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Ab initio molecular dynamics

Reminder from last lecture: potential energy surfaces

We have electronic structure methods for electronic ground and excited states...

Now, we need to propagate the nuclei...
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Ab initio molecular dynamics Why Quantum Dynamics?

Why Quantum dynamics?
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GS adiabatic dynamics (BO vs. CP)

BO MI R̈ I (t) = −∇minρ EKS ({φi [ρ]})

CP µi |φ̈i (t)〉 = − δ
δ〈φi |

EKS ({φi (r)}) + δ
δ〈φi |

{constr.}
MI R̈ I (t) = −∇EKS ({φi (t)})

ES nonadiabatic quantum dynamics

Wavepacket dynamics (MCTDH)

Trajectory-based approaches
- Tully’s trajectory surface hopping (TSH)
- Bohmian dynamics (quantum hydrodyn.)
- Semiclassical (WKB, DR)
- Path integrals (Pechukas)

- Mean-field solution (Ehrenfest dynamics)

Density matrix, Liouvillian approaches, ...
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Ab initio molecular dynamics Why Quantum Dynamics?

Why Quantum dynamics?
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GS adiabatic dynamics

First principles Heaven

Ab initio MD with WF methods
Ab initio MD with DFT & TDDFT [CP]

classical MD
Coarse-grained MD

...

No principles World

ES nonadiabatic quantum dynamics

First principles Heaven

Ab initio MD with WF methods
Ab initio MD with DFT & TDDFT [CP]

↓
Models
↓?

No principles World
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Why Quantum dynamics?
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GS adiabatic dynamics

First principles Heaven

Ab initio MD with WF methods
Ab initio MD with DFT & TDDFT [CP]

classical MD
Coarse-grained MD

...

No principles World

ES nonadiabatic quantum dynamics

(-) We cannot get read of electrons

(-) Nuclei keep some QM flavor

(-) Accuracy is an issue

(-) Size can be large (diffuse excitons)

(+) Time scales are usually short (< ps)
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Ab initio molecular dynamics Why Quantum Dynamics?

Nonadiabatic effects requires quantum nuclear dynamics

The nuclear dynamics cannot be described by a single classical trajectory (like in the ground

state -adiabatically separated- case)

TDDFT in mixed quantum-classical dynamics



Ab initio molecular dynamics Why Quantum Dynamics?

Why trajectory-based approaches?

W1 In “conventional” nuclear wavepacket propagation potential energy surfaces are needed.

W2 Difficulty to obtain and fit potential energy surfaces for large molecules.

W3 Nuclear wavepacket dynamics is very expensive for large systems (6 degrees of freedom, 30

for MCTDH). Bad scaling.

T1 Trajectory based approaches can be run on-the-fly (no need to parametrize potential

energy surfaces).

T2 Can handle large molecules in the full (unconstraint) configuration space.

T3 They offer a good compromise between accuracy and computational effort.
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Mixed quantum-classical dynamics

Starting point

The starting point is the molecular time-dependent Schrödinger equation :

ĤΨ(r ,R, t) = i~
∂

∂t
Ψ(r ,R, t)

where Ĥ is the molecular time-independent Hamiltonian and Ψ(r ,R, t) the total wavefunction

(nuclear + electronic) of our system.

In mixed quantum-classical dynamics the nuclear dynamics is described by a swarm of classical

trajectories (taking a ”partial” limit ~→ 0 for the nuclear wf).

In this lecture we will discuss two main approximate solutions based on the following Ansätze for
the total wavefucntion

Ψ(r ,R, t)
Born-−−−→
Huang

∞∑
j

Φj (r ; R)Ωj (R, t)

Ψ(r ,R, t)
Ehrenfest−−−−−→ Φ(r , t)Ω(R, t) exp

[
i

~

∫ t

t0

Eel (t
′)dt′

]

Ψ(r ,R, t)
Exact Factorization−−−−−−−−−−→ ΦR (r , t)Ω(R, t); with

∫
dr ΦR (r , t) = 1, ∀R.
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Mixed quantum-classical dynamics

Tarjectory-based quantum and mixed QM-CL solutions

We can “derive” the following trajectory-based solutions:

Nonadiabatic Ehrenfest dynamics dynamics

I. Tavernelli et al., Mol. Phys., 103, 963981 (2005).

Adiabatic Born-Oppenheimer MD equations

Nonadiabatic Bohmian Dynamics (NABDY)

B. Curchod, IT, U. Rothlisberger, PCCP, 13, 32313236 (2011)

Nonadiabatic Trajectory Surface Hopping (TSH) dynamics
[ROKS: N. L. Doltsinis, D. Marx, PRL, 88, 166402 (2002)]
C. F. Craig, W. R. Duncan, and O. V. Prezhdo, PRL, 95, 163001 (2005)
E. Tapavicza, I. Tavernelli, U. Rothlisberger, PRL, 98, 023001 (2007)

Time dependent potential energy surface approach

based on the exact decomposition: Ψ(r ,R, t) = Ω(R, t)Φ(r , t).

A. Abedi, N. T. Maitra, E. K. U. Gross, PRL, 105, 123002 (2010)

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Ehrenfest dynamics

Ehrenfest dynamics

Ψ(r ,R, t)
Ehrenfest−−−−−−→ Φ(r , t)Ω(R, t) exp

[
i

~

∫ t

t0

Eel (t
′)dt′

]

Inserting this representation of the total wavefunction into the molecular td Schrödinger equation and
multiplying from the left-hand side by Ω∗(R, t) and integrating over R we get

i~
∂Φ(r , t)

∂t
= −

~2

2me

∑
i

∇2
i Φ(r , t) +

[∫
dR Ω∗(R, t)V̂ (r ,R)Ω(R, t)

]
Φ(r , t)

where V̂ (r ,R) =
∑

i<j
e2

|r i−r j |
−
∑
γ,i

e2Zγ
|Rγ−r i |

.

In a similar way, multiplying by Φ∗(r , t) and integrating over r we obtain

i~
∂Ω(R, t)

∂t
= −

~2

2

∑
γ

M−1
γ ∇

2
γΩ(R, t) +

[∫
dr Φ∗(r , t)ĤelΦ(r , t)

]
Ω(R, t)

Conservation of energy has also to be imposed through the condition that d〈Ĥ〉/dt ≡ 0.

Note that both the electronic and nuclear parts evolve according to an average potential generated by the

other component (in square brakets). These average potentials are time-dependent and are responsible for the

feedback interaction between the electronic and nuclear components.
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Mixed quantum-classical dynamics Ehrenfest dynamics

Ehrenfest dynamics - the nuclear equation

We start from the polar representation of the nuclear wavefunction

Ω(R, t) = A(R, t) exp

[
i

~
S(R, t)

]
where the amplitude A(R, t) and the phase S(R, t)/~ are real functions.

Inserting this representation for Ω(R, t) and separating the real and the imaginary parts one gets

for the phase S in the classical limit ~→ 0

∂S

∂t
= −

1

2

∑
γ

M−1
γ

(
∇γS

)2 −
[∫

dr Φ∗(r , t)Ĥel (r ,R)Φ(r , t)

]
This has the form of the ”Hamilton-Jacobi” (HJ) equation of classical mechanics, which

establishes a relation between the partial differential equation for S(R, t) in configuration space

and the trajectories of the corresponding (quantum) mechanical systems.

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Ehrenfest dynamics

Ehrenfest dynamics - the nuclear equation

∂S

∂t
= −

1

2

∑
γ

M−1
γ

(
∇γS

)2 −
[∫

dr Φ∗(r , t)Ĥel (r ,R)Φ(r , t)

]

Instead of solving the field equation for S(R, t), find the equation of motion for the

corresponding trajectories (characteristics).

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Ehrenfest dynamics

Ehrenfest dynamics - the nuclear equation

The identification of S(R, t) with the ”classical” action, defines a point-particle dynamics with

Hamiltonian, Hcl and momenta

P = ∇RS(R).

The solutions of this Hamiltonian system are curves (characteristics) in the (R, t)-space, which

are extrema of the action S(R, t) for given initial conditions R(t0) and P(t0) = ∇RS(R)|R(t0).

Newton-like equation for the nuclear trajectories corresponding to the HJ equation

dPγ
dt

= −∇γ
[∫

dr Φ∗(r , t)Ĥel (r ,R)Φ(r , t)

]

Ehrenfest dynamics

i~
∂Φ(r ; R, t)

∂t
= Ĥel (r ; R)Φ(r ; R, t)

MI R̈I = −∇I 〈Ĥel (r ; R)〉
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Mixed quantum-classical dynamics Ehrenfest dynamics

Ehrenfest dynamics - the nuclear equation

The identification of S(R, t) with the ”classical” action, defines a point-particle dynamics with

Hamiltonian, Hcl and momenta

P = ∇RS(R).

The solutions of this Hamiltonian system are curves (characteristics) in the (R, t)-space, which

are extrema of the action S(R, t) for given initial conditions R(t0) and P(t0) = ∇RS(R)|R(t0).

Newton-like equation for the nuclear trajectories corresponding to the HJ equation

dPγ
dt

= −∇γ
[∫

dr Φ∗(r , t)Ĥel (r ,R)Φ(r , t)

]

Ehrenfest dynamics - Densityfunctionalization (φk : KS orbitals)

i~
∂

∂t
φk (r , t) = −

1

2me
∇2

rφk (r , t) + veff[ρ,Φ0](r , t)φk (r , t)

MI R̈I = −∇IE [ρ(r , t)]

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Ehrenfest dynamics

Ehrenfest dynamics - Example

Ehrenfest dynamics

i~
∂

∂t
φk (r , t) = −

1

2me
∇2

rφk (r , t) + veff[ρ,Φ0](r , t)φk (r , t)

MI R̈I = −∇I 〈Ĥel (r ; R)〉
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Mixed quantum-classical dynamics Ehrenfest dynamics

Ehrenfest dynamics and mixing of electronic states

Ehrenfest dynamics

i~
∂Φ(r ; R, t)

∂t
= Ĥel (r ; R)Φ(r ; R, t)

MI R̈I = −∇I 〈Ĥel (r ; R)〉

Consider the following expansion of Φ(r ; R, t) in the static basis of electronic wavefucntions

{Φk (r ; R)}

Φ(r ; R, t) =
∞∑
k=0

ck (t)Φk (r ; R)

The time-dependency is now on the set of coefficients {ck (t)} (|ck (t)|2 is the population of state

k). Inserting in the Ehrenfest’s equations...

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Ehrenfest dynamics

Ehrenfest dynamics and mixing of electronic states

Ehrenfest dynamics

i~ċk (t) = ck (t)E el
k − i~

∑
j

cj (t)Dkj

MI R̈I = −∇I

∞∑
k=0

|ck (t)|2E el
k

where

Dkj = 〈Φk |
∂

∂t
|Φj 〉 = 〈Φk |

∂R
∂t

∂

∂R
|Φj 〉 = Ṙ〈Φk |∇|Φj 〉 = Ṙ · dkj

Thus we incorporate directly nonadiabatic effects.

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Ehrenfest dynamics

Ehrenfest dynamics: the mean-field potential

i~ċk (t) = ck (t)E el
k − i~

∑
j

cj (t)Dkj

MI R̈I = −∇I

∞∑
k=0

|ck (t)|2E el
k

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Ehrenfest dynamics

Tarjectory-based quantum and mixed QM-CL solutions

We can “derive” the following trajectory-based solutions:

Nonadiabatic Ehrenfest dynamics dynamics

I. Tavernelli et al., Mol. Phys., 103, 963981 (2005).

Adiabatic Born-Oppenheimer MD equations

Nonadiabatic Bohmian Dynamics (NABDY)

B. Curchod, IT, U. Rothlisberger, PCCP, 13, 32313236 (2011)

Nonadiabatic Trajectory Surface Hopping (TSH) dynamics
[ROKS: N. L. Doltsinis, D. Marx, PRL, 88, 166402 (2002)]
C. F. Craig, W. R. Duncan, and O. V. Prezhdo, PRL, 95, 163001 (2005)
E. Tapavicza, I. Tavernelli, U. Rothlisberger, PRL, 98, 023001 (2007)

Time dependent potential energy surface approach

based on the exact decomposition: Ψ(r ,R, t) = Ω(R, t)Φ(r , t).

A. Abedi, N. T. Maitra, E. K. U. Gross, PRL, 105, 123002 (2010)
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Mixed quantum-classical dynamics Adiabatic Born-Oppenheimer dynamics

Born-Oppenheimer approximation

Ψ(r ,R, t)
Born-−−−−→
Huang

∞∑
j

Φj (r ; R)Ωj (R, t)

In this equation,
{

Φj (r ; R)
}

describes a complete basis of electronic states solution of the

time-independent Schrödinger equation:

Ĥel (r ; R)Φj (r ; R) = Eel,j (R)Φj (r ; R)

R is taken as a parameter.

Eigenfunctions of Ĥel (r ; R) are considered to be orthonormal, i.e. 〈Φj |Φi 〉 = δij .

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Adiabatic Born-Oppenheimer dynamics

Born-Oppenheimer approximation

Ψ(r ,R, t)
Born-−−−−→
Huang

∞∑
j

Φj (r ; R)Ωj (R, t)

Electrons are static. Use your favourite electronic structure method.

For the nuclei, insert this Ansatz into the molecular time-dependent Schrödinger equation

ĤΨ(r ,R, t) = i~
∂

∂t
Ψ(r ,R, t)

After left multiplication by Φ∗k (r ; R) and integration over r , we obtain the following equation (we

used 〈Φj |Φi 〉 = δij ) :[
−
∑
I

~2

2MI
∇2

I + Eel,k (R)

]
Ωk (R, t) +

∞∑
j

DkjΩj (R, t) = i~
∂

∂t
Ωk (R, t)

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Adiabatic Born-Oppenheimer dynamics

Born-Oppenheimer approximation

[
−
∑
I

~2

2MI
∇2

I + Eel,k (R)

]
Ωk (R, t) +

∑
j

DkjΩj (R, t) = i~
∂

∂t
Ωk (R, t)

Equation for the nuclear “wavepacket”, Ω(R, t), dynamics.

Eel,k (R) represents a potential energy surface for the nuclei.

Important additional term : Dkj ! NONADIABATIC COUPLING TERMS

Dkj =

∫
Φ∗k (r ; R)

[∑
I

~2

2MI
∇2

I

]
Φj (r ; R)dr

+
∑
I

1

MI

{∫
Φ∗k (r ; R) [−i~∇I ] Φj (r ; R)dr

}
[−i~∇I ]

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Adiabatic Born-Oppenheimer dynamics

Born-Oppenheimer approximation

Dkj =

∫
Φ∗k (r ; R)

[∑
I

~2

2MI
∇2

I

]
Φj (r ; R)dr

+
∑
I

1

MI

{∫
Φ∗k (r ; R) [−i~∇I ] Φj (r ; R)dr

}
[−i~∇I ]

If we neglect all the Dkj terms (diagonal and off-diagonal), we have the Born-Oppenheimer

approximation. [
−
∑
I

~2

2MI
∇2

I + Eel,k (R)

]
Ωk (R, t) = i~

∂

∂t
Ωk (R, t)

Mainly for ground state dynamics or for dynamics on states that do not couple with others.

(Back to nonadiabatic dynamics later).
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Mixed quantum-classical dynamics Adiabatic Born-Oppenheimer dynamics

Born-Oppenheimer approximation: the nuclear trajectories

[
−
∑
I

~2

2MI
∇2

I + Eel,k (R)

]
Ωk (R, t) = i~

∂

∂t
Ωk (R, t)

Using a polar expansion for Ωk (R, t), we may find a way to obtain classical equation of motions

for the nuclei.

Ωk (R, t) = Ak (R, t) exp

[
i

~
Sk (R, t)

]
.

Ak (R, t) represents an amplitude and Sk (R, t)/~ a phase.

Further: insert the polar representation into the equation above, do some algebra, and separate

real and imaginary part, we obtain an interesting set of equations:

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Adiabatic Born-Oppenheimer dynamics

Born-Oppenheimer approximation: the nuclear trajectories

∂Sk

∂t
=

~2

2

∑
I

M−1
I

∇2
I Ak

Ak
−

1

2

∑
I

M−1
I

(
∇ISk

)2 − Ek

∂Ak

∂t
= −

∑
I

M−1
I ∇IAk∇ISk −

1

2

∑
I

M−1
I Ak∇2

I Sk

Dependences of the functions S and A are omitted for clarity (k is a index for the electronic

state; in principle there is only one state in the adiabatic case).

We have now a time-dependent equation for both the amplitude and the phase.

Since we are in the adiabatic case there is only one PES and the second equation becomes

trivially a diffusion continuity equation.

The nuclear dynamics is derived from the real part ( ∂Sk
∂t

). This equation has again the form of a

classical Hamilton-Jacobi equation.

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Adiabatic Born-Oppenheimer dynamics

Born-Oppenheimer approximation: the nuclear trajectories

∂Sk

∂t
=

~2

2

∑
I

M−1
I

∇2
I Ak

Ak
−

1

2

∑
I

M−1
I

(
∇ISk

)2 − Ek

∂Ak

∂t
= −

∑
I

M−1
I ∇IAk∇ISk −

1

2

∑
I

M−1
I Ak∇2

I Sk

Instead of solving the field equation for S(R, t), find the equation of motion for the

corresponding trajectories (characteristics).

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Adiabatic Born-Oppenheimer dynamics

Born-Oppenheimer approximation: the nuclear trajectories

∂Sk

∂t
=

~2

2

∑
I

M−1
I

∇2
I Ak

Ak
−

1

2

∑
I

M−1
I

(
∇ISk

)2 − Ek

The classical limit is obtained by taking1: ~→ 0

∂Sk

∂t
= −

1

2

∑
I

M−1
I

(
∇ISk

)2 − Ek

These are the classical Hamilton-Jacobi equation and S is the classical action related to a

particle.

S(t) =

∫ t

t0

L(t′)dt′ =

∫ t

t0

[
Ekin(t′)− Epot(t

′)
]
dt′

The momentum of a particle I is related to

∇IS = pI =
v I

MI

1Caution! This classical limit is subject to controversy...
TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Adiabatic Born-Oppenheimer dynamics

Born-Oppenheimer approximation: the nuclear trajectories

Therefore, taking the gradient,

−∇J
∂Sk

∂t
=

1

2
∇J

∑
I

M−1
I

(
∇ISk

)2
+∇JEk

and rearranging this equation using ∇JSk/MJ = vk
J , we obtain the (familiar) Newton equation:

MJ
d

dt
vk
J = −∇JEk

In Summary:

Adiabatic BO MD

Ĥel (r ; R)Φk (r ; R) = E el
k (R)Φk (r ; R)

MI R̈I = −∇IE
el
k (R) = − ∇I

minΦk

〈Φk |Ĥel |Φk 〉

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Adiabatic Born-Oppenheimer dynamics

Mean-field vs. BO MD (adiabatic case)

Ehrenfest dynamics

i~
∂Φ(r ; R, t)

∂t
= Ĥel (r ; R)Φ(r ; R, t)

MI R̈I = −∇I 〈Ĥel (r ; R)〉

Explicit time dependence of the electronic wavefunction.

Born-Oppenheimer dynamics

Ĥel (r ; R)Φk (r ; R) = E el
k (R)Φk (r ; R)

MI R̈I = −∇IE
el
k (R) = − ∇I

minΦk

〈Φk |Ĥel |Φk 〉

The electronic wavefunction are static (only implicit time-dependence.

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Adiabatic Born-Oppenheimer dynamics

Mean-field vs. BO MD (adiabatic case)

Method Born-Oppenheimer MD Ehrenfest MD

adiabatic MD (one PES) nonadiabatic MD (mean-field)
Efficient propagation of the nuclei Get the “real” dynamics of the electrons

Adiabatic nuclear propagation Propagation of nuclei & electrons
δt ∼10-20 a.u. (0.25-0.5 fs) δt ∼0.01 a.u. (0.25 as)

Simple algorithm Common propagation of the nuclei
and the electrons implies

more sophisticated algorithms

Exact quantum dynamics?
Can we derive “exact” quantum equations of motion for the nuclei?
(without taking the classical limit ~→ 0?)

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Adiabatic Born-Oppenheimer dynamics

Tarjectory-based quantum and mixed QM-CL solutions

We can “derive” the following trajectory-based solutions:

Nonadiabatic Ehrenfest dynamics dynamics

I. Tavernelli et al., Mol. Phys., 103, 963981 (2005).

Adiabatic Born-Oppenheimer MD equations

Nonadiabatic Bohmian Dynamics (NABDY)

B. Curchod, IT*, U. Rothlisberger, PCCP, 13, 32313236 (2011)

Nonadiabatic Trajectory Surface Hopping (TSH) dynamics
[ROKS: N. L. Doltsinis, D. Marx, PRL, 88, 166402 (2002)]
C. F. Craig, W. R. Duncan, and O. V. Prezhdo, PRL, 95, 163001 (2005)
E. Tapavicza, I. Tavernelli, U. Rothlisberger, PRL, 98, 023001 (2007)

Time dependent potential energy surface approach

based on the exact decomposition: Ψ(r ,R, t) = Ω(R, t)Φ(r , t).

A. Abedi, N. T. Maitra, E. K. U. Gross, PRL, 105, 123002 (2010)

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Adiabatic Born-Oppenheimer dynamics

Nonadiabatic dynamics: Multi-trajectory solutions

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Nonadiabatic Bohmian dynamics

Nonadiabatic Bohmian dynamics

Pioneers in quantum hydrodynamics: D. Bohm, P. R. Holland, R. E. Wyatt, and many others.

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Nonadiabatic Bohmian dynamics

NABDY: “exact” trajectory-based nonadiabatic dynamics
Using

Ψ(r ,R, t) =
∑∞

j Φj (r ; R)Ωj (R, t)

Ωj (R, t) = Aj (R, t) exp
[

i
~Sj (R, t)

]
in the exact time-dependent Schrödinger equation for the nuclear wavefucntion we get

−
∂Sj (R, t)

∂t
=
∑
γ

1

2Mγ

(
∇γSj (R, t)

)2 + Eel
j (R) −

∑
γ

~2

2Mγ

∇2
γAj (R, t)

Aj (R, t)

+
∑
γi

~2

2Mγ
D
γ
ji

(R)
Ai (R, t)

Aj (R, t)
<
[
eiφ

]
−

∑
γ,i 6=j

~2

Mγ
dγ
ji

(R)
∇γAi (R, t)

Aj (R, t)
<
[
eiφ

]

+
∑
γ,i 6=j

~

Mγ
dγ
ji

(R)
Ai (R, t)

Aj (R, t)
∇γSi (R, t)=

[
eiφ

]

and

∂Aj (R, t)

∂t
= −

∑
γ

1

Mγ
∇γAj (R, t)∇γSj (R, t) −

∑
γ

1

2Mγ
Aj (R, t)∇2

γSj (R, t)

+
∑
γi

~

2Mγ
D
γ
ji

(R)Ai (R, t)=
[
eiφ

]
−

∑
γ,i 6=j

~

Mγ
dγ
ji

(R)∇γAi (R, t)=
[
eiφ

]

−
∑
γ,i 6=j

1

Mγ
dγ
ji

(R)Ai (R, t)∇γSi (R, t)<
[
eiφ

]
,

where both Sj (R, t) and Aj (R, t) are real fields and φ = 1
~ (Si (R, t)− Sj (R, t)).
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Mixed quantum-classical dynamics Nonadiabatic Bohmian dynamics

NABDY: “exact” trajectory-based nonadiabatic dynamics

From the NABDY equations we can obtain a Newton-like equation of motion (using the HJ

definition of the momenta ∇βSj (R, t) = P j
β)

Mβ
d2Rβ
(dt j )2

= −∇β
[
E j
el (R) +Qj (R, t) +

∑
i
Dij (R, t)

]
where Qj (R, t) is the quantum potential responsible for all coherence/decoherence

“intrasurface” QM effects, and Dj (R, t) is the nonadiabatic potential responsible for the

amlpitude transfer among the different PESs.

For more informations see:

B. Curchod, IT, U. Rothlisberger, PCCP, 13, 3231 – 3236 (2011)

NABDY limitations

Mainly numerical challenges

Instabilities induced by the quantum potential

Compute derivatives in the 3N dimensional(R3N) configuration space
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Mixed quantum-classical dynamics Nonadiabatic Bohmian dynamics

Gaussian wavepacket on an Eckart potential (Ek = 3/4V )

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics Nonadiabatic Bohmian dynamics

Gaussian wavepacket on an Eckart potential (Ek = 3/4V )
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Mixed quantum-classical dynamics Nonadiabatic Bohmian dynamics

Tarjectory-based quantum and mixed QM-CL solutions

We can “derive” the following trajectory-based solutions:

Nonadiabatic Ehrenfest dynamics dynamics

I. Tavernelli et al., Mol. Phys., 103, 963981 (2005).

Adiabatic Born-Oppenheimer MD equations

Nonadiabatic Bohmian Dynamics (NABDY)

B. Curchod, IT, U. Rothlisberger, PCCP, 13, 32313236 (2011)

Nonadiabatic Trajectory Surface Hopping (TSH) dynamics
[ROKS: N. L. Doltsinis, D. Marx, PRL, 88, 166402 (2002)]
C. F. Craig, W. R. Duncan, and O. V. Prezhdo, PRL, 95, 163001 (2005)
E. Tapavicza, I. Tavernelli, U. Rothlisberger, PRL, 98, 023001 (2007)

Time dependent potential energy surface approach

based on the exact decomposition: Ψ(r ,R, t) = Ω(R, t)Φ(r , t).

A. Abedi, N. T. Maitra, E. K. U. Gross, PRL, 105, 123002 (2010)
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Applications in Photochemistry and Photophysics

Trajectory-based solutions of the “exact” nonadiabatic equations are still impractical.

Approximate solutions are available. Among the most popular is

Trajectory Surface Hopping (TSH)
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Mixed quantum-classical dynamics Trajectory Surface Hopping

The trajectory surface hopping dynamics (1)

TSH is a mixed quantum-classical theory

The classical component

ensemble of classical trajectories following

Newton’s equation of motion

dPβj (t)

dt j
= −∇βE el

j (R(t))

trajectories are independent (ITA).

No coherence

density of trajectories (CLρj (R(t), t)) at each
time step reproduces a ‘classical distribution’
on the different PESs.

ρ
CL
k (Rα, tα) =

Nαk (Rα, dV , tα)

Ntot

1

dV
∼ |Ωk (Rα, tα)|2
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Mixed quantum-classical dynamics Trajectory Surface Hopping

The trajectory surface hopping dynamics (2)

The quantum component

To each trajectory there are quantum

amplitudes QMCj (R(t), t) associated to each

PES:

{C0(R(t), t),C1(R(t), t),C2(R(t), t), . . .}.

They evolve according to

i~
dCj

dt
= CjE

el
j − i~

∑
i

(
d ji · ṘCi

)
QMCj (R(t), t) determine the surface hopping
probabilities,

p
[α]
i←j (∆t) = −2

∫ t+∆t

t

<[C
[α]
i (τ)C

[α]∗
j (τ)Ṙ(τ) · d ij (R(τ))]

C
[α]
j (τ)C

[α]∗
j (τ)

dτ

so that: QMC2
j (R(t), t) ≡ CLρj (R(t), t).
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Mixed quantum-classical dynamics Trajectory Surface Hopping

Tully’s surface hopping - Summary

Tully’s surface hopping

i~Ċαk (t) =
∑
j

Cαj (t)(Hkj − i~Ṙα · dαkj )

MI R̈I = −∇IE
el
k (R)∑

l≤k−1

gαjl < ζ <
∑
l≤k

gαjl ,

Some warnings:

1 Evolution of classical trajectories (no QM effects – such as tunneling – are possible).

2 Rescaling of the nuclei velocities after a surface hop (to ensure energy conservation) is still

a matter of debate.

3 Depending on the system studied, many trajectories could be needed to obtain a complete

statistical description of the non-radiative channels.

For more details (and warnings) about Tully’s surface hopping, see G. Granucci and M. Persico,

J Chem Phys 126, 134114 (2007).
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Tully’s surface hopping - Examples

1D systems

J.C. Tully, J. Chem. Phys. (1990), 93, 1061

Very good agreement with exact nuclear wavepacket propagation.
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Tully’s surface hopping - Examples

1D systems

J.C. Tully, J. Chem. Phys. (1990), 93, 1061

On the right: population of
the upper state (k=mom)

◦ exact

• TSH

– Landau-Zener

Very good agreement with exact nuclear wavepacket propagation.
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Tully’s surface hopping - Examples

1D systems

J.C. Tully, J. Chem. Phys. (1990), 93, 1061

Very good agreement with exact nuclear wavepacket propagation.
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Tully’s surface hopping - Examples

1D systems

J.C. Tully, J. Chem. Phys. (1990), 93, 1061

On the right: population of
the upper state

◦ exact

• TSH

Very good agreement with exact nuclear wavepacket propagation.
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Comparison with wavepacket dynamics

Butatriene molecule: dynamics of the radical cation in the first excited state.

JPCA,107,621 (2003)
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Comparison with wavepacket dynamics

Butatriene molecule: dynamics of the radical cation in the first excited state.

JPCA,107,621 (2003)

CASSCF PESs for the radical cation (Q14: symmetric stretch, θ: torsional angle).
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Mixed quantum-classical dynamics Trajectory Surface Hopping

Comparison with wavepacket dynamics

Nuclear wavepacket dynamics on fitted

potential energy surfaces (using

MCTDH with 5 modes). Reappearing

of the wavepacket in S1 after ∼ 40fs.

JPCA,107,621 (2003)
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Mixed quantum-classical dynamics Trajectory Surface Hopping

Comparison with wavepacket dynamics

On-the-fly dynamics with 80 trajectories

(crosses).

Trajectories are not coming back close

to the conical intersection.

What is the reason for this discrepancy?

The independent trajectory

approximation?, i.e. the fact that

trajectories are not correlated?

(Or it has to do with differences in the

PESs?)

JPCA,107,621 (2003)
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Comparison with wavepacket dynamics

On-the-fly dynamics with 80

trajectories.

Trajectories are not coming back close

to the conical intersection.

What is the reason for this discrepancy?

The independent trajectory

approximation?, i.e. the fact that

trajectories are not correlated?

(Or it has to do with differences in the

PESs?)

JPCA,107,621 (2003)
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TDDFT-based trajectory surface hopping

1 Ab initio molecular dynamics

Why Quantum Dynamics?

2 Mixed quantum-classical dynamics

Ehrenfest dynamics

Adiabatic Born-Oppenheimer dynamics

Nonadiabatic Bohmian dynamics

Trajectory Surface Hopping

3 TDDFT-based trajectory surface hopping

Nonadiabatic couplings in TDDFT
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5 TSH with external time-dependent fields

Local control theory

LC of protontransfer: from gas-phase to solution
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TDDFT-based trajectory surface hopping

Tully’s surface hopping - On-the-fly dynamics

Tully’s surface hopping

i~Ċαk (t) =
∑
j

Cαj (t)(Hkj − i~Ṙα · dαkj )

MI R̈I = −∇IE
el
k (R)

∑
l≤k−1

gαjl < ζ <
∑
l≤k

gαjl ,

What about the electronic structure method for on-the-fly dynamics? We need:

Potential energy surfaces → MR-CISD, LR-TDDFT, semiempirical, ...

Forces on the nuclei → MR-CISD, LR-TDDFT, semiempirical methods, ... .

Nonadiabatic coupling terms → MR-CISD, LR-TDDFT (?), semiempirical methods, ... .
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Tully’s surface hopping - On-the-fly dynamics

Tully’s surface hopping

i~Ċαk (t) =
∑
j

Cαj (t)(Hkj − i~Ṙα · dαkj )

MI R̈I = −∇IE
el
k (R)
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What about the electronic structure method for on-the-fly dynamics? We need:
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TDDFT-based trajectory surface hopping Nonadiabatic couplings in TDDFT

Nonadiabatic couplings with LR-TDDFT?

Nonadiabatic coupling vectors are defined in terms of electronic wavefunctions:

dkj = 〈Φk (R)|∇R|Φj (R)〉 =
〈Φk (R)|∇RĤel |Φj (R)〉

Ej (R)− Ek (R)

The main challenge is to compute all these quantities as a functional of the ground state

electronic density (or equivalently, of the occupied Kohn-Sham orbitals).

dkj → dkj [ρ]

Different approaches for the calculation of d0j [ρ] are available 2.

Here we will use the method based on the auxiliary many-electron wavefunctions.

2V. Chernyak and S. Mukamel, J. Chem. Phys. 112, 3572 (2000); R. Baer, Chem. Phys.
Lett. 364, 75 (2002); E. Tapavicza, I. Tavernelli, and U. Rothlisberger, Phys. Rev. Lett. 98,
023001 (2007); C. P. Hu, H. Hirai, and O. Sugino, J. Chem. Phys. 127, 064103 (2007).
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TDDFT-based trajectory surface hopping Nonadiabatic couplings in TDDFT

The density response SOS formula
In TDDFT the density response χ(ω) is

χ(ω) = S−1/2(ω2I− Ω(ω))−1S−1/2

with

Ωijσ,klτ = δστδikδjl (εlτ − εkσ)2 + 2
√

(fiσ − fjσ)(εjσ − εiσ)Kijσ,klτ

√
(fkτ − flτ )(εlτ − εkτ )

Using the spectral representation of the (ω2I− Ω(ω))−1, we can write

(ω2I− Ω(ω))−1 =
∑
n

ZnZ†n
ω2

n − ω2

where Zn are the TDDFT eigenvectors of the pseudoeigenvalue equation, (Sijσ,klτ =
δikδjlδστ

(fkσ−flσ )(εlσ−εkσ ) )

ΩZn = ω
2
0nZn ,

Therefore 3

χ(ω) =
∑
n

S−1/2ZnZ†nS
−1/2

ω2
n − ω2

and finally the perturbation of any observable (δO(ω) =
∑

ijσ oijσδPijσ)

δOTDDFT (ω) =
∑
n

∑
ijσ,klτ

oijσ
(S−1/2Zn)ikσ(Z†nS

−1/2)klτ

ω2
n − ω2

v ′klτE(ω) .

3
M. E. Casida, in Recent Advances in Density Functional Methods, edited by D. P. Chong, World Scientific, Singapore (1995), JCP, 130, 124107

(2007)
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TDDFT-based trajectory surface hopping Nonadiabatic couplings in TDDFT

In MBPT the density response χ(ω) is

δOMBPT (ω) =
∑
n

2ωi0〈Ψ0|Ô|Ψn〉〈Ψn|v̂ ′E(ω)|Ψ0〉
ω2
n0 − ω2

Equating δOTDDFT (ω) with δOMBPT (ω) residue-by-residue,

〈Ψ0|Ô|Ψn〉 =

(fiσ−fjσ)>0∑
ijσ

1
√
ωn

oijσ(S−1/2Zn)ijσ

For any one-body operator, Ô, a mapping between MBPT and TDDFT quantities gives (for the

moment, we only consider transitions from the ground state Ψ0)

O†S−1/2Zn = ω
1/2
0n 〈Ψ0|Ô|Ψn〉

where the operator Ô =
∑

iaσ oiaσ â
†
iσ âaσ has components oiaσ = 〈φiσ |Ô|ψaσ〉 4 with

ω0n = En − E0. All matrices and vectors are given in the basis of KS orbitals {φiσ} with

corresponding occupations fiσ and orbital energies εiσ .

4
∑

iaσ stands for
∑N

i=1

∑∞
a=1

∑
σ∈{α,β}.
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The auxiliary wavefunction

For practical purposes we introduce the auxiliary linear-response many-electron wavefunctions 5

as a linear combination of singly excited Slater determinants

Φ̃k [{φ·}] =
∑
iaσ

ckiaσ â†aσ âiσΦ̃0[{φ·}] ,

with

ckiaσ ≡

√
S−1
iaσ

ω0k
ekiaσ

where Φ̃0[{φ·}] is the Slater determinant of all occupied KS orbitals {φiσ}Ni=1, which, at a turn,

are promoted into a virtual (unoccupied) orbitals, ψaσ .

We therefore have (in linear response!)

〈Ψ0|Ô|Ψn〉 = 〈Φ̃0|Ô|Φ̃n〉

5
JCP, 130, 124107 (2007), JCP, 131, 196101 (2009).
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Nonadiabatic couplings

The nonadiabatic coupling elements at the mid step t + δt/2 of a LR-TDDFT AIMD can
therefore be calculated as

Ṙ · d 0k |t+δt/2[{φ·}] =
〈

Φ̃0(r ; R(t))
∣∣∣∇R

∣∣∣ Φ̃k (r ; R(t))
〉
· Ṙ =

〈
Φ̃0(r ; R(t))

∣∣∣ ∂
∂t

∣∣∣ Φ̃k (r; R(t))
〉

'
1

2δt

[
〈Φ̃0(r ; R(t))|Φ̃k (r ; R(t + δt))〉 − 〈Φ̃0(r ; R(t + δt))|Φ̃k (r ; R(t))〉

]
The nonadiabatic coupling vectors between pairs of excites states (second order response)

dkj [{φ·}] =
〈Φ̃k (R)|∇RĤel |Φ̃j (R)〉

Ej (R)− Ek (R)

I Auxiliary many-electron wavefunctions give exact couplings between ground
state and any (singly) excited state.

I Auxiliary many-electron wavefunctions give high quality couplings between
pairs of (singly) excited states (“exact” in the TDA and up to O(δρ3) in full
response).
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Nonadiabatic couplings - examples

As always, the quality of the nonadiabatic couplings will depend on the xc-functional used...

dkj [{φ·}] = 〈Φ̃k (R)|∇R|Φ̃j (R)〉

Protonated formaldimine: nonadiabatic coupling vectors d01 with LR-TDDFT/TDA.
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Nonadiabatic couplings - examples

As always, the quality of the nonadiabatic couplings will depend on the xc-functional used...

dkj [{φ·}] = 〈Φ̃k (R)|∇R|Φ̃j (R)〉

Protonated formaldimine: nonadiabatic coupling vectors d12 with LR-TDDFT/TDA.
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TDDFT-TSH: Applications

Protonated formaldimine
The protonated formaldimine is a model compound for the study of isomerization in rhodopsin

chromophore retinal.

In addition to the ground state (GS), two excited electronic states are of interest:

1 S1 : σ → π∗ (low oscillator strength)

2 S2 : π → π∗ (high oscillator strength)
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Protonated formaldimine

Computational details

Isolated system

LR-TDDFT/PBE/TDA

SH-AIMD

50 trajectories (NVT) each of ∼100 fs.

PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009).
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TDDFT-TSH: Applications

Protonated formaldimine

Protonated formaldimine as a model

compound for the study of the

isomerization of retinal.

Photo-excitation promotes the

system mainly into S2.

Relaxation involves at least 3

states:

S0 (GS), S1 and S2.

[E. Tapavicza, I. T., U. Rothlisberger, PRL, 98,

023001 (2007); THEOCHEM, 914, 22 (2009)]
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Protonated formaldimine

Typical trajectory

PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009).
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TDDFT-TSH: Applications

Protonated formaldimine

Nonadiabatic couplings σkj = Ṙα · dαkj

PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009).
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TDDFT-TSH: Applications

Protonated formaldimine

States population

PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009).
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TDDFT-TSH: Applications

Protonated formaldimine

States population - Average over many trajectories.

Dashed line = CASSCF result.
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TDDFT-TSH: Applications

Protonated formaldimine

Geometrical modifications
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TDDFT-TSH: Applications

Protonated formaldimine

Comparison with experiment and model calculations

In addition to the isomerization channel, intra-molecular proton transfer reactions was

observed (formation of CH3NH+).

H2 abstraction is also observed in some cases.

Structures and life times are in good agreement with reference calculations performed using

high level wavefunction based methods.
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TDDFT-TSH: Applications Oxirane - Crossing between S1 and S0

Oxirane

Oxirane has interesting non-radiative decay channels, during which ring opening and dissociation

can occur.

Figure: Mechanism proposed by Gomer and Noyes
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Oxirane

Oxirane has interesting non-radiative decay channels, during which ring opening and dissociation

can occur.

Computational details

Isolated system

LR-TDDFT/PBE/TDA

SH-AIMD

30 trajectories (NVT) each of ∼100 fs.

JCP, 129, 124108 (2009).
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TDDFT-TSH: Applications Oxirane - Crossing between S1 and S0

Oxirane

Oxirane has interesting non-radiative decay channels, during which ring opening and dissociation

can occur.

JCP, 129, 124108 (2009).
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TDDFT-TSH: Applications Oxirane - Crossing between S1 and S0

The photophysics of solvated Ruthenium(II) tris-bipyridine
[Ru(bpy)3)]2+ dye: photophysics

N

N

N

N

N

N

x

y

z

[Ru(bpy)3)]2+ dye: Solvent structure

[M.E. Moret, I.T., U. Rothlisberger, JPC B, 113, 7737 (2009); IT, B.

Curchod, U. Rothlisberger, Chem.Phys., 391, 101 (2011)]

[Ru(bpy)3)]2+ dye: Singlet state dynamics

[Ru(bpy)3)]2+ dye: triplet state dynamics
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TSH with external time-dependent fields

TSH with external time-dependent fields

Addition of an external field within the equations of motion of TSH:

Startegy

The idea is to induce electronic excitations through the direct interaction with the time-dependent

(td) electric field instead of “artificially” promote the system into one of its excited states.

Method: extended TSH nonadiabatic dynamics.

IT, B. Curchod, U. Rothlisberger, Phys. Rec. A 81, 052508 (2010)
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TSH with external time-dependent fields

TSH with external time-dependent fields

Short summary of the theory

The interaction Hamiltonian between the electrons and the td electric field is

Ĥint = −
e

2mec

∑
i

A(r i , t) · p̂i

where A(r , t) is the (classical) vector potential of the electromagnetic field, p̂i is the momentum

operator of electron i , e is the electron charge, me is the electron mass, and c is the speed of

light.

Remark

We are in the dipole approximation and therefore we do not need TDCDFT.

IT, B. Curchod, U. Rothlisberger, Phys. Rec. A 81, 052508 (2010)
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External field within TSH

It can be shown (Phys. Rev. A 81 052508 (2010)) that through the coupling with the td electric

field, Tully’s propagation equations acquire an additional term

i~ĊαJ (t) =
∑
I

CαI (t)(HJI − i~Ṙα · dαJI + iωJI
A0

c
ελ · µαJI e

−iωt)

with

iωJI
A0(t)

c
· µJI = 〈ΦJ |Ĥint |ΦI 〉

and where A0(t) = A0ε
λe−iωt is the vector potential of the external td electric field,

µJI = −e〈ΦJ |
∑
i

r̂ i |ΦI 〉

is the the transition dipole vector, and ωJI = (EJ − EI )/~.

Note that Tully’s hops probability should be modified accordingly.

IT, B. Curchod, U. Rothlisberger, Phys. Rec. A 81, 052508 (2010)
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TSH with external time-dependent fields

Effect of an electromagnetic field - Lithium fluoride

Different excitations can be obtained, depending on the polarization vector of the laser pulse.

Electronic structure of LiF

Ground state - Σ

symmetry (GS) .

First excited state (doubly

degenerate) - Π symmetry

(S1) .

Second excited state - Σ

symmetry (S2) .

Avoided crossing between

GS and S2

TDDFT in mixed quantum-classical dynamics



TSH with external time-dependent fields

Effect of an electromagnetic field - Lithium fluoride

Pulse: A(t) = −A0ε
λ exp

(
− (t−t0)2

T 2

)
sin(ωt)
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TSH with external time-dependent fields

Effect of an electromagnetic field - Lithium fluoride

x-polarized pulse: ελ = (1, 0, 0)
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TSH with external time-dependent fields

Effect of an electromagnetic field - Lithium fluoride

ελ = (1, 0, 0)

IT, B. Curchod, U. Rothlisberger, Phys. Rec. A 81, 052508 (2010)
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TSH with external time-dependent fields

Effect of an electromagnetic field - Lithium fluoride

ελ = 1√
3

(1, 1, 1)

IT, B. Curchod, U. Rothlisberger, Phys. Rec. A 81, 052508 (2010)
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TSH with external time-dependent fields Local control theory

Local control theory

Control is achieved by tuning the temporal evolution of E(t) in a way to maximize the

population of a target state.

Using the TSH for the total molecular wavefunction

Ψα(r ,R, t) =
∞∑
J

CαJ (t)ΦJ(r ; R)

for a given trajectory α, the population time evolution simplifies to

ṖI (t) = −2Eα(t)
∑
J

=[Cα∗J µJIC
α
I (t)]

It is now evident that choosing a field of the form

E(t) = −λ
∑
J

= [CαI (t)Cα∗J µIJ)]

will ensure that PI (t) always increases in time.

T. J. Penfold, G. A. Worth, C. Meier, Phys. Chem. Chem. Phys. 12, 15616 (2010).

B.F.E Curchod, T. Penfold, U. Rothlisberger, IT, PRA, 84, 042507 (2011)
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TSH with external time-dependent fields Local control theory

Application: Photoexcitation of LiF in the bound state S2

B.F.E Curchod, T. Penfold, U. Rothlisberger, IT, PRA, 84, 042507 (2011)
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TSH with external time-dependent fields Local control theory

Effect of a generic polarized pulse
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TSH with external time-dependent fields Local control theory

LC pulse: efficient population transfer and stable excitation
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TSH with external time-dependent fields Local control theory

Comparison with wavepacket propagation (MCTDH)

B.F.E Curchod, T. Penfold, U. Rothlisberger, IT, PRA, 84, 042507 (2011)
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TSH with external time-dependent fields LC of protontransfer: from gas-phase to solution

1 Ab initio molecular dynamics

Why Quantum Dynamics?

2 Mixed quantum-classical dynamics

Ehrenfest dynamics

Adiabatic Born-Oppenheimer dynamics

Nonadiabatic Bohmian dynamics

Trajectory Surface Hopping

3 TDDFT-based trajectory surface hopping

Nonadiabatic couplings in TDDFT

4 TDDFT-TSH: Applications

Photodissociation of Oxirane

Oxirane - Crossing between S1 and S0

5 TSH with external time-dependent fields

Local control theory

LC of protontransfer: from gas-phase to solution
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TSH with external time-dependent fields LC of protontransfer: from gas-phase to solution

Local control of proton transfer: gas phase to solution

ChemPhysChem, 10, 2026 (2015)

(in preparation)
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TSH with external time-dependent fields LC of protontransfer: from gas-phase to solution

Local control of proton transfer in gas phase

ChemPhysChem, 10, 2026 (2015)
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TSH with external time-dependent fields LC of protontransfer: from gas-phase to solution

Local control of proton transfer

ChemPhysChem, 10, 2026 (2015)
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TSH with external time-dependent fields LC of protontransfer: from gas-phase to solution

Local control of proton transfer
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TSH with external time-dependent fields LC of protontransfer: from gas-phase to solution

Local control of proton transfer (freq. vs. time)

ChemPhysChem, 10, 2026 (2015)
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TSH with external time-dependent fields LC of protontransfer: from gas-phase to solution

Local control of proton transfer. Average over 6 trajs

ChemPhysChem, 10, 2026 (2015)
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TSH with external time-dependent fields LC of protontransfer: from gas-phase to solution

Local control of proton transfer (microsolvated)
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TSH with external time-dependent fields LC of protontransfer: from gas-phase to solution

Local control on proton transfer (with one water molecule)
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TSH with external time-dependent fields LC of protontransfer: from gas-phase to solution

Local control of proton transfer (comparison)

gas phase with one water molecule
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TSH with external time-dependent fields LC of protontransfer: from gas-phase to solution

LCT in explicit solvent: TDDFT/MM
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TSH with external time-dependent fields LC of protontransfer: from gas-phase to solution

LCT in explicit solvent: TDDFT/MM

In preparation
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TSH with external time-dependent fields LC of protontransfer: from gas-phase to solution

LCT in explicit solvent: TDDFT/MM
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