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For a recent review on the topic:
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Topological quantum matter with ultracold gases
in optical lattices

N. Goldman', J. C. Budich?3 and P. Zoller®?

Since the di: y of many phases have been predicted and realized in a range of different
systems, providing both fascinating physics and exciting opportunities for devices. And although new materials are being
developed and explored all the time, the prospects for probing exotic topological phases would be greatly enhanced if they
could be realized in systems that were easily tuned. The flexibility offered by ultracold atoms could provide such a platform.
Here, we review the tools available for creating topological states using ultracold atoms in optical lattices, give an overview of
the and and provide an outlook towards realizing strongly correlated topological phases.

topological insulators™, intense effort has been devoted to
the exploration of novel topological phases of matter. This
quest is driven by the prediction of fundamentally new physical
phenomena, some of which envisage potential applications®”.
Topological phases of matter elude the conventional Landau

S ince the discovery of the quantum Hall (QH) effect' and

The main interface to control atoms through light-matter
interaction is the optical dipole potential®’, which can be generated
by subjecting atoms to laser fields. It can be expressed as
V(x) =a|E(x)|?, where E(x) denotes the electric field associated
with the lasers, @ is the polarizability, which typically depends
on the laser frequency and x denotes the position vector. By
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“back to the basics...”




The quantum Hall effects @ @ (1985 / 1998)

quantized Hall conductance

H=Ux(@/h) 1oy
]
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[V is a topological invariant : a Chern number]

Thouless et al. (TKNN) PRL 1982

Photo: Princeton 1ll: . Elmehed. © Nobel
University, Comms. Office,  Media 201
D. Applewhite J. Michael Kosterlitz

© Trinity Hall, Cambridge

University. Photo: Kiloran

Howard

David J. Thouless

Prize share: 172 Haldane
Prize share: 1/4

Prize share: 1/4




e Consider a particle moving on a two-dimensional lattice:

* The eigenfunctions are Bloch waves
ke
¢n,k (1”) =e un,k:('r)
* The eigenenergies are Bloch bands ]"u

I:Ik Un,k = gn(k) Un,k
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* The Berry curvature of the nth band: 2,, = Q7Ydk, A dk,

QY = {(akmunwkyun) - <3kyun\3km“n>]
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Topology of the nth Bloch band: | —
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Q, =v,€7Z | :Chern number of the band




¢ Filled Bloch band + electric field Ey Equations of motion (semiclassics)

x _ 8E(k) LE‘I/ me

U% (ki) - % Karplus & Luttinger 1954

hok,

TKNN formula f$

Topological responses are universal : They appear in band systems with non-trivial topology

[ ——» topological physics in a wide range of physical settings (cold atoms, photonics, ...) ]

Reviews: Focus on Topological matter in Nature Physics ‘16



Atomtronics: solid-state versus cold-atom measurements

e Solid-state physics: filling a band with electrons

Transport equation for the current density
e sl

electric field

2
m +F = Ey].y ]x = % v Ey (TKNN formula)

———» quantized Hall conductivity (IQHE)

e Ultracold atoms in optical lattices: an analogy

Center-of-mass imaged in-situ

E e e e
linear gradient
m tE=Eyl,
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Ref: Dauphin and Goldman PRL ‘13
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Measuring the Chern number of Hofstadter bands
with ultracold bosonic atoms

M. Aidelsburger'2*, M. Lohse"?, C. Schweizer'?, M. Atala'?, J. T. Barreiro'2', S. Nascimbéne3,
N. R. Cooper?, I. Bloch"? and N. Goldman®®

Density (a.1.)
-1 i

Differential shift 2x(t)/a
Populations 7, (t)

@(ﬁwo‘?o

100 200
BO time (ms) BO time (ms) Position (a) BO time (ms)

By fitting this equation to the experimental data x (¢), with the Chern
number being the only fit parameter, we obtain an experimental
value for the Chern number of the lowest band

9(5)




A small gallery of recent (related) works from Brussels

Measurement of Chern numbers through center-of-mass responses
H. M. Price, O. Zilberberg, T. Ozawa, |. Carusotto and N. Goldman,
Phys. Rev. B 93, 245113 (2016)
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Four-Dimensional Quantum Hall Effect with Ultracold Atoms w-s
H. M. Price, O. Zilberberg, T. Ozawa, |. Carusotto and N. Goldman, z 3
Phys. Rev. Lett. 115, 195303 (2015) 5
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Loading Ultracold Gases in Topological Floquet Bands: The Fate of Current and Center-of-Mass Responses
A. Dauphin, D. T. Tran, M. Lewenstein and N. Goldman,
2D Materials (accepted manuscript 2017)

» drive .
B E Current response is affected by:
eff (1) inter-band interferences, (2) micro-motion (drive)

0 /\ erive > Winter-band > WBloch

v=20
k

see also Hu, Zoller, Budich PRL ‘16

k COM displacement: more robust (time-integration)
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Depletion rate of a Bloch band: topological signature?

Fundamentally distinct from TKNN paradigm:

Depletion rate reflects the non-linear inter-band response
to a time-dependent perturbation

(TKNN: linear response to constant field, single-band effect)



Summary: Depletion rate, chirality and topology
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A time-modulated 2D Chern insulator

o Consider a filled Bloch band of Chern number v g, separated by a gap Agap

energy

i A gap
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» Subjecting the system to a constant “electric” field E = Ey1, — oy ~v1 g (TKNN)
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» Subjecting the system to a constant “electric” field E = Ey1, — oy ~v1 g (TKNN)

o Here : We study the response against a circular time-dependent perturbation

Hyi(t)=Ho+2E [cos(wt)Z £ sin(wt)§], = : drive orientation/chirality, w : inter-band
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A time-modulated 2D Chern insulator

Consider a filled Bloch band of Chern number v g, separated by a gap Agap

energy

Agap .
P VLB

quasimomentum
Subjecting the system to a constant “electric” field E = E,1, — oy ~vg (TKNN)
Here : We study the response against a circular time-dependent perturbation
Hyi(t)=Ho+2E [cos(wt)Z £ sin(wt)§], = : drive orientation/chirality, w : inter-band
Physical observable — Nb particles extracted from the LB : N4 (w, ¢) =T+ (w)t
The depletion rate I"+ can be evaluated through Fermi’s Golden Rule (FGR) :
Ii(w) = 2%152 SN lela £iglg)?6M (ee —eg — hw),  E: perturbation

e¢LB g€LB

g : initially occupied states (LB), e : initial. unoccupied states (higher bands)

50 (w) = (2/mt) sin®(wt/2) Jw? —> §(w) : “long-time” limit



Simple derivation of main result
o Starting point : the total time-dependent Hamiltonian

Hy (t)=Ho+2E [cos(wt)Z =+ sin(wt)g]

o We perform a frame/gauge transformation (to recover translational symmetry)

Ry =exp {z% [sin(wt)Z F cos(wt)g]} , H(t) = RH(t)RT — ihRo, R



Simple derivation of main result
Starting point : the total time-dependent Hamiltonian

Hy (t)=Ho+2E [cos(wt)Z =+ sin(wt)g]

We perform a frame/gauge transformation (to recover translational symmetry)

R4 =exp {ZE [sin(wt)Z F cos(wt)g]} , H(t) = RH(t)RT — ihRo, R
To lowest order in E, the momentum-representation Hamiltonian reads :

H(k,t)~ Ho(k)+ % {sin(wt) a%ik) Fcos(wt) algljgik)}

Writing the FGR in this frame :
Fi(w)=> Ti(kiw
k
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where |g) =|0(k)) and |e) =|n(k)) (n : band index) ;



Simple derivation of main result
o Starting point : the total time-dependent Hamiltonian

Hy (t)=Ho+2E [cos(wt)Z =+ sin(wt)g]

o We perform a frame/gauge transformation (to recover translational symmetry)

R4 =exp {ZE [sin(wt)Z F cos(wt)g]} , H(t) = RH(t)RT — ihRo, R
¢ To lowest order in E, the momentum-representation Hamiltonian reads :

H(k,t)~ Ho(k)+ % {sin(wt) a%ik) Fcos(wt) algljgik)}

e Writing the FGR in this frame :
Fi(w)=> Ti(kiw
k
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Ty (ksw)=

where |g) =|0(k)) and |e) =|n(k)) (n : band index) ;
e Let us introduce the differential rate AT = (I'y —I'_) /2 = >, AT'(k)

Ty (kjw)—T- (kw) 4nE> S im (0|0, Ho|n) (n|0k, Ho|0)

Al'(k)=
(k) 2 h3 = (g0 —en)?

6(en(k)—eo(k)—

hw)



Simple derivation of main result
e The differential rate AI' = (I'. —T'_) /2 =", AT'(k) :

(010w, Holn)(n|dk, Hol0)
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e Compare with the Berry curvature :
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e For a 2-band model (n=1) : the local differential rate probes the LB’s geometry
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Simple derivation of main result
The differential rate AT = (I't. —T'—) /2 =", AT'(k) :

(010w, Holn)(n|dk, Hol0)

5 6 (e, (k) —eo (k) — hw)

AT (k) = A7E” S im

h? n>0 (80 76'"‘)

Compare with the Berry curvature :
0|9y, Ho|n)(n|dy, Hol0)

(g0 —€n)?

Quy(k) =2 |m<

n>0
For a 2-band model (n=1) : the local differential rate probes the LB’s geometry
AT(k) ~ Qay (k)6® (€1 (k) —e0 (k) —hw) — measurement from wave-packets
More generally (N-band models) : Integrating over drive frequency
(activate all inter-band transitions) — “differential integrated rate (DIR)”

AT — 4T E? Z Z Im <0|akrﬁ0|n><n|akyﬁ0|0>
h2

k n>0 (e0 _En)Q

Compare with the Chern number

4 (00, Ho|n) (|0, Hol0)
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T
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The main result

¢ One obtains a simple quantization law for the differential integrated rate (DIR)

AT™/Agyt = mo B2,  mo = (1/F*) us (1)

— Activating all transitions reveals the LB’s topology !

o Compare with TKNN (quantization of the Hall conductivity)

J¥ [Asyst = on E, on = (e*/h) s

» The quantized response associated with the DIR : the main differences
The response (1) is non-linear with respect to the driving field £
The response (1) involves inter-band (dissip.) processes (# single-band semiclassics)

The response (1) probes the chirality (through differential measurement)



The main result

¢ One obtains a simple quantization law for the differential integrated rate (DIR)

AT™/Agt =moE?,  no = (1/h*)vp (1)
— Activating all transitions reveals the LB’s topology !

o Compare with TKNN (quantization of the Hall conductivity)

J¥ [Asyst = on E, on = (e*/h) s

» The quantized response associated with the DIR : the main differences
The response (1) is non-linear with respect to the driving field £
The response (1) involves inter-band (dissip.) processes (# single-band semiclassics)

The response (1) probes the chirality (through differential measurement)

» Measuring the DIR in practice : Sample the frequency w — w; € [Agap, Whandwidth]

AF‘”‘:Z [Ty (w;)—T—(w;)] Aw /2 — validated numerically (Haldane model)
l



“Measuring band populations
is possible using band mapping”
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The crucial role of boundaries
o All previous calculations assumed periodic boundary conditions (no edges)
o Edges can be treated within a real-space approach

Ti(w) = @r/RE> > > [eld +iglg)|26™) (cc — gy — hw)
e¢LBg€eLB

g : initially occupied states (LB), e : initial. unoccupied states (higher bands/edge)
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The crucial role of boundaries
All previous calculations assumed periodic boundary conditions (no edges)
Edges can be treated within a real-space approach

Ti(w) = @a/WE 3 3 [(eld £ iglg) 250 (ce — g — hw)
e¢LB gelB

g : initially occupied states (LB), e : initial. unoccupied states (higher bands/edge)

Integrating over all frequencies, one obtains the integrated rate

I = (2r/h?)E* " (9| P& F i9)Q(# £ 1§) Plg)
g€eLB

where P =37 |g)(g| =1 - Q.
The differential integrated rate (DIR) reads :

ATM= (i /2 — (E/R)2Tr e, €= 4nImP2QgP,
Previous result recovered since (1/Agyst)Tr é:uLB for PBC ; see Kitaev 2008

For open BC : Tr &€ = 0 ... (technical : trivial fibre bundle ; see Resta, Vanderbilt)



The crucial role of boundaries

e Summary : AI'™=(E/h)2Tr € and Tr ¢ = 0 (OBC)
e Insight : we can perform the trace over the position-basis {|r;)} and write

Ario"fac(E/ﬁ)Q{ > Clr+ > C(’“j)}a C(rj)=(r;|€r;)

r; €bulk r; €edge
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e Summary : AI'™=(E/h)2Tr € and Tr ¢ = 0 (OBC)
e Insight : we can perform the trace over the position-basis {|r;)} and write

Ario"fac(E/ﬁ)Q{ > Clr+ > C(’“j)}a C(rj)=(r;|€r;)

r; €bulk r; €edge

e lllustration on the Haldane model :
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e Inthe bulk : C(r;) =~y — (1/Asyst) er chulk C(rj)=uvs
» The edge exactly compensates the bulk contribution (even for large systems !).



Methods to get rid of the edge-state contribution

e Local measurement in the bulk (R) ? Does not lead to a quantized response !
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Methods to get rid of the edge-state contribution

e Local measurement in the bulk (R) ? Does not lead to a quantized response !
vR= (47 /AR)Tr Im (Rﬁ:@@gﬁ) ~up but vg # (47/AR)TrIm (ﬁR;@QRgP)
» Restrict the depletion-rate measurements to repopulation of bulk states only
Validated numerically (OK on large systems) ; but requires band-structure knowledge !

* Remove trap before heating protocol :
— projection onto bulk states (= LB for large clouds) only !

— efficient and model-independent method (validated numerically) !



Summary: Topology through depletion-rates measurements

L e

™

VLB

1\“\\\\\\:\1\\:\\\‘wui\:u\‘ B g -

VLB
quasimomentum

3 d - @
£
4 ° @ Differential integrated rate (DIR)
©
€
[ i 2 2
: [Armt/ASyst =mnok", mo= (1/h )VLB




Concluding remarks

Topological order can be detected by heating a system (in a proper way)

Atomtronics : This measurement can be performed in cold atoms
(shake/band-mapping/remove edge contributions) !

Results presented for 2D Chern insulators, but can be generalized (e.g. 3D)
The result AT™ = (E/R)2Tr &, ¢ = 4rImPzQgP

— suggests possible generalizations to interacting topological phases

Probing topology by “heating”
D. T. Tran, A. Dauphin, A. G. Grushin, P. Zoller, and N. Goldman
arXiv :1704.01990

Thank you for your attention !



