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This talk: Probing topology by “heating” ?

Signature of topology in the Depletion rate of a Bloch band ? 
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Probing topology by “heating”
In collaboration with

Duc Thanh Tran (ULB)

Alexandre Dauphin (ICFO)

Adolfo Grushin (Berkeley)

Peter Zoller (IQOQI)



“back to the basics...”

cond-mat
cond-mat

this talk



V

magnetic field

The quantum Hall effects

quantized Hall conductance

(1985 / 1998)

is a topological invariant : a Chern number

Thouless et al. (TKNN) PRL 1982

von Klitzing et al. PRL 1980



Consider a particle moving on a two-dimensional lattice:

Topology of the    th Bloch band: : Chern number of the band

The eigenfunctions are Bloch waves

The eigenenergies are Bloch bands

The Berry curvature of the    th band: 



Filled Bloch band + electric field Equations of motion (semiclassics)

TKNN formula

topological physics in a wide range of physical settings (cold atoms, photonics , ...)

Reviews: Focus on Topological matter in Nature Physics ʻ16 

Karplus & Luttinger 1954

Topological responses are universal : They appear in band systems with non-trivial topology



Atomtronics: solid-state versus cold-atom measurements

Solid-state physics: filling a band with electrons

Transport equation for the current density

quantized Hall conductivity (IQHE)

Ultracold atoms in optical lattices: an analogy

electric field

linear gradient

Center-of-mass imaged in-situ

(TKNN formula)

Ref: Dauphin and Goldman PRL ʻ13 





A small gallery of recent (related) works from Brussels
Measurement of Chern numbers through center-of-mass responses
H. M. Price, O. Zilberberg, T. Ozawa, I. Carusotto and N. Goldman,
Phys. Rev. B 93, 245113 (2016)

Four-Dimensional Quantum Hall Effect with Ultracold Atoms
H. M. Price, O. Zilberberg, T. Ozawa, I. Carusotto and N. Goldman,
Phys. Rev. Lett. 115, 195303 (2015)

synthetic dim
ension

Loading Ultracold Gases in Topological Floquet Bands: The Fate of Current and Center-of-Mass Responses
A. Dauphin, D. T. Tran, M. Lewenstein and N. Goldman,
2D Materials (accepted manuscript 2017)

Current response is affected by: 
(1) inter-band interferences, (2) micro-motion (drive)

COM displacement: more robust (time-integration)

drive

see also Hu, Zoller, Budich PRL �16
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This talk: Probing topology by “heating” ?

Depletion rate of a Bloch band: topological signature?

Fundamentally distinct from TKNN paradigm:

Depletion rate reflects the non-linear inter-band response 
to a time-dependent perturbation

(TKNN: linear response to constant field, single-band effect) 

Drive (shake)
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Summary: Depletion rate, chirality and topology

Differential integrated rate (DIR)



A time-modulated 2D Chern insulator

• Consider a filled Bloch band of Chern number νLB, separated by a gap ∆gap
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quasimomentum

• Subjecting the system to a constant “electric” field E = Ey1y → σH∼νLB (TKNN)

• Here : We study the response against a circular time-dependent perturbation

Ĥ±(t)=Ĥ0+2E [cos(ωt)x̂± sin(ωt)ŷ] , ± : drive orientation/chirality, ω : inter-band

• Physical observable→ Nb particles extracted from the LB : N±(ω, t)≈Γ±(ω)t

• The depletion rate Γ± can be evaluated through Fermi’s Golden Rule (FGR) :

Γ±(ω) =
2π

~
E2

∑
e/∈LB

∑
g∈LB

|〈e|x̂± iŷ|g〉|2δ(t)(εe − εg − ~ω), E : perturbation

g : initially occupied states (LB), e : initial. unoccupied states (higher bands)

δ(t)(ω)=(2/πt) sin2(ωt/2)/ω2−→δ(ω) : “long-time” limit
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Simple derivation of main result
• Starting point : the total time-dependent Hamiltonian

Ĥ±(t)=Ĥ0+2E [cos(ωt)x̂± sin(ωt)ŷ]

• We perform a frame/gauge transformation (to recover translational symmetry)

R̂± = exp

{
i
2E

~ω
[sin(ωt)x̂∓ cos(ωt)ŷ]

}
, Ĥ(t) = R̂Ĥ(t)R̂† − i~R̂∂tR̂†

• To lowest order in E, the momentum-representation Hamiltonian reads :

Ĥ±(k, t)≈Ĥ0(k)+
2E

~ω

{
sin(ωt)

∂Ĥ0(k)

∂kx
∓cos(ωt)

∂Ĥ0(k)

∂ky

}
• Writing the FGR in this frame :

Γ±(ω) =
∑
k

Γ±(k;ω),

Γ±(k;ω)=
2πE2

~3ω2

∑
n>0

|〈n|
1

i

∂Ĥ0

∂kx
∓
∂Ĥ0

∂ky
|0〉|2δ(t)(εn(k)−ε0(k)−~ω).

where |g〉≡|0(k)〉 and |e〉≡|n(k)〉 (n : band index) ;

• Let us introduce the differential rate ∆Γ = (Γ+−Γ−) /2 =
∑

k ∆Γ(k)

∆Γ(k)=
Γ+(k;ω)−Γ−(k;ω)

2
=

4πE2

~3
∑
n>0

Im
〈0|∂kxĤ0|n〉〈n|∂ky Ĥ0|0〉

(ε0 − εn)2
δ(εn(k)−ε0(k)−~ω)
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∂Ĥ0(k)

∂kx
∓cos(ωt)
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• For a 2-band model (n=1) : the local differential rate probes the LB’s geometry

∆Γ(k) ∼ Ωxy(k)δ(t)(ε1(k)−ε0(k)−~ω)→ measurement from wave-packets

• More generally (N -band models) : Integrating over drive frequency
(activate all inter-band transitions)→ “differential integrated rate (DIR)”

∆Γint =
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∑
k

∑
n>0

Im
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The main result

• One obtains a simple quantization law for the differential integrated rate (DIR)

∆Γint/Asyst = η0E
2, η0 = (1/~2) νLB (1)

−→ Activating all transitions reveals the LB’s topology !

• Compare with TKNN (quantization of the Hall conductivity)

Jx/Asyst = σHE, σH = (e2/h) νLB

• The quantized response associated with the DIR : the main differences

• The response (1) is non-linear with respect to the driving field E

• The response (1) involves inter-band (dissip.) processes (6= single-band semiclassics)

• The response (1) probes the chirality (through differential measurement)

• Measuring the DIR in practice : Sample the frequency ω → ωl ∈ [∆gap,Wbandwidth]

∆Γint =
∑
l

[Γ+(ωl)−Γ−(ωl)] ∆ω/2→ validated numerically (Haldane model)
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“Measuring band populations
 is possible using band mapping”

quantum optics
quantum optics

Aidelsburger et al. Nature Phys ʻ15

depletion rate



The crucial role of boundaries

• All previous calculations assumed periodic boundary conditions (no edges)

• Edges can be treated within a real-space approach

Γ±(ω) = (2π/~)E2
∑
e/∈LB

∑
g∈LB

|〈e|x̂± iŷ|g〉|2δ(t)(εe − εg − ~ω)

g : initially occupied states (LB), e : initial. unoccupied states (higher bands/edge)

• Integrating over all frequencies, one obtains the integrated rate

Γint
± = (2π/~2)E2

∑
g∈LB

〈g|P̂ (x̂∓ iŷ)Q̂(x̂± iŷ)P̂ |g〉

where P̂ =
∑

g |g〉〈g| = 1− Q̂.

• The differential integrated rate (DIR) reads :

∆Γint =(Γint
+−Γint

− )/2 = (E/~)2 Tr Ĉ, Ĉ = 4π ImP̂ x̂Q̂ŷP̂ ,

• Previous result recovered since (1/Asyst)Tr Ĉ=νLB for PBC ; see Kitaev 2008

• For open BC : Tr Ĉ = 0 ... (technical : trivial fibre bundle ; see Resta, Vanderbilt)
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The crucial role of boundaries

• Summary : ∆Γint =(E/~)2 Tr Ĉ and Tr Ĉ = 0 (OBC)
• Insight : we can perform the trace over the position-basis {|rj〉} and write

∆Γint
OBC = (E/~)2

 ∑
rj∈bulk

C(rj)+
∑

rj∈edge

C(rj)

 , C(rj)=〈rj |Ĉ|rj〉

• Illustration on the Haldane model :
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• In the bulk : C(rj)≈νLB −→ (1/Asyst)
∑

rj∈bulk C(rj)=νLB

• The edge exactly compensates the bulk contribution (even for large systems !).
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Methods to get rid of the edge-state contribution

• Local measurement in the bulk (R) ? Does not lead to a quantized response !

νR =(4π/AR)Tr Im
(
R̂P̂ x̂Q̂ŷP̂

)
≈νLB but νR 6= (4π/AR)Tr Im

(
P̂ R̂x̂Q̂R̂ŷP̂

)

• Restrict the depletion-rate measurements to repopulation of bulk states only

Validated numerically (OK on large systems) ; but requires band-structure knowledge !

• Remove trap before heating protocol :
→ projection onto bulk states (≈ LB for large clouds) only !

→ efficient and model-independent method (validated numerically) !
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Summary:  Topology through depletion-rates measurements

Differential integrated rate (DIR)



Concluding remarks

• Topological order can be detected by heating a system (in a proper way)

• Atomtronics : This measurement can be performed in cold atoms
(shake/band-mapping/remove edge contributions) !

• Results presented for 2D Chern insulators, but can be generalized (e.g. 3D)

• The result ∆Γint = (E/~)2 Tr Ĉ, Ĉ = 4π ImP̂ x̂Q̂ŷP̂

→ suggests possible generalizations to interacting topological phases

Probing topology by “heating”
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Thank you for your attention !


