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Al molecular dynamics

o Ab initio molecular dynamics
@ Why Quantum Dynamics?

um-classical dynamics



Ab initio molecular dynamics

Reminder from last lecture: potential energy surfaces

We have electronic structure methods for electronic ground and excited states...
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Ab initio molecular dynamics

Reminder from last lecture: potential energy surfaces

We have electronic structure methods for electronic ground and excited states...
Now, we need to propagate the nuclei...
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LURGHENG G ECTETRGETTEE - Why Quantum Dynamics?

Why Quantum dynamics?

GS adiabatic dynamics (BO vs. CP)
BO MR(t) = —V min, Exs({¢ilo]})
CP il i(t)) = — 5y Exs({i(r)}) + 5y {eonstr}
MR (t) = =V Eks({#i(t)})

Energy

ES nonadiabatic quantum dynamics

@ Wavepacket dynamics (MCTDH)

@ Trajectory-based approaches
- Tully's trajectory surface hopping (TSH)
- Bohmian dynamics (quantum hydrodyn.)
- Semiclassical (WKB, DR)
- Path integrals (Pechukas)

- Mean-field solution (Ehrenfest dynamics)

Energy

@ Density matrix, Liouvillian approaches, ...
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LURGHENG G ECTETRGETTEE - Why Quantum Dynamics?

Why Quantum dynamics?

GS adiabatic dynamics

§ [ First principles Heaven |
& Ab initio MD with WF methods
Ab initio MD with DFT & TDDFT [CP]
WN classical MD
Coarse-grained MD
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No principles World |

Time |

ES nonadiabatic quantum dynamics

[ First principles Heaven |

Ab initio MD with WF methods
Ab initio MD with DFT & TDDFT [CP]
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LURGHENG G ECTETRGETTEE - Why Quantum Dynamics?

Why Quantum dynamics?

GS adiabatic dynamics

[ First principles Heaven |
Ab initio MD with WF methods
Ab initio MD with DFT & TDDFT [CP]
classical MD
Coarse-grained MD

Energy

[ No principles World |

ES nonadiabatic quantum dynamics

We cannot get read of electrons
Nuclei keep some QM flavor

)

)
-) Accuracy is an issue
)

)

Energy

Size can be large (diffuse excitons)

Time scales are usually short (< ps)
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0 100 200 300 400 500

TDDFT in mixed quantum-classical dynamics



LURGHENG G ECTETRGETTEE - Why Quantum Dynamics?

Nonadiabatic effects requires quantum nuclear dynamics

The nuclear dynamics cannot be described by a single classical trajectory (like in the ground
state -adiabatically separated- case)

So

Photoproduct
Photoproduct iotoproduc

Reactive
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LURGHENG G ECTETRGETTEE - Why Quantum Dynamics?

Why trajectory-based approaches?

W1 In “conventional” nuclear wavepacket propagation potential energy surfaces are needed.
W2 Difficulty to obtain and fit potential energy surfaces for large molecules.

W3 Nuclear wavepacket dynamics is very expensive for large systems (6 degrees of freedom, 30
for MCTDH). Bad scaling.

T1 Trajectory based approaches can be run on-the-fly (no need to parametrize potential

energy surfaces).
T2 Can handle large molecules in the full (unconstraint) configuration space.

T3 They offer a good compromise between accuracy and computational effort.

Photoproduct Photoproduct

Reactive
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Mixed quantum-classical dynamics

Starting point

The starting point is the molecular time-dependent Schrédinger equation :
N )
HV(r,R,t) = lhalll(r, R, t)

where H is the molecular time-independent Hamiltonian and V(r, R, t) the total wavefunction
(nuclear + electronic) of our system.

In mixed quantum-classical dynamics the nuclear dynamics is described by a swarm of classical
trajectories (taking a " partial” limit & — O for the nuclear wf).

In this lecture we will discuss two main approximate solutions based on the following Ansatze for
the total wavefucntion

Born-

W(r R, 1) = Z ®;(r; R)(R, t)
J

i t
W(r, R, t) St o (r, t)Q(R, t) exp [é/ Ee/(t’)dt’]
to

Exact Factorization

V(r,R,t) ——————— ®g(r, t)Q2(R, t); with /dr Spr(r,t) =1, VR.

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics

Tarjectory-based quantum and mixed QM-CL solutions

We can “derive” the following trajectory-based solutions:

@ Nonadiabatic Ehrenfest dynamics dynamics
I. Tavernelli et al., Mol. Phys., 103, 963981 (2005).

@ Adiabatic Born-Oppenheimer MD equations

@ Nonadiabatic Bohmian Dynamics (NABDY)
B. Curchod, IT, U. Rothlisberger, PCCP, 13, 32313236 (2011)

@ Nonadiabatic Trajectory Surface Hopping (TSH) dynamics
[ROKS: N. L. Doltsinis, D. Marx, PRL, 88, 166402 (2002)]

C. F. Craig, W. R. Duncan, and O. V. Prezhdo, PRL, 95, 163001 (2005)
E. Tapavicza, |. Tavernelli, U. Rothlisberger, PRL, 98, 023001 (2007)

@ Time dependent potential energy surface approach
based on the exact decomposition: W(r, R, t) = Q(R, t)®(r, t).
A. Abedi, N. T. Maitra, E. K. U. Gross, PRL, 105, 123002 (2010)

TDDFT in mixed quantum-classical dynamics



W DELIGTENITREEESTEIG I EN T Ehrenfest dynamics

Ehrenfest dynamics

H t
W(r, R, t) B o(r )R, t) exp [é/ Ee/(t’)dt’]
to

Inserting this representation of the total wavefunction into the molecular td Schrédinger equation and
multiplying from the left-hand side by Q*(R, t) and integrating over R we get

I B [ fom s cm. 0 ]
REEDY ST V20(r, ¢ dR Q7(R, t)V(r, R)Q(R, t)| &(r, t
e = e VIO | [aR 97ROV RIRAR. 0] 000
N 2 2z,
where V(r, R) = z,.<j = Z'w‘ Ry =]

In a similar way, multiplying by ®*(r, t) and integrating over r we obtain

. OQ(R, t) ? —192 * A

'hT =-5 2; MTIVIQ(R, t) + /dr " (r, t)Had(r, t)| R, t)

Conservation of energy has also to be imposed through the condition that d(I:I)/dt =0.

Note that both the electronic and nuclear parts evolve according to an average potential generated by the
other component (in square brakets). These average potentials are time-dependent and are responsible for the

feedback interaction between the electronic and nuclear components.

al dynamics



W DELIGTENITREEESTEIG I EN T Ehrenfest dynamics

Ehrenfest dynamics - the nuclear equation

We start from the polar representation of the nuclear wavefunction
Q(R, t) = A(R, t) exp [%S(R, r)}

where the amplitude A(R, t) and the phase S(R, t)/h are real functions.
Inserting this representation for Q(R, t) and separating the real and the imaginary parts one gets
for the phase S in the classical limit 7 — 0

% = —% > M;1(v,5)% — [/dr &*(r, t)He(r, R)O(r, t)]
Y

This has the form of the ”"Hamilton-Jacobi” (HJ) equation of classical mechanics, which
establishes a relation between the partial differential equation for S(R, t) in configuration space
and the trajectories of the corresponding (quantum) mechanical systems.

TDDFT in mixed quantum-classical dynamics



W DELIGTENITREEESTEIG I EN T Ehrenfest dynamics

Ehrenfest dynamics - the nuclear equation

s(0)=a

Instead of solving the field equation for S(R, t), find the equation of motion for the
corresponding trajectories (characteristics).

TDDFT in mixed quantum-classical dynamics



W DELIGTENITREEESTEIG I EN T Ehrenfest dynamics

Ehrenfest dynamics - the nuclear equation

The identification of S(R, t) with the "classical” action, defines a point-particle dynamics with
Hamiltonian, H, and momenta

P = VgrS(R).

The solutions of this Hamiltonian system are curves (characteristics) in the (R, t)-space, which
are extrema of the action S(R, t) for given initial conditions R(ty) and P(to) = VRS(R)|r(s)-
Newton-like equation for the nuclear trajectories corresponding to the HJ equation

dP,

= v, {/dr &% (r, t) Ao (r, R)D(r, t)

Ehrenfest dynamics
‘Rt .
ih% — Flu(r: R)(r: R, t)

MR = =V (He(r; R))

TDDFT in mixed quantum-classical dynamics



W DELIGTENITREEESTEIG I EN T Ehrenfest dynamics

Ehrenfest dynamics - the nuclear equation

The identification of S(R, t) with the "classical” action, defines a point-particle dynamics with
Hamiltonian, Hy and momenta

P = VgrS(R).

The solutions of this Hamiltonian system are curves (characteristics) in the (R, t)-space, which
are extrema of the action S(R, t) for given initial conditions R(ty) and P(to) = VRS(R)|r(z)-
Newton-like equation for the nuclear trajectories corresponding to the HJ equation

dP,

P = v, Udr &* (r, t)Fa(r, R)O(r, 1)
Ehrenfest dynamics - Densityfunctionalization (¢x: KS orbitals)

ih§¢k(r, £) = — = 2y (r, £) + vertlps Sol(r, £) i(r, ©)
t 2me

MiR; = —V,E[p(r, t)]

TDDFT in mixed quantum-classical dynamics



W DELIGTENITREEESTEIG I EN T Ehrenfest dynamics

Ehrenfest dynamics - Example

Ehrenfest dynamics

ih§¢k(r7 t) = _ng¢k(r7 t) + VefF[P7 ¢0](r7 t) ¢k(r7 t)
t 2me

Mlﬁl = —V,(?-Ate,(r; R))

TDDFT in mixed quantum-classical dynamics
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W DELIGTENITREEESTEIG I EN T Ehrenfest dynamics

Ehrenfest dynamics and mixing of electronic states

Ehrenfest dynamics

ih% = Heo(r; R)D(r; R, t)

MR = =V (He(r; R))

Consider the following expansion of ®(r; R, t) in the static basis of electronic wavefucntions
{®k(riR)}

oo

O(r;R, t) = c(t)Py(r; R)

k=0

The time-dependency is now on the set of coefficients {ck(t)} (|ck(t)|? is the population of state
k). Inserting in the Ehrenfest's equations...

TDDFT in mixed quantum-classical dynamics



W DELIGTENITREEESTEIG I EN T Ehrenfest dynamics

Ehrenfest dynamics and mixing of electronic states

Ehrenfest dynamics

ihéi(t) = c(t)EF' — ih>_ ¢i(t)Dy
J

Mlﬁ[ =-V Z |Ck(t)|2Efl
k=0
where 8 OR &
Dij = (D] = |®)) = (®)| — —=|®;) = R(®,|V|®;) = R- dy;
= (Pul 1)) = (@4 7 2110 = R(@4[ V1)) = R- dy

Thus we incorporate directly nonadiabatic effects.

TDDFT in mixed quantum-classical dynamics



Ehrenfest dynamics

Mixed quantum-classical dynamics

Ehrenfest dynamics: the mean-field potential

() (7]
& &
.\
® ®y

ihéi(t) = ci(t)E — i ci(t)Dy
j

oo}
MR, ==V, > |a(t)PES
k=0

TDDFT in mixed quantum-classical dynamics



W DELIGTENITREEESTEIG I EN T Ehrenfest dynamics

Tarjectory-based quantum and mixed QM-CL solutions

We can “derive” the following trajectory-based solutions:

@ Nonadiabatic Ehrenfest dynamics dynamics
I. Tavernelli et al., Mol. Phys., 103, 963981 (2005).

@ Adiabatic Born-Oppenheimer MD equations

@ Nonadiabatic Bohmian Dynamics (NABDY)
B. Curchod, IT, U. Rothlisberger, PCCP, 13, 32313236 (2011)

@ Nonadiabatic Trajectory Surface Hopping (TSH) dynamics
[ROKS: N. L. Doltsinis, D. Marx, PRL, 88, 166402 (2002)]

C. F. Craig, W. R. Duncan, and O. V. Prezhdo, PRL, 95, 163001 (2005)
E. Tapavicza, |. Tavernelli, U. Rothlisberger, PRL, 98, 023001 (2007)

@ Time dependent potential energy surface approach
based on the exact decomposition: W(r, R, t) = Q(R, t)®(r, t).
A. Abedi, N. T. Maitra, E. K. U. Gross, PRL, 105, 123002 (2010)

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics

Born-Oppenheimer approximation

Born-

V(r,R,t) —>Z¢(r R)Q;(R, t)

In this equation, {¢j(r; R)} describes a complete basis of electronic states solution of the
time-independent Schrédinger equation:

el(r R)Q) (r R)— s/J(R)q)j(r;R)

R is taken as a parameter.

Eigenfunctions of 7:le,(r; R) are considered to be orthonormal, i.e. (;|®;) = §;;

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics

Born-Oppenheimer approximation

(o)
Born- X .
\Il(r,R, t) Eﬁ—g—) EJ ¢'J(r,R)QJ(R, t)

Electrons are static. Use your favourite electronic structure method.

For the nuclei, insert this Ansatz into the molecular time-dependent Schrodinger equation
A 0
HVY(r,R, t) = lha\U(r, R, t)

After left multiplication by ®}(r; R) and integration over r, we obtain the following equation (we
used <¢j|¢i> = 6’1) N

h? - .0
=D o Vi T Bk (R Qu(R,6) + 3 Dgy(R, 1) = in o Qu(R, 1)
I ! j t

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics

Born-Oppenheimer approximation

h? 0
*Z WV, + Ea i (R)| (R, 1) + D DgQj(R, t) = ’hgﬂk(R: t)
J

@ Equation for the nuclear “wavepacket”, Q(R, t), dynamics.

@ E. «(R) represents a potential energy surface for the nuclei.
Important additional term : D;; ! NONADIABATIC COUPLING TERMS

Dy = / ®i(r; R)

Z W v2] ®;(r; R)dr

35 A ei R Envi e R i

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics

Born-Oppenheimer approximation

Dyj = / i(riR)

Z 27\/, vz] ®;(r; R)dr
+Z {/¢k(’ R) [—ilV,] ®;(r; R)dr} [—ihV)]

If we neglect all the Dy; terms (diagonal and off-diagonal), we have the Born-Oppenheimer

approximation.

12 0
S LB (R (R, ) = ih L, (R,
{ ZZM, 1+ Eer k(R)| (R, t) = iho (R, 1)

Mainly for ground state dynamics or for dynamics on states that do not couple with others.

(Back to nonadiabatic dynamics later).

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics

Born-Oppenheimer approximation: the nuclear trajectories

o,
=Y ==V + Eax(R)

1o}
QU (R, t) = ih—Qk(R, t
o KR, 1) = il Qu(R, )

Using a polar expansion for Qx(R, t), we may find a way to obtain classical equation of motions
for the nuclei. .
(R, 1) = Au(R. ) exp | 1 Si(R. 1))

Ak(R, t) represents an amplitude and Sy (R, t)/h a phase.

Further: insert the polar representation into the equation above, do some algebra, and separate

real and imaginary part, we obtain an interesting set of equations:

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics

Born-Oppenheimer approximation: the nuclear trajectories

oS h2 V2A
oe =2 M k—*ZM H(Visk)® -
I

OAk -1 1 -1 2
S reiaie 21: M VIAN S = S XI: M T AV Sk
Dependences of the functions S and A are omitted for clarity (k is a index for the electronic

state; in principle there is only one state in the adiabatic case).

We have now a time-dependent equation for both the amplitude and the phase.
Since we are in the adiabatic case there is only one PES and the second equation becomes

trivially a diffusion continuity equation.

The nuclear dynamics is derived from the real part (%). This equation has again the form of a

classical Hamilton-Jacobi equation.

TDDFT in mixed quantum-classical dynamics



oS, 2 _LV32A 1 _
Sy M T M (Vs
I !

_ 1 _
- = Z M, lV/AkV/Sk 3 Z M, lAkV?Sk
! !

W=b+Edt
\

s(0)=a

Instead of solving the field equation for S(R, t), find the equation of motion for the
corresponding trajectories (characteristics).

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics

Born-Oppenheimer approximation: the nuclear trajectories

as, 72 V2A
S T
I

The classical limit is obtained by taking!: & — 0

a5
fk =-= Z M;H(V156)? — Ex

These are the classical Hamilton-Jacobi equation and S is the classical action related to a
particle.

S(t) = / CL(¢)dt = / [Eunt') — Epor(t')] o’

to to

The momentum of a particle / is related to

LCaution! This classical limit is subject to controversy...

TDDFT in mixed quantum-classical dynamics



Therefore, taking the gradient,

V= 5V M (VIS + VU
t 274

and rearranging this equation using VS5, /M; = v’j, we obtain the (familiar) Newton equation:

d
M;—vk = —V,E
JdtVJ JEK

In Summary:
Adiabatic BO MD
He(r; R)®(r; R) = EF'(R)k(r; R)

MR = =V EZ/(R) = — V; (|| D)
min®

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics

Mean-field vs. BO MD (adiabatic case)

Ehrenfest dynamics

ihw = Ho(r; R)D(r; R, t)

Mlﬁl = —VI (ﬂel(r; R))

Explicit time dependence of the electronic wavefunction.

Born-Oppenheimer dynamics
He(r; R)®(r; R) = EF/(R)®k(r; R)

MR, = =V, EZ(R) = — V; (&) |Fle|dp)

I
min®

The electronic wavefunction are static (only implicit time-dependence.

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics

Mean-field vs. BO MD (adiabatic case)

Method Born-Oppenheimer MD Ehrenfest MD
adiabatic MD (one PES) nonadiabatic MD (mean-field)

Efficient propagation of the nuclei  Get the “real” dynamics of the electrons
Adiabatic nuclear propagation Propagation of nuclei & electrons

dt ~10-20 a.u. (0.25-0.5 fs) 0t ~0.01 a.u. (0.25 as)
Simple algorithm Common propagation of the nuclei
and the electrons implies
more sophisticated algorithms

Exact quantum dynamics?
Can we derive “exact” quantum equations of motion for the nuclei?
(without taking the classical limit 7 — 07)

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics

Tarjectory-based quantum and mixed QM-CL solutions

We can “derive” the following trajectory-based solutions:

@ Nonadiabatic Ehrenfest dynamics dynamics
I. Tavernelli et al., Mol. Phys., 103, 963981 (2005).

@ Adiabatic Born-Oppenheimer MD equations

@ Nonadiabatic Bohmian Dynamics (NABDY)
B. Curchod, IT*, U. Rothlisberger, PCCP, 13, 32313236 (2011)

@ Nonadiabatic Trajectory Surface Hopping (TSH) dynamics
[ROKS: N. L. Doltsinis, D. Marx, PRL, 88, 166402 (2002)]

C. F. Craig, W. R. Duncan, and O. V. Prezhdo, PRL, 95, 163001 (2005)
E. Tapavicza, |. Tavernelli, U. Rothlisberger, PRL, 98, 023001 (2007)

@ Time dependent potential energy surface approach
based on the exact decomposition: W(r, R, t) = Q(R, t)®(r, t).
A. Abedi, N. T. Maitra, E. K. U. Gross, PRL, 105, 123002 (2010)

TDDFT in mixed quantum-classical dynamics



Nonadiabatic dynamics: Multi-trajectory solutions
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Mixed quantum-classical dynamics

Nonadiabatic Bohmian dynamics

]
T

[=]
T

Transverse coordinate{mm)]
o
T

1
i
T

i i i i i i
3000 4000 5000 6000 7000 8000
Propagation distance[mm]

Pioneers in quantum hydrodynamics: D. Bohm, P. R. Holland, R. E. Wyatt, and many others.

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics

NABDY: “exact” trajectory-based nonadiabatic dynamics
Using

® W(r,R,t) =37 &;(r; R)Q(R, t)

@ Q;(R,t) = Aj(R, t)exp [£S;(R, 1)]

in the exact time-dependent Schrédinger equation for the nuclear wavefucntion we get

- BSJ;’:’ 2 R #(Vysjm, )%+ EF(R) — b % %
Z M oji(r %m [#4] - 7%1 ;‘H d;(n)%(i’)”%[ 9]
sl
and
% - ; V:VWAJ(R’ )V Sj(R, t) — ; iAj(R, 92 si(R, 1)

+ Z —D’Y(R)A i(R, :)s[ } -3 M—dW(R)V-YA (R, ) [e"ﬂ
v iF

-3 Ld?!(R)A (R, )V~ Si(R, t)m[ ],

where both Sj(R, t) and A;(R, t) are real fields and ¢ = £(S;(R, t) — Sj(R, t)).

TDDFT in mixed quantum-classical dynamics




Mixed quantum-classical dynamics

NABDY: “exact” trajectory-based nonadiabatic dynamics

From the NABDY equations we can obtain a Newton-like equation of motion (using the HJ
definition of the momenta V3S;(R, t) = P})

d’R ;
ﬂﬁ = ~Vs [EL(R) + Qi(R.t) + 3 Dy(R, 1)]

where Q;(R, t) is the quantum potential responsible for all coherence/decoherence
“intrasurface” QM effects, and D;(R, t) is the nonadiabatic potential responsible for the
amlpitude transfer among the different PESs.

For more informations see:
B. Curchod, IT, U. Rothlisberger, PCCP, 13, 3231 — 3236 (2011)

NABDY limitations
@ Mainly numerical challenges
@ |Instabilities induced by the quantum potential

@ Compute derivatives in the 3N dimensional(R3V) configuration space

TDDFT in mixed quantum-classical dynamics



Gaussian wavepacket on an Eckart potential (Ex = 3/4V)
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Mixed quantum-classical dynamics

Tarjectory-based quantum and mixed QM-CL solutions

We can “derive” the following trajectory-based solutions:

@ Nonadiabatic Ehrenfest dynamics dynamics
I. Tavernelli et al., Mol. Phys., 103, 963981 (2005).

@ Adiabatic Born-Oppenheimer MD equations

@ Nonadiabatic Bohmian Dynamics (NABDY)
B. Curchod, IT, U. Rothlisberger, PCCP, 13, 32313236 (2011)

@ Nonadiabatic Trajectory Surface Hopping (TSH) dynamics
[ROKS: N. L. Doltsinis, D. Marx, PRL, 88, 166402 (2002)]

C. F. Craig, W. R. Duncan, and O. V. Prezhdo, PRL, 95, 163001 (2005)
E. Tapavicza, |. Tavernelli, U. Rothlisberger, PRL, 98, 023001 (2007)

@ Time dependent potential energy surface approach
based on the exact decomposition: W(r, R, t) = Q(R, t)®(r, t).
A. Abedi, N. T. Maitra, E. K. U. Gross, PRL, 105, 123002 (2010)

TDDFT in mixed quantum-classical dynamics



Mixed quantum-classical dynamics

Applications in Photochemistry and Photophysics

Trajectory-based solutions of the “exact” nonadiabatic equations are still impractical.

Approximate solutions are available. Among the most popular is

Trajectory Surface Hopping (TSH)

TDDFT in mixed quantum-classical dynamics



\DELIGTENITREEESTEI G EN T Trajectory Surface Hopping

The trajectory surface hopping dynamics (1)

TSH is a mixed quantum-classical theory

The classical component

003

@ ensemble of classical trajectories following

002

8
Newton's equation of motion ::‘5 001
7);_ °
dP3(t)
J _ el P . ! .
G = Ve (RW) i ,
B

@ trajectories are independent (ITA).

No coherence

@ density of trajectories (“Lp;(R(t),t)) at each
time step reproduces a ‘classical distribution’
on the different PESs.

_NZ(R™,dV,t%) 1

~ |%(R®, t* 2
R~ (R 1)

peH(R, %)

Time / a.u.

TDDFT in mixed quantum-classical dynamics



\DELIGTENITREEESTEI G EN T Trajectory Surface Hopping

The trajectory surface hopping dynamics (2)

The quantum component

—— AT
@ To each trajectory there are quantum BT /w ~ AN
amplitudes @™ C;(R(t), t) associated to each Wyo\f\ _
PES: '”5%@}@&6 2
3 E
{Go(R(1), 1), Cu(R(1), 1), C2(R(2), 1), .}. <5
. — C,
@ They evolve according to ’ "(1); 4,
Iﬁ% — CjEjel _ Ihz (dﬂ . RC,) OOL/ 1‘0 20 y 4‘0 5‘0 60 700
I ‘ ' I — I,
@ OMC;(R(t),t) determine the surface hopping o8 B :E'“’:z'
probabilities, o
506 M — GOy
RV (R - dyRE)
(o] (A= —o [T D i d dr 50
Py (89 /: () . \
02 ‘
_ |
so that: @M C2(R(t), t) = “p;(R(2), t). oAl
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Tully’s surface hopping - Summary

Tully's surface hopping
ihCe(t) = C(t)(Hij — ihR™ - d)
J

MR, = —V,EZ(R)

D g <<<> g,

I<k—1 1<k
Some warnings:
@ Evolution of classical trajectories (no QM effects — such as tunneling — are possible).

@ Rescaling of the nuclei velocities after a surface hop (to ensure energy conservation) is still
a matter of debate.

© Depending on the system studied, many trajectories could be needed to obtain a complete

statistical description of the non-radiative channels.

For more details (and warnings) about Tully’s surface hopping, see G. Granucci and M. Persico,
J Chem Phys 126, 134114 (2007).
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Tully's surface hopping -

Mixed quantum-classical dynamics

Trajectory Surface Hopping

Examples

1D systems
0.04 T
T t=0.0008 hbar /Ey  Step =0
(a) . g =0046363 £y H =1 0000 TP [E)
H 20 = s w0 o 01
n~—+50 = ] 1
002 i
n ]
i t
I
T AKX ! —
L
OfFeeceaeo O N i s
= = At
B : 8
1 7 I H
-002 " } | £ |l H &
AL : : 10
J.C. Tully, J. Chem. Phys. (1990), 93, 1061 1 = i
1 1
I 1
1 H
] ]
5| ; ‘ il [ : 8
nozf n ]
] f 1
I it 1
Z —f—— ————————— g
I 4 1
g ] \ IR E— i
| :
- ST :
1 + 3 " 1
- -5 o Al a5 L] s 1
R ] phase (5]
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Mixed quantum-classical dynamics

Trajectory Surface Hopping

Tully's surface hopping - Examples

1D systems
004 T
(a)
i
n~—+50
002 1
n
"
AT
[0l SR p——- / Mmoo
-002 } }

J.C. Tully, J. Chem. Phys. (1990), 93, 1061

On the right: population of

the upper state (k=mom) 0

o exact
e TSH
— Landau-Zener

TDDFT in mixed quantum-classical dynamics
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Tully's surface hopping - Examples

1D systems

b =008 hbar /£, atep -0

o) <0.225087 E,, 1 10000 TFY [Ey]
0 -8 & -4 -2 o 2 4 & " o s 1 4
" ghRe
o L
5 5 e < {5
3 " %,
3 gpr— & % e
aw, e e ] =
] Lo P B e
g - N N 7
£ 3 il
i ]
= =
{20
J.C. Tully, J. Chem. Phys. (1990), 93, 1061 |
; : ..

Vaailh [E)

-0, 05 1

5 L)
phase (1]
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Tully's surface hopping - Examples

1D systems

008 ,if‘“*'z 1 L (c)

o
Il
1

ENERGY (a.u)
~,
\

-0.05 -

J.C. Tully, J. Chem. Phys. (1990), 93, 1061

On the right: population of
the upper state 0

o exact

| L 1 1

° TS -4 3 2 0o 1
loge (E) (a.u)
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Comparison with wavepacket dynamics

Butatriene molecule: dynamics of the radical cation in the first excited state.

(H)  Rea

JPCA,107,621 (2003)

TDDFT in mixed quantum-classical dynamics
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Comparison with wavepacket dynamics

Butatriene molecule: dynamics of the radical cation in the first excited state.

Coln

1

105
— /
= 10 A S
e ===

95 1 L

od 4 = TS

JPCA,107,621 (2003)
CASSCF PESs for the radical cation (Qia: symmetric stretch, 0: torsional angle).
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Comparison with wavepacket dynamics

i

A

Density [arb]  Energy [eV]

Density [arb.]

Nuclear wavepacket dynamics on fitted
potential energy surfaces (using
MCTDH with 5 modes). Reappearing
of the wavepacket in 51 after ~ 40fs.

Density [arb.]

Density [arb.]

JPCA,107,621 (2003)

Density [arb ]
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Comparison with wavepacket dynamics

% A
~ 1.48
- 1.38
4128 Reg, On-the-fly dynamics with 80 trajectories
118
crosses).
- 1.48 ( )
-1 1.38
= 1.28 Ree, . . .
e Trajectories are not coming back close
rys ] F 1148 to the conical intersection.
2t 2, 4 . F 4138
Qu o - 4 o F LS
. . -
2F 1 r o q e What is the reason for this discrepancy?
r 7 ::: The independent trajectory
I S
200 b +‘t¢'@; + 4128 Reg, approximation?, i.e. the fact that
= = — 119 . .
trajectories are not correlated?
| - 1.48
L 1128 (Or it has to do with differences in the
- 30fs * - 1.28 R,
B e PESs?)
- - 1.48
- Lop e JPCA 107,621 (2003)
40fs | ., * o128 R,
L @l 4119
1 L 77 1 1

-90 -60-30 0 30 60 80 -90 -60 -30 0 30 60 80
L] 0
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Comparison with wavepacket dynamics

07 1
0.6 \ 8
05 \ B 1
oaf i . 1

Population of A state

0.3 i ]

0 LTt L N
Q 20 40 60 80 100
Time [fs]

0.2

01+

TDDFT in mixed quantum-classical dynamics

On-the-fly dynamics with 80
trajectories.

Trajectories are not coming back close
to the conical intersection.

What is the reason for this discrepancy?
The independent trajectory
approximation?, i.e. the fact that
trajectories are not correlated?

(Or it has to do with differences in the
PESs?)

JPCA,107,621 (2003)
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e TDDFT-based trajectory surface hopping
@ Nonadiabatic couplings in TDDFT
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TDDFT-based trajectory surface hopping

Tully's surface hopping - On-the-fly dynamics

Tully’s surface hopping

ihCe(t) = CP(t)(Hiy — ihR™ - d)
j
MR, = =V, Ef'(R)

D gl << g,

I<k—1 1<k

What about the electronic structure method for on-the-fly dynamics? We need:

@ Potential energy surfaces — MR-CISD, LR-TDDFT, semiempirical, ...

TDDFT in mixed quantum-classical dynamics



TDDFT-based trajectory surface hopping

Tully's surface hopping - On-the-fly dynamics

Tully’s surface hopping

ihCe(t) = CP(t)(Hiy — ihR™ - d)
j
MR, = —V,Ef'(R)

D gl << g,

I<k—1 1<k

What about the electronic structure method for on-the-fly dynamics? We need:
@ Potential energy surfaces — MR-CISD, LR-TDDFT, semiempirical, ...
@ Forces on the nuclei — MR-CISD, LR-TDDFT, semiempirical methods, ... .

TDDFT in mixed quantum-classical dynamics



TDDFT-based trajectory surface hopping

Tully's surface hopping - On-the-fly dynamics

Tully’s surface hopping

ihCR(t) = CP(t)(Hiy — ihR™ - d})
j
MR, = —V,Ef'(R)

Z gj <¢< ng/‘ ;
I<k—1 1<k
What about the electronic structure method for on-the-fly dynamics? We need:
@ Potential energy surfaces — MR-CISD, LR-TDDFT, semiempirical, ...
@ Forces on the nuclei — MR-CISD, LR-TDDFT, semiempirical methods, ... .
@ Nonadiabatic coupling terms — MR-CISD, LR-TDDFT (?), semiempirical methods, ... .

TDDFT in mixed quantum-classical dynamics



Do o B R RSN ML LT Nonadiabatic couplings in TDDFT

Nonadiabatic couplings with LR-TDDFT?

Nonadiabatic coupling vectors are defined in terms of electronic wavefunctions:

(®k(R)|VrRHe|®;(R))

dy; = (®x(R)|VRr|®;(R)) = Ei(R) — Ex(R)

The main challenge is to compute all these quantities as a functional of the ground state
electronic density (or equivalently, of the occupied Kohn-Sham orbitals).

dj — dyjp]

Different approaches for the calculation of dgj[p] are available 2.

Here we will use the method based on the auxiliary many-electron wavefunctions.

2V. Chernyak and S. Mukamel, J. Chem. Phys. 112, 3572 (2000); R. Baer, Chem. Phys.
Lett. 364, 75 (2002); E. Tapavicza, |. Tavernelli, and U. Rothlisberger, Phys. Rev. Lett. 98,
023001 (2007); C. P. Hu, H. Hirai, and O. Sugino, J. Chem. Phys. 127, 064103 (2007).

TDDFT in mixed quantum-classical dynamics
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The density response SOS formula

In TDDFT the density response x(w) is

x(w) = 72 (W’I — Qw)) '8 T2
with

Qijo ki = Sor0iSji(elr — €xo)® + 2\/(15'0 — fio)(€jo — €io)Kijo,kir \/(fkf — fir)(€1r — €kr)

Using the spectral representation of the (w2l — Q(w))™?!, we can write

z,z}
2 -1 n<p
I—Q = —_
W a) =30
S didor
where Z,, are the TDDFT eigenvectors of the pseudoeigenvalue equation, (Sjjo k- = W)
(o3 o (o3 o

QZ, = Wl Z,,
Therefore 3
S—l/zznzzs—l/z

2 _ 2
wi —w

x(w)=>"

n

and finally the perturbation of any observable (6O(w) = Eija 0jjo 0 Pjjc)

“1/29 v ta—1/2
TDDFT (87 Z)iwo (Z)S Vi s
50 (w) = Z J;T Ojjr g Vi E(w) .

3M4 E. Casida, in Recent Advances in Density Functional Methods, edited by D. P. Chong, World Scientific, Singapore (1995), JCP, 130, 124107

(2007)
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In MBPT the density response x(w) is

SOMBPT () — Z 2wig(Wo|O|Ws) (Wa| 0 E(w)|Wo)

2 _ 32
n “ho w

Equating O TPPFT (1) with OMBPT (w) residue-by-residue,
(fie —fis)>0

(WolOlW,) = >

ijo

1

0je(S7?Z,) 0

n

For any one-body operator, O, a mapping between MBPT and TDDFT quantities gives (for the
moment, we only consider transitions from the ground state Wy)

018122, = Wl/?(Wo|O|W,) J

where the operator O = 3 o,-aaé};éag has components 0j.5 = (¢ix|O|ac) * with

won = En — Ep. All matrices and vectors are given in the basis of KS orbitals {¢;,} with

iac

corresponding occupations f;, and orbital energies €/, .

N
., Stands for 350, 3522 30 o a8}

TDDFT in mixed quantum-classical dynamics
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The auxiliary wavefunction

For practical purposes we introduce the auxiliary linear-response many-electron wavefunctions >

as a linear combination of singly excited Slater determinants

S[{e- 1] =D ek, 8l 8i0Pol{e 1],

iac

with
—1
k _— iac _k
Cihy = e;
laoc laoc
Wok

where ®o[{¢.}] is the Slater determinant of all occupied KS orbitals {¢ic};, which, at a turn,
are promoted into a virtual (unoccupied) orbitals, 1ac .

We therefore have (in linear response!)

(V0|O1¥,) = ($0]O13) J

5JCP, 130, 124107 (2007), JCP, 131, 196101 (2009).
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Nonadiabatic couplings

@ The nonadiabatic coupling elements at the mid step t + 6t/2 of a LR-TDDFT AIMD can
therefore be calculated as

R - doglese/2106. 11 = (Solrs R(D) | Vi | (i R() ) - R = (ool R() | 2= | B4 R(1)) )

1

557 [(@or RO)ISu(ri R(x + 61))) — (Bo(rs R(t + 5))[Bu(r; R()) ]

@ The nonadiabatic coupling vectors between pairs of excites states (second order response)

(®k(R)|VrH|D;(R))

llo )] = = e

» Auxiliary many-electron wavefunctions give exact couplings between ground
state and any (singly) excited state.

» Auxiliary many-electron wavefunctions give high quality couplings between
pairs of (singly) excited states (“exact” in the TDA and up to O(5p%) in full
response).

TDDFT in mixed quantum-classical dynamics
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Nonadiabatic couplings - examples

As always, the quality of the nonadiabatic couplings will depend on the xc-functional used...

dij[{¢-}] = (®«(R)| Vr|®;(R))

PBE MR-CISD

Protonated formaldimine: nonadiabatic coupling vectors do; with LR-TDDFT/TDA.

TDDFT in mixed quantum-classical dynamics
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Nonadiabatic couplings - examples

As always, the quality of the nonadiabatic couplings will depend on the xc-functional used...

dij[{¢-}] = (®«(R)| Vr|®;(R))

PBE PBEO MR-CISD

Protonated formaldimine: nonadiabatic coupling vectors di2 with LR-TDDFT/TDA.

TDDFT in mixed quantum-classical dynamics



TDDFT-TSH: Applications

© TDDFT-TSH: Applications
@ Photodissociation of Oxirane
@ Oxirane - Crossing between S; and S

TDDFT i ixed quantum-classical dynamics



TDDFT-TSH: Applications

Protonated formaldimine

The protonated formaldimine is a model compound for the study of isomerization in rhodopsin
chromophore retinal.

In addition to the ground state (GS), two excited electronic states are of interest:

© S1: 0 — 7 (low oscillator strength)

Q S : m— 7w* (high oscillator strength)

-6

CH,NH,*

TDDFT in mixed quantum-classical dynamics




TDDFT-TSH: Applications

Protonated formaldimine

Computational details

@ Isolated system

@ LR-TDDFT/PBE/TDA

@ SH-AIMD

@ 50 trajectories (NVT) each of ~100 fs.

-

CH,NH,*

PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009).
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TDDFT-TSH: Applications

Protonated formaldimine

Protonated formaldimine as a model
compound for the study of the
isomerization of retinal.

Photo-excitation promotes the
system mainly into S».

Relaxation involves at least 3
states:
So (GS), S1 and S,.

[E. Tapavicza, I. T., U. Rothlisberger, PRL, 98,

023001 (2007); THEOCHEM, 914, 22 (2009)]

0 20 40 60 80 100
Time (fs)
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TDDFT-TSH: Applications

Protonated formaldimine

Typical trajectory

0

PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009).
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TDDFT-TSH: Applications

Protonated formaldimine

Nonadiabatic couplings o) = R”. dy;

15
10 &
=11}
¢ £
=¥
=)
o
]
5
0

PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009).
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TDDFT-TSH: Applications

Protonated formaldimine

States population

1 T T T T T
2
I — ic, 0 ]
2
0.8 - — IC,0F
2
I — e, ]
2
Lol ic, o
2 |
2
S 04l
02}
0 1

PRL, 98, 023001 (2007); THEOCHEM, 914, 22 (2009).

TDDFT in mixed quantum-classical dynamics



TDDFT-TSH: Applications

Protonated formaldimine

States population - Average over many trajectories.
Dashed line = CASSCF result.

Average occupation
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TDDFT-TSH: Applications

Protonated formaldimine

Geometrical modifications

14f

12
<10
8,

Energy (e

N O

o

0 10 20 30 40 50 60 70 80
Time (fs)
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TDDFT-TSH: Applications

Protonated formaldimine

Comparison with experiment and model calculations

@ In addition to the isomerization channel, intra-molecular proton transfer reactions was
observed (formation of CH3NH™).

@ Hj abstraction is also observed in some cases.

@ Structures and life times are in good agreement with reference calculations performed using

high level wavefunction based methods.

OO

CH,NH,*
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TDDFT-TSH: Applications
Oxirane

Oxirane - Crossing between S and Sq

can occur.

Oxirane has interesting non-radiative decay channels, during which ring opening and dissociation

O
o hv 0] O
/\ - . L — | &
e gt
H H H H H H
(1) 2
H—C + 'C.:"H H—C—C}—H
H H
(4)

Figure: Mechanism proposed by Gomer and Noyes
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Oxirane

Oxirane has interesting non-radiative decay channels, during which ring opening and dissociation
can occur.
Computational details

@ [solated system

@ LR-TDDFT/PBE/TDA

@ SH-AIMD

@ 30 trajectories (NVT) each of ~100 fs.
JCP, 129, 124108 (2009).
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Oxirane

Oxirane has interesting non-radiative decay channels, during which ring opening and dissociation
can occur.

<)

P P

840 250 260 270 280 290 300 310 320
(@) Time (fs)
JCP, 129, 124108 (2009).

TDDFT in mixed quantum-classical dynamics



el B L BV GEITETEI SR Oxirane - Crossing between Sp and Sp

The photophysics of solvated Ruthenium(ll) tris-bipyridine

[Ru(bpy)3)]>* dye: photophysics

[Ru(bpy)3)]?* dye: Singlet state dynamics

25| 4 F 25
‘e, 3

A MLCT

s ==
> =N
~
QO Weak [ N
@ Medium JMicr
I @ Opimal — ‘MLCT ~
L TR
10 20 30 40 10 20 30 40 50
Time (fs) Time (fs)

[Ru(bpy)s)]*t dye: triplet state dynamics

| |
'ﬁ

,5 '

[M.E. Moret, I.T., U. Rothlisberger, JPC B, 113, 7737 (2009); IT, B. /- :‘x &

Curchod, U. Rothlisberger, Chem.Phys., 391, 101 (2011)]
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@ Local control theory

@ LC of protontransfer: from gas-phase to solution
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TSH with external time-dependent fields

TSH with external time-dependent fields

Addition of an external field within the equations of motion of TSH:

A
E

Startegy

The idea is to induce electronic excitations through the direct interaction with the time-dependent
(td) electric field instead of “artificially” promote the system into one of its excited states.
Method: extended TSH nonadiabatic dynamics.

IT, B. Curchod, U. Rothlisberger, Phys. Rec. A 81, 052508 (2010)
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TSH with external time-dependent fields

TSH with external time-dependent fields

Short summary of the theory

The interaction Hamiltonian between the electrons and the td electric field is

~ e

Hipe = — D> A(ri,t) - B
i

2mec

where A(r, t) is the (classical) vector potential of the electromagnetic field, p; is the momentum
operator of electron i/, e is the electron charge, me is the electron mass, and c is the speed of
light.

Remark

We are in the dipole approximation and therefore we do not need TDCDFT.

IT, B. Curchod, U. Rothlisberger, Phys. Rec. A 81, 052508 (2010)
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External field within TSH

It can be shown (Phys. Rev. A 81 052508 (2010)) that through the coupling with the td electric
field, Tully’s propagation equations acquire an additional term

g . A .
inCs(t) =S Cr(t)(Hy — inR™ - dS + ;wj,?oe* - )
I

with
gy = (| Hine | 1)

iwyy

Ao(t)
c
and where Ay(t) = Aper et is the vector potential of the external td electric field,

By =—e(d)] > Ri|))
i
is the the transition dipole vector, and wy; = (E; — E;)/h.

Note that Tully’'s hops probability should be modified accordingly.
IT, B. Curchod, U. Rothlisberger, Phys. Rec. A 81, 052508 (2010)
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TSH with external time-dependent fields

Effect of an electromagnetic field - Lithium fluoride

Different excitations can be obtained, depending on the polarization vector of the laser pulse.

Electronic structure of LiF

@ Ground state - © AE (eV)y
symmetry (GS) .
( ) 4691 —_— 21 .
@ First excited state (doubly
degenerate) - I symmetry HOMO-2
LUMO
(51) -
@ Second excited state - X
symmetry (Sz) .
. . 4331 = 1'II-S
@ Avoided crossing between ! HOMO
GS and S, T 4
LUMO
) HOMO 1
o+ — 1'3*- Ground state
X
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TSH with external time-dependent fields

Effect of an electromagnetic field - Lithium fluoride

Pulse: A(t) = —Age™ exp (—(1:77_720)2) sin(wt)

A(t)

6000 8000 10000

2000 4000
Time [a.u.]

-2000 0
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TSH with external time-dependent fields

Effect of an electromagnetic field - Lithium fluoride

x-polarized pulse: e* = (1,0,0)

AE (EV)“
4691  ———2'2'-5,
HOMO 2
LUMO
433 = 1'11-5,
LUMO
L HOMO 1
j/
o+t —— 1'2%- Ground state
X
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TSH with external time-dependent fields

Effect of an electromagnetic field - Lithium fluoride

e =(1,0,0)
1
2 05k 4
o
NEVR - h 3
- -314 m
8 E—Gs B
E 3145 — 5, -
= [ — s, 1
?T“ 3],5?_ s, 7
I;é -31.55 — ~--- Running state —
[D) L L . 1
_L65 B
=
L6
4
1.55

Time [fs]

IT, B. Curchod, U. Rothlisberger, Phys. Rec. A 81, 052508 (2010)
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TSH with external time-dependent fields

Effect of an electromagnetic field - Lithium fluoride

[— ---- Running state | |

b) . —

h N
h o oW
LA L LA LA B W

@
3

Time [fs]

IT, B. Curchod, U. Rothlisberger, Phys. Rec. A 81, 052508 (2010)
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TSH with external time-dependent fields BT NTTIG BTG

Local control theory

Control is achieved by tuning the temporal evolution of E(t) in a way to maximize the

population of a target state.

Using the TSH for the total molecular wavefunction
o0
V(r, R t) = CH(t)o,(r; R)
J
for a given trajectory «, the population time evolution simplifies to

Pi(t) = —2E%(t) Y S[CF* iy CF (1))
J

It is now evident that choosing a field of the form

E(t) = -2)_ S[CP(H)CH ny)]
J

will ensure that P;(t) always increases in time.

T. J. Penfold, G. A. Worth, C. Meier, Phys. Chem. Chem. Phys. 12, 15616 (2010).

B.F.E Curchod, T. Penfold, U. Rothlisberger, IT, PRA, 84, 042507 (2011)
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TSH with external time-dependent fields BT NTTIG BTG

Application: Photoexcitation of LiF in the bound state S,

B.F.E Curchod, T. Penfold, U. Rothlisberger, IT, PRA, 84, 042507 (2011)
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TSH with external time-dependent fields BT NTTIG BTG

Effect of a generic polarized pulse
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TSH with external time-dependent fields BT NTTIG BTG

LC pulse: efficient population transfer and stable excitation
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TSH with external time-dependent fields BT NTTIG BTG

Comparison with wavepacket propagation (MCTDH)
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© Ab initio molecular dynamics

e Mixed quantum-classical dynamics

e TDDFT-based trajectory surface hopping

@ TDDFT-TSH: Applications

e TSH with external time-dependent fields

@ LC of protontransfer: from gas-phase to solution
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Local control of proton transfer: gas phase to solution

ChemPhysChem, 10, 2026 (2015)

(in preparation)
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Local control of proton transfer in gas phase

ChemPhysChem, 10, 2026 (2015)
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Local control of proton transfer
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Local control of proton transfer
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Local control of proton transfer (freq. vs. time)
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TSH with external time-dependent fields

Local control of proton transfer. Average over 6 trajs
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Local control of proton transfer (microsolvated)
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Local control on proton transfer (with one water molecule)
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rol of proton transfer (comparison)

gas phase with one water molecule
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TSH with me-dependent fields

LCT in explicit solvent: TDDFT /MM
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LCT in explicit solvent: TDDFT /MM
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