Technical Optics with Matter Waves

geometric, thermal, coherent & quantum

M. Sturm J. Teske A. Neumann J. Battenberg <u>R. Walser</u>

Collaboration M. Schlosser G. Birkl

History of success: transistor \rightarrow IC

1947 invention of transistor, J. Bardeen, W. Brattain, W. Shockley @ Bell Labs

1958 invention of **IC Jack Kilby** working at **Texas Instruments**

- Nobelprize 2000 ½
 Z. Alferov ¼ invention of semiconductor heterostructures
- H. Kroemer 1/4 sc-hs opto-electronics

Canon Pockettronic using Texas Instruments ICs

- http://www.ti.com/corp/docs/webemail/2008/enewsltr/public-affairs/graphics/Jack_Kilby300.jpg
- <u>http://www.vintagecalculators.com/assets/images/CanonPocketronic_1.JPG</u>
- http://www.vintagecalculators.com/assets/images/CanonPocketronic_7.jpg
 7_05_11

Atomic gas hardware ↔ oxymoron?

Either: Experiments q-gases model systems in well controlled lab environments (N>0 students)

- Or: quantum technology (EU Flagship program), q-manifesto (T. Calarco)
- >Applications: q-sensing, q-metrology, q-computing

Robustness: mechanical structures

atomic chips (J. Schmiedmayer, R. Folman, C. Zimmermann,
 J. Fortagh, J. Reichel, T. Hänsch, M. Prentiss, P. Treutlein, E. Hinds)
 lithograyphy, etching

**Fifteen years of cold matter on the atom chip: promise, realizations, and prospects M. Keil et al., JMO, 63, 1840 (2016)*

- mirco-lens arrays (G. Birkl) optical elements, e-beam lithography

- **3D printing** (H. Giessen, micro-lenses on q-dots)

>Miniaturization, reproducability, reliability, cost (UHV)

>Hybridization: superconductivity, cryo, optical, rf, ...

COLANTIS Cold gases in µ-g

University of Hannover

Ernst M. Rasel Wolfgang Ertmer

Hansjörg Dittus Claus Lämmerzahl University of Berlin

Achim Peters

University of Hamburg

Klaus Sengstock

Laboratoire Kastler Brossel

COUNTRY COUNTR

ulm university universität

Wolfgang P. Schleich

Financial support by the

German Space Agency

MPO Munich and

Theodor W. Hänsch Jakob Reichel

17_05_11 A. Wicht

Benasque

Simulation of mw-devices

Challenges: 3D (dimension), large expansion times (t>2000ms), and scales (d>mm), T(emperature), ħ (particle vs. waves), g (nonlinearity), (z³) anharmonicity, time-dependence (dkc), noise

arXiv:1701.06789, G. Nandi et al., PRA, 76, 063617 (2007)

Toolbox mw-optics

- a. Magnetic traps & lenses
- b. Designing quantum simulators with micro-lens arrays (M. Sturm, M. Schlosser, G. Birkl)
- c. Bragg beam-splitters

Methods & applications

- a. Geometical mw-optics: raytracing, aberrations
- b. Thermal mw-optics: 3D interferometry @ finite T
- c. Coherent mw-optics: delta-kick-collimation
- d. Quantum mw-optics: Josephson-Junction rings

mw-traps & lenses with magnetic chips J. Battenberg

- geom. representation of 2D conducting strips
- Biot-Savart law

 $\mathbf{B}(\mathbf{R}) = \frac{\mu_0 I}{4\pi} \int_{\mathcal{C}} \frac{d\mathbf{l} \times \mathbf{r}}{r^3}$ $V(\mathbf{R}) \propto |\mathbf{B}(\mathbf{R}) + \mathbf{B}_{\text{ext}}(\mathbf{R})|$ several active layers multi-dimensional current control

> exp. chip design W. Herr, LHU

Shape of magnetic potential

QII frequency manifold

 $\{(\nu_1, \nu_2, \nu_3) \in R^3 | (I_x, I_y, I_b, I_s) \in R^4 \text{ with feasable solution} \}$

Eigen-frequencies of potential Hess-matrix at potential minimum

Feasible frequencies 2D planar manifold Earnshaw theorem magnetic shield

 $\mathbf{B}(\mathbf{R}) = -\nabla \phi_M$ $\Delta \phi_M = 0$ $\phi_M(\mathbf{r}) = \sum_{lm} \phi_{lm} R_{lm}(\mathbf{r})$

Map of possible frequencies is current QII setup

Adjustable optical microtraps arrays

Designing robust light fields in the itinerant tunneling regime M. Sturm, M. Schlosser, G. Birkl

Microlens

modulator

Microlens arrays with spatial light modulators: arbitrary arrays of microtraps

Quantum simulators by design –many-body physics in reconfigurable arrays of tunnel-coupled traps _{Spatial light}

arxiv:1705.01271

Configurations with tunneling

- Designable lattices Exotic lattice geometries quasi crystals point/line defects controllable disorder
- Molecular structures mimick electronic sturcture of molecules

Copyright: Chris Ewels

HO

diode

Simulation of the light field

Microlens array

diameter of lenslets: 106 µm $\sim 100 \times 100$ lenslets ROC=2.65 mm

- Aspheric lens with NA=0.68
- Raytracing and wave optics

TECHNISCHE

UNIVERSITÄT

2D Optical potential +1D light sheet

Measured and simulated intensity distriubtions agree $V(x, y, z) \approx V_{\perp}(x, y) + V_{\parallel}(z)$ $V_{\perp}(x,y) = -\sum_{\mathbf{R}_{i}} V_{0\perp}^{(i)} e^{-2\frac{(x-X_{i})^{2} + (y-Y_{i})^{2}}{w_{0\perp}^{2}}}$ 1.7 µm $d=1.7\ \mu m$ $w_{0\perp}=0.7\ \mu m$ $w_{0\parallel}=2.5\ \mu m$ - 2 0 2 4 -4 Position (µm) Measurement, Gaussian fit, simulation

Bose-Hubbard parameters

 Bose-Hubbard model using 2+1D Schrödinger equation

$$\hat{H} = U \sum_{i} \hat{a}_{i}^{\dagger} \hat{a}_{i}^{\dagger} \hat{a}_{i} \hat{a}_{i} - J \sum_{\langle ij \rangle} \hat{a}_{i}^{\dagger} \hat{a}_{j}$$

Onsite interaction

$$U = \frac{4\pi a_s \hbar^2}{m} \int \varphi_i^4(x, y) \phi^4(z) \ d^3r$$

Nearest-neighbour tunneling

$$J = \langle \varphi_i \phi | \hat{H}_1 | \varphi_j \phi \rangle$$

For Rubidium 87

mw-beam splitter

Velocity dispersion of optical Bragg beamspitter in 3D with temporal pulses, spatial beams shapes, wavefront curvature A. Neumann

BS goal: coherently splitting motion of atoms with unit response and wide momentum range

BS: Bragg diffraction of atoms by periodic grating (optical standing wave)

$$\rightarrow \frac{i\hbar\partial_t |\Psi\rangle = \hat{H} |\Psi\rangle}{\text{solve with split}}$$

Plane wave Bragg diffraction

$$\hat{H} = \frac{\hat{p}^{2}}{2M} \otimes \mathbb{1} + \frac{\hbar\Delta}{2} \hat{\sigma}_{z} + \frac{\hbar\Omega_{0}}{2}$$

$$\Psi(t) = e^{-i\hat{H}t} |\Psi(0)\rangle = \hat{U} |\Psi(0)\rangle$$
Loss into off resonant higher
diffraction orders:

$$|\Psi(t)\rangle = \sum_{m=-N}^{N} g_{m} |g, m \cdot k_{l}\rangle + e_{m'} |e, m' \cdot k_{l}\rangle$$

$$|\Psi(t)\rangle = \sum_{m=-N}^{N} g_{m} |g, m \cdot k_{l}\rangle + e_{m'} |e, m' \cdot k_{l}\rangle$$

$$\frac{k}{2} + \frac{1}{2} + \frac{1$$

Benasque

 $a/b = 1 - /+ \frac{\sigma \Omega_{2\text{ph}}}{\sqrt{2\pi}}, \ c = \frac{3}{2} + 2i\sqrt{\frac{2}{\pi}}\omega_{\text{rec}}\delta k\sigma, \ z(t) = \frac{1}{2} + \frac{\tanh\left(\sqrt{\frac{\pi}{2}}\frac{t}{\sigma}\right)}{2}$

17 05 11

TECHNISCHE UNIVFRSITÄT DARMSTADT

diffraction orders

'sech'- pulses

 \checkmark

Analytic model (DK) for

17/41

Comparison of 1D simulation with experimental data*

Laser: • spatial dependence: ~ plane waves

- temporal: Gaussian (+ fit with Demkov Kunike)
- Laser frequency detuned to resonance Δf_l

Atoms: BEC @ 50 nK ~ Thomas Fermi (width in momentum space $\ll k_l$)

TECHNISCHE UNIVERSITÄT

DARMSTADT

* M.Gebbe (Universität

Bremen, priv. com.)

Application 1: delta-kick collimation

-geometric-, thermal-, coherent mw optics

B. Okhrimenko, J. Teske

TECHNISCHE UNIVERSITÄT DARMSTADT

Ray optics with light (2+1D) Matter wave optics (3+1D)

AMMANN, Hubert ; CHRISTENSEN, Nelson: Delta Kick Cooling: A New Method for Cooling Atoms, *Phys. Rev. Lett.* 78, 2088 (1997) Matter wave optics DKC-sequence:

$$t_{lens} = \frac{1}{\omega} \tan\left(\frac{1}{\omega t_1}\right)$$

DKC of thermal cloud: position

DKC sequence:

 t_{preToF} = 80 ms, t_{lens} = 2.64 ms, t_{ToF} = 200 ms

Pilot rays: estimating final position and width provides integration grid

DKC of thermal cloud: velocity

Iso-potential of release trap

Initial position density $n^{(2)}(y, z, t = 0)$

Initial thermal Wigner distribution: $N=10^5$ particles, T=100nK (harmonic approximation)

TECHNISCHE

UNIVERSITÄT DARMSTADT

Isopotential of DKC lense

TECHNISCHE UNIVERSITÄT DARMSTADT

Thermal density $n^{(2)}(y, z, t_f)$

Thermal densisty $n^{(2)}(y, z, t_f)$

Coherent density of BEC $n^{(2)}(y, z, t_f)$

BEC: 3D time-dependent GP solution 2D column integrated densities a) 0 ms, b) 150 ms, c) 300 ms, d) 450 ms after lens

N=10⁵ particles

Application 2: Thermal Mach Zehnder-Interferometer

-thermal matter wave optics M. Schneider

Mach-Zehnder interferometer

Gravity: population oscillation, acceleration sensor

Ray-tracing with matter waves

Simulation of interferometry with

classical transport & coherence creating devices

Wigner function: a quantum distribution in phase

Classical transport in phase space

Transport: Hamiltonian evolution in phase space

$$\frac{\partial f}{\partial t} - \{\mathcal{H}, f\} = 0, \quad \text{if } \frac{\partial^l \mathcal{H}}{\partial x^l} = 0 \text{ for } l > 2 \text{ and odd}$$

Free expansion

Harmonic lens

Coherence creating devices

- Double slits or beam-splitters in Hilbert-space
- E.g.: Bragg scattering, laser beam splits matter wave in coherent superposition, creation of coherence

Beam-splitter in phase-space

TECHNISCHE UNIVERSITÄT DARMSTADT

Mach-Zehnder interferometer

MZ interferometer in time MZI sequence in phase-

Free space: 3D asymmetric MZI

TECHNISCHE UNIVERSITÄT DARMSTADT

Temperature dependence:

2D density plots 1D cross sections and Fourier transforms for three different temperatures: T=100nk T=500nk T=1000nk after recombination

Figure 7.5.: Position densities after passing a MZI for various temperatures of the initial state. These are T = 100nK (1st line, a, b, c), T = 500nK (2nd line, d, e, f), and T = 1000nK (3rd line, g, h, i). The left column (parts a, d, g) shows 2D slices in the x₂-x₃-plane with x₁=0 of the 3D density. The middle column (parts b, e, h) displays the densities along the x₃ axis with x₁ = x₂ = 0. The right column (parts c, f, i) shows the absolute values of Fourier transforms of densities along the x₃ axis, depicted in the middle columns. Initial state parameters are (ω₁, ω₂, ω₃) = 2π(127.3, 127.3, 31.8)Hz, M = 87amu, N = Ben MZI parameters are t₀₁ = 20ms, t₁₂ = 10ms, t₂₃ = 9.9ms, t₃₄ = 10ms, G = (0, 0, 31.42)µm⁻¹.

Free space: 3D asymmetric MZI

Time dependence

2D density plots 1D cross sections and Fourier transforms

@ T=100nk for three different times after recombination

Figure 7.6.: Position densities after passing a MZI for various timespans between recombination and detection, t₃₄. These are t₃₄ = 10ms (1st line, a, b, c), t₃₄ = 50ms (2nd line, d, e, f), and t₃₄ = 100ms (3rd line, g, h, i). The left column (parts a, d, g) shows 2D slices in the x₂-x₃-plane with x₁=0 of the 3D density. The middle column (parts b, e, h) displays the density along the x₃ axis with x₁ = x₂ = 0. The right column (parts c, f, i) shows the absolute value of the Fourier transform of the density along the x₃ axis, depicted in the middle columns. Initial state parameters are (ω₁, ω₂, ω₃) = 2π(127.3, 127.3, 31.8)Hz, M = 87amu, T = 100nK, N = 10⁵. MMI parameters are t₀₁ = 20ms, t₁₂ = 10ms, t₂₃ = 9.9ms, G = (0, 0, 31.42) µm⁻¹.

Fringe contrast= relative strength of Fourier components

MZI in gravity

Acceleration sensor for gravity

Symmetric MZI

Population oscillations between the two output ports 1+2 of a symmetric MZI (t23=t12)

Figure 7.8.: Population of output ports under influence of constant gravity acceleration $\dot{x}_3 = -g = 9.81 \mu \text{m/ms}^2$. Part a: False color representation of position density along vertical direction x_3 . Part b: Relative population of output port 1. Other parameters are $t_{01} = 20 \text{ms}$, $t_{34} = 100 \text{ms}$, $N = 10^5$, M = 87 amu, T = 100 nK, $G = 31.42 \mu \text{m}^{-1}$. Initial trap is harmonic with $(\omega_1, \omega_2, \omega_3) = 2\pi (127.3, 127.3, 31.8) \text{Hz}.$

17_05_11

Application 3: Coupled Josephson-rings

-quantum mw-optics M. Sturm

 $\sum \hat{a}_i^\dagger \hat{a}_j$

Bose-Hubbard system: M=12 sites, N=4 particles, onsite interation U, intraring hopping J, interring hopping K<<J

$$\hat{H} = \hat{H}_A + \hat{H}_B - K(\hat{a}_0^{\dagger}\hat{b}_0 + \hat{b}_0^{\dagger}\hat{a}_0) \qquad \hat{H}_A = \frac{U}{2}\sum_{i=1}^M \hat{a}_i^{\dagger}\hat{a}_i^{\dagger}\hat{a}_i\hat{a}_i - J$$

Tunneling dynamics

TECHNISCHE UNIVERSITÄT DARMSTADT

- Initial state: all atoms in ground-state of ring A
- No interaction: sinusoidal J-oscillations $\tau_J = h \frac{M}{K}$
- Weak interactions: collapse and revival

$$\tau_C = \tau_R \sqrt{\frac{2}{\pi^2 (N-1)}} \quad \tau_R = \frac{M}{U}$$

 Strong interactions: self-trapping, many-body tunneling resonances

17_05_11

Many-body resonances

Minimal population inversion

$$\zeta_m = \min_{0 \le t \le \tau} \frac{N_A - N_B}{N}$$

 Resonances explained by level crossing of mb-states of isolated rings

 $|N_A,q_A
angle_A\otimes|N_B,q_B
angle_B$

 Similar effects: tilted 1D lattices F.Meinert et al., PRL **116** 205301 (2016) double-wells Juliá-Díaz et al. PRA **82** 063626 (2010)

Summary: technical mw-optics

Software \rightarrow hard ware \rightarrow space

Toolbox mw-optics

- a. Magnetic traps & lenses
- b. Designing quantum simulators with micro lenses (M. Sturm, M. Schlosser, G. Birkl)
- c. Bragg beam-splitters

Methods & applications

- a. geometical mw-optics: raytracing, aberrations
- b. thermal mw-optics: 3D interferometry @ finite T
- c. coherent mw-optics: 2 s, delta-kick-collimation
- d. quantum mw-optics: JJ's manybody resonances

Thank you for the attention!

QUANTUS

TECHNISCHE UNIVERSITÄT DARMSTADT