — €:)0uZ(w)le,
E; = &i + Zi{pilX(€:) — Vielws)
Zi = (1 = (il 0B (W)le; i) ™

Hybertsen and Louie, PRB 34, 5390 (1986)
Godby, Schllter, and Sham, PRB 37, 10159 (1988)



GoWy: Results for the fundamental gap

8- % B = -7
(SN S0ZF 0
r o @ S Ec'ﬁ :
82 2 g
6L < Qv ®© -
s 388 é) [6)
s oL b o o
° f B8 sg & - 1
~ O =0Gg@g N . ]
=3 2 Z2d v % 7]
84 O FIIN * ] g_
57 Sgte oo . 3 =
g 2 %ziﬁ o 9 T
=N z am i
8 % 2$¢ - @ ©
rT ﬂv SO
o ¥ u m:LDA -
o ©:GW(LDA)
Loy oy

experimental gap (eV)

M. van Schilfgaarde, T. Kotani, and S. Faleev, PRL 96, 226402 (2006)



GoW, results

Great improvement over LDA.
Problem: Dependence on the starting point (LDA)

Quality of the results is tied to the quality of LDA wave functions

perturbative GoWy

@ works reasonably well for sp electron systems
@ questionable for df systems and whenever LDA is bad




Beyond GoW,

Alternative starting points and/or self-consistent QP schemes

@ Looking for a better starting point:
e Kohn-Sham with other functionals (EXX, LDA+U, ...)
e hybrid functional (HSEOS, ...)

@ Effective quasiparticle Hamiltonians:

@ quasiparticle self-consistent GW (QPscGW) — Faleev 2004
e Hedin's COHSEX approximation — Bruneval 2005




Beyond G,WW,: QPscGW scheme

Retain only hermitian part of GIW self-energy and iterate QP

(6i5165) = SRel(GiIS(EIos) + (65 (E))Io)]

o]
8L MgO/17 -
AN o
=z wo R
o 58 DO Ca0
61 E 833 - Y-S0 |
- 3 8022 ey
O Oy diamond
3 5 sNN : |
= g Ec JI
g a & 98 é
Ba- LB0T e 1
z 2 L0y
8Z v
E o 2= #’ &= AlAs,GaP,SiC AIP
52r 5= = AISb,Se
2 i
% 2 e,CdO
oL | Te _
Q@
1 | | 1 |
0 2 4 6 8
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S. Faleev, M. van Schilfgaarde, and T. Kotani, PRL 93, 126406 (2004)
M. van Schilfgaarde, T. Kotani, and S. Faleev, PRL 96, 226402 (2006)



GW

Beyond LDA+G,W,: COHSEX approximation

GW self-energy with G(w) =

¥ = ¥, + Xj: contributions from poles of G(w) or W, (w) = W(w) — v

occ

B1(x1, Xz, w) = = ) dilx1)dF (x2)W (x1, %2, — E;)

ol xa,) = - 3 i) ) [ DL R0 )

T w—FE;, —uw

COHSEX approximation: setw — F; =0

occ

Ysex (x1,X2) Z(bz x1)¢ W(x1,%x2,w =0)

Scon(x1,X2) = 18(x1 — x2) W (x1,%2,w = 0)

COHSEX+GyWj — F Bruneval, N. Vast, and L. Reining, PRB 74, 045102 (2006)



One-particle GF and physics

Physical information contained in G(x1,x2,w)
@ G — p(x1,x2) — ground state single-particle observables
@ Ground state total energy via the Galitski-Migdal formula

@ Poles of G(w) — spectrum of single-particle excitations —
direct/inverse photoemission, fundamental gap £, =7 — A




One-particle GF and physics

Physical information contained in G(x1,x2,w)

@ G — p(x1,x2) — ground state single-particle observables
@ Ground state total energy via the Galitski-Migdal formula

@ Poles of G(w) — spectrum of single-particle excitations —
direct/inverse photoemission, fundamental gap £, =7 — A

Importantly: the fundamental gap # the optical gap

To describe optical experiments we need more!

Two-particles Green function and the Bethe-Salpeter equation
(comes in the next lecture)
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Literature: endless number of textbooks

Classics from 1960s - 1970s

@ A.A. Abrikosov, L.P. Gor’kov, I.Ye. Dzyaloshinskii, Quantum field
theoretical methods in statistical physics (Pergamon Press, 1965)

@ A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle
Systems (McGraw-Hill, 1971) and later edition by Dover press

@ R.D. Mattuck, A guide to Feynman diagrams in the many-body
problem (McGraw-Hill, 1967), extended 2nd edition (1992)

More recent books with additional/new material

@ JW. Negele, H. Orland, Quantum many-particle systems
(Westview Press, 1988, 1998)

@ A.M. Zagoskin Quantum Theory of Many-Body Systems
(Springer, 1998)

@ G. Stefanucci, R. van Leeuwen Nonequilibrium Many Body
Theory of Quantum Systems: A Modern Introduction (Cambridge
University Press, 2013)



Thanks

o Matteo Gatti and Stefan Kurth
for some figures
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