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Surface at 4K temperature 

atomic cloud N ~ 104 – 106 
T ~ down to 100nK 

separation:   
down to microns 

 

Couple atoms to quantum 
electronic circuits 

Measure and control interactions 

p ~ 10-12 mbar 

Cold atoms on the superconducting chip 
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Vision: Quantum processor on a chip  

Possible architecture:  superconductors – microwaves – atoms – light  
  

Image: K. Tordrup and K. Molmer, PRA  77, 020301(R) (2008) 
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Helium flow cryostat 

Cold atom setup 

Cano et al., Eur. Phys. J. D 63, 17-23 (2011) 
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Mangneto-optical trap, magnetic trap, optical tweezers 

Cano et al., Eur. Phys. J. D 63, 17-23 (2011) 

ring radius 10µm 

one flux quantum 
 
 
B=67mG 
applied field  
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100 µm 

Quantized flux in a superconducting ring 

Superconducting ring 
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y direction. The niobium film has a thickness of d =
500 nm. The superconducting atom chip [5] is attached
to the cold finger of a helium flow cryostat at T = 4.2K.
The atoms are prepared in the absolute ground state
5S

1/2

F = 1,m
F

= �1 in a room temperature part of
the setup. From there they are transported to a position
below the superconducting chip by means of optical
tweezers. Details on the cold atom preparation and the
transfer to the cold region can be found in [36].
The microtrap is realized by the superposition of the
fields generated by a current in the trapping wire and a
homogeneous external bias field. Into this superconduct-
ing microtrap formed 400 m above the chip surface,
an ensemble of N ⇠ 1.5 ⇥ 106 atoms at T

atom

⇠ 1 K
is loaded from the optical tweezers. After adiabatic
compression, the cloud is evaporatively cooled to achieve
either a thermal cloud or a nearly pure Bose-Einstein
condensate (BEC) [5]. The ensemble is then mag-
netically transported to a position ⇠ 18 m above a
superconducting ring by rotating the external bias field
~

B

bias

around the x axis (Fig.1(b)) and adjusting the
current in the wire. The longitudinal position of the
cloud is controlled by an additional field ~

B

conf

created
by electromagnets below the sapphire substrate

The macroscopic superconducting ring shows quan-
tum behavior that we investigate with the cold atomic
cloud. In the superconducting state the so-called fluxoid
is quantized [37],

n · �
0

= µ
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I
~
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This follows from the fact that superconductivity is
a macroscopic quantum phenomenon described by a
macroscopic wavefunction  . The single-valuedness of
the wavefunction requires that any closed integral over
the wave vector is a multiple of 2⇡. Here, �

0

= h/2e
is the magnetic flux quantum and the right hand side
needs to be evaluated along a closed contour located in-
side the superconductor. �

L

(⇠ 80 nm for Nb) is the
London penetration depth, ~j is the supercurrent density
and � is the total magnetic flux through the closed con-
tour. If the superconductor is thick compared to �

L

,
which is the case for our geometry at temperatures well
below T

c

, the integral over ~j can be neglected. Then, �
is quantized in multiples of �

0

.
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� is given by the sum of the flux applied above T
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A, and the flux LJ created by supercurrents
J circulating around the ring

n · �
0

= �
a

+ LJ. (3)

Here, L is the inductance of the ring and ~

B

a

is the mag-
netic field applied to the ring during cooling. After cool-
ing through T

c

the value of n is defined.
Using �

0

= �B

freeze

⇡r

i

r

o

[38], we find that for our ge-
ometry di↵erences �B

freeze

of about 66.5mG change the
flux in the ring by 1�

0

. Having turned o↵ ~

B

freeze

, the
(quantized) flux through the ring is carried by the in-
duced circulating current J

ind

. In general, the trapping
fields create additional flux through the ring which is
compensated by currents J

trap

, so that the total current
is J = J

ind

+ J

trap

.

The magnetic (dipole) field ~

B

ring

created by currents J

contributes to the magnetic trapping potential for the
atoms. The magnetic fields ~

B

ring

in the vicinity of the
structure locally modifies the magnitude of the field along
the longitudinal axis x as well as in direction of the bias
field. To estimate this contribution and its impact on the
trapping potential, let us consider a cigar-shaped har-
monic trap with oscillation frequencies !

x

⌧ !

y,z

, whose
radial axis y is centered above the ring and whose size is
on the order of the ring size. The o↵set field B

x

at the
minimum of the trap is considered to point along the lon-
gitudinal trap axis. The x-component of ~

B

ring

increases
B

x

on one side of the ring and reduces it on the other
(Fig. 2(a)). If the elongation of the cloud in the longi-
tudinal axis is larger than the ring diameter, one ends
up with an asymmetric double well potential for the cold
atom cloud (Fig.2(c)). Hence, if the unperturbed har-
monic trap is centered above the ring, ~

B

ring

leads to a
position shift of the minimum of the magnetic trapping
potential in the longitudinal axis on the order of the ra-
dius of the ring. In addition, the part over the ring (dim-
ple) is more shifted towards the surface with increasing
number of flux quanta in the ring and the barrier height
of the potential towards the surface gets reduced.

Assuming the ring to be in the Meissner state, we cal-
culate the inductance L ⇡ 39 pH of the ring and a ring
current of J ⇡ 53 A producing a flux of 1�

0

. We have
numerically calculated the field distribution composed of
the ring field and the trapping field. We used the method
described in [39] for the simulation of the supercurrent
densities in the trapping wire and the ring and calculate
the ring field using Biot-Savart’s law. We find that for
1�

0

the ring field yields to a field shift of ⇠ 3mG at the
position of the atom cloud and for that a shift in the
trap depth at the position of the dimple on the order of
50 nK, as compared to the unperturbed harmonic trap
(Fig.2(c)).

Furthermore, the alteration of the potential landscape
caused by the circular supercurrents leads to a change of
the depth of the dimple and for that the the longitudinal
center-of-mass oscillation frequency of the trap depends
on the number of flux quanta in the ring. We calculated
the trap frequencies in the dimple and in the residual
harmonic trap from the trapping potential. This shift of
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with 

Preparation of flux state: 
1.  apply field above Tc 
2.  cool below Tc 
3.  remove external field 

Weiss et al., PRL 114, 113003 (2015) 
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Mapping the flux state of the ring to atomic clouds 3

(a)

(b)

(c)

FIG. 2: (a) Cut along the dashed line in Fig. 1(a) with
the principal vectorial magnetic x field components of
the trap and the ring in longitudinal direction. (b)

Isopotential plot of the calculated trapping potential for
4 flux quanta in the ring. An asymmetric potential with
two local minima is created, with the lower minimum
(dimple) above the ring structure (black marker on x

axis). Each contour line corresponds to an energy
change of 30 nK. (c) Cut along the longitudinal axis

(black line Fig. 3(a)) for calculated trap potential with
4 flux quanta in the ring (solid red) and the

unperturbed harmonic trap (dashed).

frequencies is much larger for the minimum in the dimple
(⇠ 10Hz) than for the residual harmonic trap (⇠ 1Hz).
The results of these calculations are in good agreement
with more complex simulations that we carried out with
3D-MLSI [40].
In the actual measurements we first prepare the flux

state of the ring by heating up the chip to a temperature
above T

c

and subsequently cool it to T = 4.2K in a ho-
mogeneous magnetic B

freeze

field applied perpendicular
to the surface. Measurements are repeated for di↵er-
ent fields applied during cooling, ranging from �500mG
to 500mG. The magnetic fields are calibrated by mi-

(a)

(b)

(c)

FIG. 3: (a) Measured integrated density profile for
di↵erent freezing fields. Each column represents the
integrated density profile averaged over 9 absorption
images. Adjacent points di↵er by 7mG in the field

applied during cooling. The split in the density profile
is due to the double well potential due to the ring field.

(b) Relative atom number of an ensemble trapped
above the superconducting ring, obtained by integrating
the density profile along the x axis shown in (a). The
mean atom number is calculated from 9 pictures per

freeze field applied during cooling. The dashed vertical
lines have a spacing (with error bars) of 65.9± 2.3mG
which is the measured value for one flux quantum. The
atom number is normalized to one. (c) Integrated trap
volume profile calculated from the trapping potential.
One can see the jump in the position of the dimple

when turning the direction of the flux.

crowave spectroscopy, i.e., the atoms are prepared in the
state F = 1,m

F

= �1 and the number of atoms in state
F = 2,m

F

= 0 is measured after application of a mi-
crowave pulse of variable frequency. Limited by fluctua-
tions of the magnetic field in the laboratory, the absolute
value of B

freeze

is known within ±5mG.

Total atom number after 1s storage 

Trap depth varies in steps with 
the number of flux quanta 

Weiss et al., PRL 114, 113003 (2015) 
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Trapping atoms on the SC chip 

Bernon et al., Nat. Commun. 4, 2380 (2013) 
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Persistent current trap 

λ/4 cavity structure

Persistent current trap 
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Chip surface 

TOF NC≈106   in the F=1 or F=2 hyperfine state 

Bernon et al., Nat. Commun. 4, 2380 (2013) 

Trapping atoms on the SC chip 

Atomic coherence at the superconducting 
coplanar cavity structure 

|0⇥ � 1⇤
2

(|0⇥+ |1⇥)

Time evolution 

Coherence ? 
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Ramsey interferometry 
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Atomic coherence on a SC chip 
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Breit Rabi differential shift

At 500 nK: differential shift < 1 Hz 

D.M. Harber et al  Phys. Rev. A 66, 053616 (2002)
P. Treutlein et al Phys. Rev. Lett. 92, 203005 (2004) 

gF = �1/2

gF = 1/2
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Coherence and stability of operation 
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Ramsey fringes, Frequency: 5.515 Hz, Decay: 9.607 s

Coherence time 
Stability is limited on long time scales by atom 
number fluctuation (air conditioning) and the 
stability of the quarz oscillator: no long term ref. 

Allan deviation 
1.6 × 10-12 @ 30 s;   5 × 10-13 @ 200 s 

T2 > 10 s
Expected due to residual frequency 
inhomogenity in the trap T2 ≈ 6.5 s
Identical spin rotation effect 
synchronizes the clock 
C. Deutsch et al Phys. Rev. Lett. 105, 020401 (2010)

Bernon et al., Nat. Commun. 4, 2380 (2013) 
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Differential Zeeman shift: dephasing and phase shift 
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L. A. Jones, J. D. Carter, and J. D. D. Martin, PRA 87, 023423 (2013) 

Zanon-Willette, de Clercq, Arimondo, PRL 109, 223003 (2012) 
 

O. Zobay and B. M. Garraway 
Phys. Rev. Lett. 86, 1195 (2001)  

Suppression of the differential shift? 

Dressing the clock transition 

Dressing field with perpendicular 
polarisation to the magnetic field at 
the trap centre (quantisation axis). 

For any offset field the differential Zeaman shift can be suppressed up to 2nd order.  
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MW-control of the differential shift 

width (0.1 Hz): ~100 mG 

Ω0 = 2π × 20.1 kHz 

Bcenter = 2.65 G 

Δ dress= - 2π × 1.19 MHz 

Sárkány et al., PRA 90, 053416 (2014) 

CONTROLLING THE MAGNETIC-FIELD SENSITIVITY OF . . . PHYSICAL REVIEW A 90, 053416 (2014)

2 2.5 3 3.5 4 4.5
−1500

−1000
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0
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1000

Boff (G)

δ/
2π

 (H
z)

Bcenter = 2.70 G, 
Ω0 = 2π⋅21.9kHz, ∆dress = − 2π⋅1.21 MHz

Bcenter = 2.80 G, 
Ω0 = 2π⋅16.6kHz, ∆dress = − 2π⋅1.41 MHz

Bcenter = 2.90 G, 
Ω0 = 2π⋅11.7kHz, ∆dress = − 2π⋅1.60 MHz

FIG. 2. (Color online) Calculated frequency difference of the
clock transition as a function of the magnetic field. The Breit-Rabi
parabola for the case without the dressing field is plotted in red.
The three black curves show the cancellation of the Boff dependence
around three different central values Bcenter. For an arbitrary value of
Bcenter, the optimal detuning and Rabi frequency can be calculated.

III. EXPERIMENTAL PROCEDURE

The measurements are taken with atomic clouds mag-
netically trapped on a superconducting atom chip. Atoms
are loaded into this trap as follows [15]: an ensemble of
ultracold 87Rb atoms is prepared in a magneto-optical trap and
subsequently transferred into an Ioffe-Pritchard-type magnetic
trap situated in the room-temperature environment of our
setup [43]. The atomic cloud is cooled by forced radio-
frequency evaporation and then loaded into an optical dipole
trap used to transport the ensemble to a position below the
superconducting atom chip at 4.2 K. We load an ensemble of
∼1 × 106 atoms at a temperature of ∼1 µK into the magnetic
chip trap, which is based on a Z-wire geometry [23]. The
oscillation frequencies in the trap are given by ωx = 2π ×
30 s−1, ωy = 2π × 158 s−1, and ωz = 2π × 155 s−1, and the
offset field Boff , which defines the quantization axis, is pointing
along the x direction. The atomic cloud in the magnetic trap
is cooled to a temperature of ∼250 nK by evaporation. After
this sequence, which is repeated every ∼23 s, we end up with
an ensemble of roughly 1 × 105 atoms. After a hold time of
2 s in the magnetic trap, which allows for damping of possible
eddy currents in the metallic chip holder, a microwave field
for dressing is applied.

The microwave field is irradiated from an antenna outside
of the vacuum chamber and is counterpropagating to the quan-
tization axis. We measured the polarization of the microwave
by driving resonant σ+ and σ− Rabi oscillations. We found a
ratio of

√
6$0,σ+/$0,σ− ≈ 0.81, while for a linear (circular)

polarization the expected ratio would be 1 (0). The factor
√

6
stems from the different transition strengths, as visible in the
Hamiltonian in Eq. (5).

The frequency of the transition is measured by means
of Ramsey interferometry. The interferometric sequence is
started 100 ms after switching on the dressing field by
applying a combined microwave and radio-frequency two-

photon pulse with a pulse area of π/2 (Tπ/2 = 137 µs), which
prepares the atomic ensemble in a coherent superposition of
states |0⟩ and |1⟩; see Figs. 1(b) and 1(c). The microwave
pulses are irradiated from a second external antenna with a
wave vector perpendicular to the quantization axis, while the
radio-frequency field is generated by an alternating current
in the trapping wire. Both frequencies are chosen with a
detuning of % ∼ 2π × 310 kHz with respect to the transition
to the intermediate level 5S1/2 F = 2,mF = 0, so that the
probability of populating this level is negligible. After a
variable hold time TRamsey, the interferometer is closed by a
second π/2 pulse and we measure the population of the two
states |0⟩ and |1⟩, which oscillates with the angular frequency
δ = |ωMW + ωRF − %E0,1/!|. We determine this frequency
δ for different offset fields Boff and seek to eliminate the
magnetic-field dependence of the transition.

IV. MEASUREMENTS AND DISCUSSION

To demonstrate the control over the differential Zeeman
shift, we measure the frequency of the Ramsey interferometer
as a function of the magnetic offset field Boff for different
powers of the dressing field (Fig. 3). For each value of Boff ,
we adjust ωRF and ωMW in order to keep the detuning % to the
intermediate-state constant, while keeping the sum frequency
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0.62 Ω0

0.79 Ω0

0.91 Ω0

1000

FIG. 3. (Color online) Measurement of the differential Zeeman
shift between the states |0⟩ and |1⟩ for different Rabi frequencies.
The frequency zero point was set to the frequency at the magic
offset field without dressing. For a Rabi frequency $dress = $0 =
2π × 20.1 kHz, the frequency is nearly independent of the magnetic
offset field in a range of ±100 mG around the chosen value
Bcenter = 2.65 G. Inset: Detail of the curve with $dress = 0.99$0. We
estimate a measurement error of ±5 Hz resulting from fluctuations
of the MW power. The theory curve (solid red line) is plotted along
a polynomial fit (dotted black line), showing the suppression of the
first- and second-order Zeeman shift down to a level of −7.3 Hz/G
and 5.0 Hz/G2.

053416-3
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along the x direction. The atomic cloud in the magnetic trap
is cooled to a temperature of ∼250 nK by evaporation. After
this sequence, which is repeated every ∼23 s, we end up with
an ensemble of roughly 1 × 105 atoms. After a hold time of
2 s in the magnetic trap, which allows for damping of possible
eddy currents in the metallic chip holder, a microwave field
for dressing is applied.

The microwave field is irradiated from an antenna outside
of the vacuum chamber and is counterpropagating to the quan-
tization axis. We measured the polarization of the microwave
by driving resonant σ+ and σ− Rabi oscillations. We found a
ratio of
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polarization the expected ratio would be 1 (0). The factor
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stems from the different transition strengths, as visible in the
Hamiltonian in Eq. (5).

The frequency of the transition is measured by means
of Ramsey interferometry. The interferometric sequence is
started 100 ms after switching on the dressing field by
applying a combined microwave and radio-frequency two-

photon pulse with a pulse area of π/2 (Tπ/2 = 137 µs), which
prepares the atomic ensemble in a coherent superposition of
states |0⟩ and |1⟩; see Figs. 1(b) and 1(c). The microwave
pulses are irradiated from a second external antenna with a
wave vector perpendicular to the quantization axis, while the
radio-frequency field is generated by an alternating current
in the trapping wire. Both frequencies are chosen with a
detuning of % ∼ 2π × 310 kHz with respect to the transition
to the intermediate level 5S1/2 F = 2,mF = 0, so that the
probability of populating this level is negligible. After a
variable hold time TRamsey, the interferometer is closed by a
second π/2 pulse and we measure the population of the two
states |0⟩ and |1⟩, which oscillates with the angular frequency
δ = |ωMW + ωRF − %E0,1/!|. We determine this frequency
δ for different offset fields Boff and seek to eliminate the
magnetic-field dependence of the transition.

IV. MEASUREMENTS AND DISCUSSION

To demonstrate the control over the differential Zeeman
shift, we measure the frequency of the Ramsey interferometer
as a function of the magnetic offset field Boff for different
powers of the dressing field (Fig. 3). For each value of Boff ,
we adjust ωRF and ωMW in order to keep the detuning % to the
intermediate-state constant, while keeping the sum frequency
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FIG. 3. (Color online) Measurement of the differential Zeeman
shift between the states |0⟩ and |1⟩ for different Rabi frequencies.
The frequency zero point was set to the frequency at the magic
offset field without dressing. For a Rabi frequency $dress = $0 =
2π × 20.1 kHz, the frequency is nearly independent of the magnetic
offset field in a range of ±100 mG around the chosen value
Bcenter = 2.65 G. Inset: Detail of the curve with $dress = 0.99$0. We
estimate a measurement error of ±5 Hz resulting from fluctuations
of the MW power. The theory curve (solid red line) is plotted along
a polynomial fit (dotted black line), showing the suppression of the
first- and second-order Zeeman shift down to a level of −7.3 Hz/G
and 5.0 Hz/G2.
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The measurements are taken with atomic clouds mag-
netically trapped on a superconducting atom chip. Atoms
are loaded into this trap as follows [15]: an ensemble of
ultracold 87Rb atoms is prepared in a magneto-optical trap and
subsequently transferred into an Ioffe-Pritchard-type magnetic
trap situated in the room-temperature environment of our
setup [43]. The atomic cloud is cooled by forced radio-
frequency evaporation and then loaded into an optical dipole
trap used to transport the ensemble to a position below the
superconducting atom chip at 4.2 K. We load an ensemble of
∼1 × 106 atoms at a temperature of ∼1 µK into the magnetic
chip trap, which is based on a Z-wire geometry [23]. The
oscillation frequencies in the trap are given by ωx = 2π ×
30 s−1, ωy = 2π × 158 s−1, and ωz = 2π × 155 s−1, and the
offset field Boff , which defines the quantization axis, is pointing
along the x direction. The atomic cloud in the magnetic trap
is cooled to a temperature of ∼250 nK by evaporation. After
this sequence, which is repeated every ∼23 s, we end up with
an ensemble of roughly 1 × 105 atoms. After a hold time of
2 s in the magnetic trap, which allows for damping of possible
eddy currents in the metallic chip holder, a microwave field
for dressing is applied.

The microwave field is irradiated from an antenna outside
of the vacuum chamber and is counterpropagating to the quan-
tization axis. We measured the polarization of the microwave
by driving resonant σ+ and σ− Rabi oscillations. We found a
ratio of
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polarization the expected ratio would be 1 (0). The factor
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stems from the different transition strengths, as visible in the
Hamiltonian in Eq. (5).

The frequency of the transition is measured by means
of Ramsey interferometry. The interferometric sequence is
started 100 ms after switching on the dressing field by
applying a combined microwave and radio-frequency two-

photon pulse with a pulse area of π/2 (Tπ/2 = 137 µs), which
prepares the atomic ensemble in a coherent superposition of
states |0⟩ and |1⟩; see Figs. 1(b) and 1(c). The microwave
pulses are irradiated from a second external antenna with a
wave vector perpendicular to the quantization axis, while the
radio-frequency field is generated by an alternating current
in the trapping wire. Both frequencies are chosen with a
detuning of % ∼ 2π × 310 kHz with respect to the transition
to the intermediate level 5S1/2 F = 2,mF = 0, so that the
probability of populating this level is negligible. After a
variable hold time TRamsey, the interferometer is closed by a
second π/2 pulse and we measure the population of the two
states |0⟩ and |1⟩, which oscillates with the angular frequency
δ = |ωMW + ωRF − %E0,1/!|. We determine this frequency
δ for different offset fields Boff and seek to eliminate the
magnetic-field dependence of the transition.

IV. MEASUREMENTS AND DISCUSSION

To demonstrate the control over the differential Zeeman
shift, we measure the frequency of the Ramsey interferometer
as a function of the magnetic offset field Boff for different
powers of the dressing field (Fig. 3). For each value of Boff ,
we adjust ωRF and ωMW in order to keep the detuning % to the
intermediate-state constant, while keeping the sum frequency
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2π × 20.1 kHz, the frequency is nearly independent of the magnetic
offset field in a range of ±100 mG around the chosen value
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estimate a measurement error of ±5 Hz resulting from fluctuations
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a polynomial fit (dotted black line), showing the suppression of the
first- and second-order Zeeman shift down to a level of −7.3 Hz/G
and 5.0 Hz/G2.
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III. EXPERIMENTAL PROCEDURE

The measurements are taken with atomic clouds mag-
netically trapped on a superconducting atom chip. Atoms
are loaded into this trap as follows [15]: an ensemble of
ultracold 87Rb atoms is prepared in a magneto-optical trap and
subsequently transferred into an Ioffe-Pritchard-type magnetic
trap situated in the room-temperature environment of our
setup [43]. The atomic cloud is cooled by forced radio-
frequency evaporation and then loaded into an optical dipole
trap used to transport the ensemble to a position below the
superconducting atom chip at 4.2 K. We load an ensemble of
∼1 × 106 atoms at a temperature of ∼1 µK into the magnetic
chip trap, which is based on a Z-wire geometry [23]. The
oscillation frequencies in the trap are given by ωx = 2π ×
30 s−1, ωy = 2π × 158 s−1, and ωz = 2π × 155 s−1, and the
offset field Boff , which defines the quantization axis, is pointing
along the x direction. The atomic cloud in the magnetic trap
is cooled to a temperature of ∼250 nK by evaporation. After
this sequence, which is repeated every ∼23 s, we end up with
an ensemble of roughly 1 × 105 atoms. After a hold time of
2 s in the magnetic trap, which allows for damping of possible
eddy currents in the metallic chip holder, a microwave field
for dressing is applied.

The microwave field is irradiated from an antenna outside
of the vacuum chamber and is counterpropagating to the quan-
tization axis. We measured the polarization of the microwave
by driving resonant σ+ and σ− Rabi oscillations. We found a
ratio of
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6$0,σ+/$0,σ− ≈ 0.81, while for a linear (circular)

polarization the expected ratio would be 1 (0). The factor
√
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stems from the different transition strengths, as visible in the
Hamiltonian in Eq. (5).

The frequency of the transition is measured by means
of Ramsey interferometry. The interferometric sequence is
started 100 ms after switching on the dressing field by
applying a combined microwave and radio-frequency two-

photon pulse with a pulse area of π/2 (Tπ/2 = 137 µs), which
prepares the atomic ensemble in a coherent superposition of
states |0⟩ and |1⟩; see Figs. 1(b) and 1(c). The microwave
pulses are irradiated from a second external antenna with a
wave vector perpendicular to the quantization axis, while the
radio-frequency field is generated by an alternating current
in the trapping wire. Both frequencies are chosen with a
detuning of % ∼ 2π × 310 kHz with respect to the transition
to the intermediate level 5S1/2 F = 2,mF = 0, so that the
probability of populating this level is negligible. After a
variable hold time TRamsey, the interferometer is closed by a
second π/2 pulse and we measure the population of the two
states |0⟩ and |1⟩, which oscillates with the angular frequency
δ = |ωMW + ωRF − %E0,1/!|. We determine this frequency
δ for different offset fields Boff and seek to eliminate the
magnetic-field dependence of the transition.

IV. MEASUREMENTS AND DISCUSSION

To demonstrate the control over the differential Zeeman
shift, we measure the frequency of the Ramsey interferometer
as a function of the magnetic offset field Boff for different
powers of the dressing field (Fig. 3). For each value of Boff ,
we adjust ωRF and ωMW in order to keep the detuning % to the
intermediate-state constant, while keeping the sum frequency
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FIG. 3. (Color online) Measurement of the differential Zeeman
shift between the states |0⟩ and |1⟩ for different Rabi frequencies.
The frequency zero point was set to the frequency at the magic
offset field without dressing. For a Rabi frequency $dress = $0 =
2π × 20.1 kHz, the frequency is nearly independent of the magnetic
offset field in a range of ±100 mG around the chosen value
Bcenter = 2.65 G. Inset: Detail of the curve with $dress = 0.99$0. We
estimate a measurement error of ±5 Hz resulting from fluctuations
of the MW power. The theory curve (solid red line) is plotted along
a polynomial fit (dotted black line), showing the suppression of the
first- and second-order Zeeman shift down to a level of −7.3 Hz/G
and 5.0 Hz/G2.
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III. EXPERIMENTAL PROCEDURE

The measurements are taken with atomic clouds mag-
netically trapped on a superconducting atom chip. Atoms
are loaded into this trap as follows [15]: an ensemble of
ultracold 87Rb atoms is prepared in a magneto-optical trap and
subsequently transferred into an Ioffe-Pritchard-type magnetic
trap situated in the room-temperature environment of our
setup [43]. The atomic cloud is cooled by forced radio-
frequency evaporation and then loaded into an optical dipole
trap used to transport the ensemble to a position below the
superconducting atom chip at 4.2 K. We load an ensemble of
∼1 × 106 atoms at a temperature of ∼1 µK into the magnetic
chip trap, which is based on a Z-wire geometry [23]. The
oscillation frequencies in the trap are given by ωx = 2π ×
30 s−1, ωy = 2π × 158 s−1, and ωz = 2π × 155 s−1, and the
offset field Boff , which defines the quantization axis, is pointing
along the x direction. The atomic cloud in the magnetic trap
is cooled to a temperature of ∼250 nK by evaporation. After
this sequence, which is repeated every ∼23 s, we end up with
an ensemble of roughly 1 × 105 atoms. After a hold time of
2 s in the magnetic trap, which allows for damping of possible
eddy currents in the metallic chip holder, a microwave field
for dressing is applied.

The microwave field is irradiated from an antenna outside
of the vacuum chamber and is counterpropagating to the quan-
tization axis. We measured the polarization of the microwave
by driving resonant σ+ and σ− Rabi oscillations. We found a
ratio of
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6$0,σ+/$0,σ− ≈ 0.81, while for a linear (circular)

polarization the expected ratio would be 1 (0). The factor
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stems from the different transition strengths, as visible in the
Hamiltonian in Eq. (5).

The frequency of the transition is measured by means
of Ramsey interferometry. The interferometric sequence is
started 100 ms after switching on the dressing field by
applying a combined microwave and radio-frequency two-

photon pulse with a pulse area of π/2 (Tπ/2 = 137 µs), which
prepares the atomic ensemble in a coherent superposition of
states |0⟩ and |1⟩; see Figs. 1(b) and 1(c). The microwave
pulses are irradiated from a second external antenna with a
wave vector perpendicular to the quantization axis, while the
radio-frequency field is generated by an alternating current
in the trapping wire. Both frequencies are chosen with a
detuning of % ∼ 2π × 310 kHz with respect to the transition
to the intermediate level 5S1/2 F = 2,mF = 0, so that the
probability of populating this level is negligible. After a
variable hold time TRamsey, the interferometer is closed by a
second π/2 pulse and we measure the population of the two
states |0⟩ and |1⟩, which oscillates with the angular frequency
δ = |ωMW + ωRF − %E0,1/!|. We determine this frequency
δ for different offset fields Boff and seek to eliminate the
magnetic-field dependence of the transition.

IV. MEASUREMENTS AND DISCUSSION

To demonstrate the control over the differential Zeeman
shift, we measure the frequency of the Ramsey interferometer
as a function of the magnetic offset field Boff for different
powers of the dressing field (Fig. 3). For each value of Boff ,
we adjust ωRF and ωMW in order to keep the detuning % to the
intermediate-state constant, while keeping the sum frequency
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FIG. 3. (Color online) Measurement of the differential Zeeman
shift between the states |0⟩ and |1⟩ for different Rabi frequencies.
The frequency zero point was set to the frequency at the magic
offset field without dressing. For a Rabi frequency $dress = $0 =
2π × 20.1 kHz, the frequency is nearly independent of the magnetic
offset field in a range of ±100 mG around the chosen value
Bcenter = 2.65 G. Inset: Detail of the curve with $dress = 0.99$0. We
estimate a measurement error of ±5 Hz resulting from fluctuations
of the MW power. The theory curve (solid red line) is plotted along
a polynomial fit (dotted black line), showing the suppression of the
first- and second-order Zeeman shift down to a level of −7.3 Hz/G
and 5.0 Hz/G2.
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FIG. 4. (Color online) Frequency difference of the clock transi-
tion as a function of the Rabi frequency of the dressing for different
magnetic fields. The data was extracted from the measurements in
Fig. 3. Inset: Frequency difference for different offset fields with
respect to the measurements at Boff = 2.72 G as a function of the
Rabi frequency. At the optimal Rabi frequency !0, the three curves
show nearly identical frequencies, proving the cancellation of the
differential Zeeman shift up to second order.

ωRF + ωMW fixed. The measurement without dressing field
yields the expected Breit-Rabi parabola which we use to
calibrate the magnetic field Boff .

For the cancellation of the magnetic-field dependence, a
magnetic offset field Boff = 2.65 G was chosen. For this Boff ,
we calculated the optimum detuning #dress and Rabi frequency
!dress for the measured ratio between σ+ and σ− transition
strengths. We measure δ vs Boff in the range 2.1–3.8 G for Rabi
frequencies in the range of 2π × 12 to 2π × 25 kHz with a
calculated optimal Rabi frequency !0 = 2π × 20.1 kHz. The
results of these measurements are plotted in Fig. 3 along with
the results of the analytical calculations, taking into account
the measured imbalance in the Rabi frequency. The theory
lines are obtained by leaving the Rabi frequency as a free
parameter in one of the curves and scaling the other curves
according to the MW power applied in the experiment. The
data demonstrate the compensation of the differential Zeeman
shift around the field value of Bcenter = 2.65 G.

The reduced sensitivity of the clock transition to magnetic-
field variations is shown in Fig. 4. Here we plot the measured
frequencies and the theory curves for three different offset
fields as a function of the Rabi frequency, as extracted from
the values in Fig. 3. For the optimum Rabi frequency !0,
all three curves show the same ac Zeeman shift. The inset
in Fig. 4 shows the frequency difference between the curves
measured for the three offset fields with respect to the value
Boff = 2.72 G. The three curves cross nearly at the same point,
showing the strong suppression of the differential Zeeman
shift over a field range larger than 0.2 G. The analysis of the
theory curves in Fig. 3 shows that it is possible to generate
plateaus where the frequency differs by less than 0.1 Hz over a
magnetic-field range of more than 100 mG. As is visible in the
inset of Fig. 3, the measurement does not reach this accuracy.
We estimate a frequency uncertainty of ±5 Hz, based on the
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FIG. 5. (Color online) Double magic dressing of the atomic-
clock transition, for which the dependence of the frequency on both
the magnetic field and the Rabi frequency disappears around a field
value of Bcenter = 2.59 G. The calculation assumes a Rabi-frequency
imbalance of

√
6!0,σ+/!0,σ− = 1.25, and the obtained optimal

parameters are !0 = 2π × 86.7 kHz, #dress = −2π × 309 kHz.

limited time between the Ramsey pulses and the uncertainty
of the unstabilized microwave power.

The stability of the microwave Rabi frequency is expected
to be the strongest limitation on the frequency stability. In
order to reach the 0.1-Hz range at the field point of 2.65 G,
a power stability on the order of #!dress/!dress ∼ 1 × 10−4

would be required. For certain offset fields, however, it is
possible to find solutions for Eq. (11) where both the B-field
dependency as well as the dependency on the Rabi frequency
!dress disappear. An example for such a solution can be seen
in Fig. 5: Here, we calculate that the transition frequency
varies by less than ±0.1 Hz over a range of 100 mG around
Bcenter = 2.59 G. At the center of the plateau, the frequency
δ becomes independent of the Rabi frequency for a detuning
of #dress = −2π × 309 kHz. In a range of ±10 mG around
Bcenter, a Rabi-frequency stabilization on the order of 1% would
be sufficient to reach a level of 0.1-Hz stability. Such double
magic dressing enables the employment of this technique
with on-chip microwave devices, where Rabi frequencies are
inversely proportional to the distance to the chip.

Manipulation of the differential Zeeman shift can be used
to decrease the frequency spread over the size of the cloud.
For a cloud of N = 5 × 104 atoms at T = 250 nK and Boff =
2.65 G, the standard deviation of the frequency distribution due
to the inhomogeneity of the magnetic field without dressing
is on the order of σinh ≈ 4 Hz, about an order of magnitude
larger than the spread σdens caused by the inhomogeneous
mean-field interaction due to the density distribution in the
trap [12]. Microwave dressing can be employed to decrease
σinh to a level on the order of σdens, thereby balancing the two
effects and leading to a nearly homogeneous frequency over
the size of the cloud. For the parameters above and our trap, we
calculate that the differential Zeeman shift can be engineered
to cancel the collisional frequency shift down to a level of
σ ≈ 2π × 0.25 Hz.
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Section 1: Scientific and/or technical quality, relevant to the topics addressed by the call 

1.1 Targeted breakthrough and long-term vision 

We propose to solve the problem of coupling quantum states in atoms to solid-state quantum devices. Such a 
breakthrough would enable the development of a powerful hybrid architecture for quantum information 
science, where long-lived states in atoms store information that is processed rapidly using superconducting 
quantum circuits.  

The success of classical computers is based on a hybrid architecture. Different physical systems are used for 
storage (e.g. magnetic hard disks) and processing (CMOS logic), combining the advantages of each. 
Quantum technologies offer unprecedented opportunities to process information with higher efficiencies than 
classical technologies and to develop secure communication networks. A hybrid architecture would also 
have significant advantages here. Requirements such as fast information processing, scalability, and long 
coherence times1 have been solved each separately in distinct physical systems. However, integrating these 
features and advances, is still a scientific and technological challenge that must be solved before quantum 
information technologies go into real applications.  

 
Figure 1 - Hybrid quantum information architecture combining an ensemble of atoms (quantum memory) 
close to a surface and a resonant super-conducting circuits (fast processors). The two systems are coupled 
by a co-planar waveguide patterned on the surface and the coherent coupling is ensured by controlled 
excitation of the atoms to Rydberg states. The controlled interaction between Rydberg atoms (Udd) allows to 
design collective states of the atoms showing enhanced coupling in the presence of surface noise. 

Our long-term vision (Fig. 1) is an atom-solid state hybrid system that combines scalability, fast gate 
operations (solid-state), and long coherence times (atomic system). Our breakthrough is to provide a high-
quality interface between these two systems - the step that is so far missing, enabling us to integrate these 
features into a single operational unit. A new paradigm for quantum information science would emerge, 
multiplying advantages and eliminating drawbacks by integrating different physical systems into a common 
                                                
1! The coherence time defines how long quantum information can be stored without loss, known as 
decoherence.!

-  Rubidium atomic clouds (BEC) 
at a superconducting chip 

-  Coherence of hyperfine     
    superposition states: seconds 

-  Noise-protected memory states 

-  Atom-cavity coupling? 

Intermediate status 

Fabricated superconducting cavity 

Inductively coupled co-planar 
superconducting cavitiy [1]  
•  Niobium on sapphire 
•  Fundamental frequency 6.8 GHz 
•  Measured Q ~ 104 for the fundamental 

mode at 4K 
•  Higher modes Q ~ 103 

With integrated traps 
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Figure 3. (a) Superconducting geometry used for the 3D simulation of magnetic
fields. The x–z-plane, where we extract the magnetic fields for the trap
calculations is marked by a transparent rectangle in the center of the structure.
Here, the width of the center conductor is S = 20 lm, the width of the gap is
W = 20 lm and the ground plane width is G = 50 lm. (b) Calculated potential
energy for a 87Rb atom in the vicinity of a structure as depicted in (a). The
minimum is marked by the black encircled dot. The total magnetic field results
from Bfreeze = 10�4 T, Bbias = 4 ⇥ 10�4 T and Boff = 3.228 ⇥ 10�4 T. Gravity g

is included. Isolines are separated by 1E/kB = 2 lK. Black bars at the bottom
represent the superconductor (thickness not to scale). (c) Trap frequencies !

x

/2⇡
(open symbols) and !

z

/2⇡ (full symbols) versus trap distance to the chip
surface z. Different symbols correspond to different freezing fields, numbers in
legend are given in 10�4 T. Bias field step size is 1Bbias = 0.25 ⇥ 10�4 T with a
maximum value of Bbias = 5 ⇥ 10�4 T for each freezing field (data point closest
to the chip). Gravity and Boff = 3.228 ⇥ 10�4 T are included.

frequencies between 150 and 500 Hz. Traps characterized by this frequency range have been
shown to be suitable for efficient evaporative cooling and are favorable for achieving long atomic
coherence times [20]. We have also performed simulations for ground plane widths G = 20 and
100 lm and the results are qualitatively—and with minor adjustments in the trapping parameters
also quantitatively—identical to the ones presented here.

New Journal of Physics 15 (2013) 093024 (http://www.njp.org/)
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[1] Bothner et al., New J. Phys. 15, 093024 (2013) 
In-house collaboration with the group of  
Reinhold Kleiner & Dieter Koelle. 
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Fabricated atom chip 

Trapping 
 
 
 
 
 
 
MW output port 

 
 
 
 
 
MW input port 

Au ground plane 
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Nb trapping wire 

Trapped atom 
cloud 
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(c) 

(d) 
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Ground planes are partially made of gold in oder to avoid the Meissner effect  

Resonance frequenc vs. temperature 

•  Fundamental frequency tunable with temperature over 30 MHz 

•  Quality factor Q ~ 104 

•  Cavity resonance matches HF-Splitting at T ~ 6K 
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Ramsey interferometry in the resonator 

30 dB 
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CPW Resonator 

Cryogenic Environment 

External MW 
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imaging 
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| Interfacing cold atoms and superconductors - Helge Hattermann                   Ulm 11.07.2013 
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The Ramsey frequency varies with the dressing power and frequency.  

 
Dressing shift 
 
 
 
 
 
 
 
 
Rabi frequency reconstructed 
from dressing shift 
 
Direct proof of magnetic 
coupling between atoms & 
driven cavity: ~ 50 mHz 
 
à weak magnetic coupling 

Off-resonant dressing by the cavity field 

F = 1, mF = 0 à F = 2, mF = 1 resonance 
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Resonant Rabi oscillation in a driven cavity 

Ω0 ~ 2π×21 kHz 
ω0 = 2π×6.83242 GHz 

 
•  Dephasing due to inhomogeneity of cavity field at the position of the 

atomic cloud 

•  Coupling is extremely weak (calculated g ~ 0.05 Hz for single atom and 
single photon) à Strong far of reach 
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Section 1: Scientific and/or technical quality, relevant to the topics addressed by the call 

1.1 Targeted breakthrough and long-term vision 

We propose to solve the problem of coupling quantum states in atoms to solid-state quantum devices. Such a 
breakthrough would enable the development of a powerful hybrid architecture for quantum information 
science, where long-lived states in atoms store information that is processed rapidly using superconducting 
quantum circuits.  

The success of classical computers is based on a hybrid architecture. Different physical systems are used for 
storage (e.g. magnetic hard disks) and processing (CMOS logic), combining the advantages of each. 
Quantum technologies offer unprecedented opportunities to process information with higher efficiencies than 
classical technologies and to develop secure communication networks. A hybrid architecture would also 
have significant advantages here. Requirements such as fast information processing, scalability, and long 
coherence times1 have been solved each separately in distinct physical systems. However, integrating these 
features and advances, is still a scientific and technological challenge that must be solved before quantum 
information technologies go into real applications.  

 
Figure 1 - Hybrid quantum information architecture combining an ensemble of atoms (quantum memory) 
close to a surface and a resonant super-conducting circuits (fast processors). The two systems are coupled 
by a co-planar waveguide patterned on the surface and the coherent coupling is ensured by controlled 
excitation of the atoms to Rydberg states. The controlled interaction between Rydberg atoms (Udd) allows to 
design collective states of the atoms showing enhanced coupling in the presence of surface noise. 

Our long-term vision (Fig. 1) is an atom-solid state hybrid system that combines scalability, fast gate 
operations (solid-state), and long coherence times (atomic system). Our breakthrough is to provide a high-
quality interface between these two systems - the step that is so far missing, enabling us to integrate these 
features into a single operational unit. A new paradigm for quantum information science would emerge, 
multiplying advantages and eliminating drawbacks by integrating different physical systems into a common 
                                                
1! The coherence time defines how long quantum information can be stored without loss, known as 
decoherence.!

-  Rubidium atomic clouds (BEC) 
at a superconducting chip 

-  Coherence of hyperfine     
    superposition states: seconds 

-  Noise-protected memory states 

-  Hyperfine ground states couple 
to the magnetic field of the cavity: 
weak (50 mHz) 

Coupling Rydberg states?  
Expected coupling: strong (5 MHz) 
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Spectroscopy of 87Rb Rydberg states 
Electromagnetically induced transparency (EIT) 

Sample measurement 34S1/2 

Mohapatra et al., PRL 98, 113003 (2002) 
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Measurement of quantum defects and ground state ionization energy of 87Rb 
( ≤1 MHz abs. accuracy) 
Mack et al., Phys. Rev. A 83, 052515 (2011) 
 
 
Quasi-classical quantum defect theory for describing the fine splitting of Rydberg states 
Sanayei et al., PRA 91, 032509 (2015) 

Lasers locked to frequency comb & wavemeter. 

Core potential 
QUASICLASSICAL QUANTUM DEFECT THEORY AND THE . . . PHYSICAL REVIEW A 91, 032509 (2015)

contains all the relativistic perturbations like mass correction,
one- and two-body Darwin terms, and further the spin-spin
contact and orbit-orbit terms, which all commute with the total
angular momentum L and total spin S, thus effectuating only
small shifts of the spectrum of the nonrelativistic Hamiltonian
Hnr. The perturbation operator Hfs, on the other hand, breaks
the rotational symmetry. It consists of the standard nuclear
spin-orbit, the spin-other-orbit, and the spin-spin dipole
interaction terms, which all commute with J = L + S, but not
with L or with S separately, thus inducing the fine splitting of
the nonrelativistic spectrum.

Although the proposed functional form of the potential (11)
is highly plausible on physical grounds outside the inner-core
region r > Z− 1

3 , prima facie it appears to be inconsistent to
lump the aforementioned relativistic many-body forces, spin-
other-orbit and spin-spin dipole interaction, into an effective
single-electron potential of the functional form (11), so that
it provides an accurate description also for small distances
Z−1 < r < Z− 1

3 .
In the absence of a better microscopic theory for an

effective single-electron potential Veff (r; j,l) describing the
fine splitting of the spectrum of the outermost electron in
the alkali atoms, we introduce a cutoff at a distance rso(l)
with Z−1 < rso(l) < Z− 1

3 so that the effective single-electron
potential is now described by the following modified potential:

Ṽmod (r; j,l) =

⎧
⎨

⎩

Veff(r; l) if 0 ! r ! rso(l),

Veff(r; l) + VSO (r; j,l) if r > rso(l).

(14)

The choice [2]

rso (l = 1) = 0.029 483 × rc (l = 1) = 0.044 282 5,
(15)

rso (l = 2) = 0.051 262 × rc (l = 2) = 0.249 572 0,

gives a surprisingly accurate description of the fine splitting
in the spectroscopic data for all principal quantum numbers
n (see Fig. 1, Tables I and II). By choosing larger values for
rso(l) than stated in (15), the calculated fine splitting is too
small compared to experiment, and vice versa, by choosing
smaller values for rso(l) we find the calculated fine splitting is
too large compared to experiment.

The calculation of the spectrum of the outermost bound
electron is then reduced to solving the radial Schrödinger
equation (8) with the modified potential Ṽmod (r; j,l). The
resulting spectrum is actually hydrogenlike, that is,

En,j,l = − 1
(n − !j,l)2

, (16)

where !j,l denotes a quantum defect also comprising the
fine splitting. In actual fact the quantum defect describes a
reduction of the number of nodes nr of the radial wave function
for l = 0,1,2 as a result of the short-range interaction of the
outermost electron with the ionic core of the atom. Because
the higher the orbital angular momentum quantum number l,
the lower the probability of the electron being located near
to the center, it is clear that the quantum defect decreases
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FIG. 1. (Color online) Reduced fine splitting in THz (a) for P
states (cf. Table I) and (b) for D states (cf. Table II). The blue line
corresponds to the theory from this work [see Eq. (17)]. The blue
circles show the recent numerically calculated results from [7]. The
red symbols denote experimental data from Refs. [11] (squares), [8]
(crosses), and [10] (circles). The error bars for the experimental data
are given in Tables I and II.

rapidly with increasing orbital angular momentum l. Therefore
!j,l is only notably different from zero for l = 0,1,2.

Writing !j,l = δl + ηj,l with ηj,l ≪ δl , the fine splitting to
leading order in α2 is

!En,l = 2
ηl− 1

2 ,l − ηl+ 1
2 ,l

(n − δl)3 . (17)

The quasiclassical momentum p ≡
√

−Q of the bound
electron depending on energy E < 0 with orbital angular
momentum l > 0, total angular momentum j = l ± 1

2 , and
taking into account the Langer shift l(l + 1) → (l + 1

2 )2 in the
centrifugal barrier [15,16] is then given by

Q (r; j,l,E) =
(
l + 1

2

)2

r2
+ Ṽmod (r; j,l) − E. (18)

For l = 0 the centrifugal barrier term and the spin-orbit
potential are absent.

Considering high excitation energies E < 0 of the bound
outermost electron, i.e., a principal quantum number n ≫ 1,
the respective positions of the turning points r (±) are given

032509-3

Our model: 
Sanayei et al., PRA 91, 032509 (2015) 

Previous models: 
Marinescu et al., PRA 49, 982 (1994) 
Pawlak et al., PRA 89, 042506 (2014) 

previous theory 

our model 

experiments 

previous theory 

our model 

experiments 

p states 

d states 

Fine splitting of 87Rb Rydberg 
p- and d-states 
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State of research 

adsorbed atomic layer 

Tauschinsky  Phys. Rev. A 81, 063411 (2010)  

Hattermann et al, Phys. Rev. A 86, 022511 (2012) 

McGuirk et al., Phys. Rev. A 69, 62905 (2004) 

Carter et al., Phys. Rev. A 86, 053401 (2012)  

Chan et al., Phys. Rev. Lett. 112, 026101 (2014)  
Sedlacek et al., Phys. Rev. Lett. 116, 133201 (2016)  
...  

Polarized adatoms at the surface produce inhomogeneous electric fields 

Solution: 
Selection of Rydberg state pairs  
-  to match the cavity resonance  
-  to suppress differential shift 

Stark shift near a dipole layer (copper surface with Rb adsorbates) 

Amsterdam: Tauschinsky  Phys. Rev. A 81, 063411 (2010)  

Energy shift measured with electromagnetically induced transparency (EIT)  

z (µm) 

Tübingen: Hattermann et al, Phys. Rev. A 86, 022511 (2012) 
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Rubidium Rydberg level shifts near a copper surface 

29 | József Fortágh – Interfacing cold atoms and solids  © 2012 University of Tübingen 
Hattermann et al, Phys. Rev. A 86, 022511 (2012) 

Comparison with Stark maps 
measured on a vapor cell. 
 
We calculate the electric field 
of surface dipoles. 

Coupling laser detuning to the 5P3/2 → 35D5/2 transition of 87Rb 
We observe the stark shift of the |mj|= 1/2, |mj|= 3/2, and |mj| =5/2 states 

Stark-map in a cell  

Setup 
•  Room-temp. vapor cell with electrodes  
•  EIT spectroscopy on 87Rb, n=35 to 70 
•  Lasers locked to frequency comb & 

wavemeter 

Measured Stark maps 
•  E = 0-500 V/cm, 3mV/cm field steps 
•  2 MHz optical resolution 
 
Improved numerical calculation  
based on Zimmerman PRA 20, 2251 (1979) 
incl. transition strengths:  
•  Grimmel et al., NJP 17, 053005 (2015) 

30 | József Fortágh – Cold atoms meet flux quanta & microwave cavities  © 2017 University of Tübingen 
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35S1/2 Stark Map – EIT measurement (greyscale)  
and results from numerical calculations (colors) 

31 | József Fortágh – Auf dem Weg zur Quantenelektronik mit Atomen, Licht und Nanostrukturen  © 2013 University of Tübingen 

Grimmel et al., NJP 17, 053005 (2015) 

32 | József Fortágh – Auf dem Weg zur Quantenelektronik mit Atomen, Licht und Nanostrukturen  © 2013 University of Tübingen 

35S1/2 Stark Map – EIT measurement (greyscale)  
and results from numerical calculations (colors) 

Grimmel et al., NJP 17, 053005 (2015) 
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Ionization Stark spectra from a MOT 

Stecker et al., NJP 19, 043020 (2017) 

Ionization spectra near 70S1/2 from a MOT 

arXiv:1703.01258 

34 | József Fortágh – Cold atoms meet flux quanta & microwave cavities  © 2017 University of Tübingen 
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Ionization spectra near 70S1/2 from a MOT 

arXiv:1703.01258 
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FIG. 1. (Color online) Cloud of ultracold 87Rb atoms (center)
inside the radiation shield of a cryostat (hatched). The radiation shield
is cylindrical in shape with a 4.5-mm gap and 35-mm diameter. While
the cold surface is at Tcryo, the temperature of the radiation shield is
slightly higher. The outside temperature is assumed to be close to
300 K.

compared to that of the SFI approach with the additional
microwave is desired, we developed a similarly powerful,
all-optical method for measuring state-specific lifetimes. The
approach is technologically simplified as the same lasers that
are used for Rydberg excitation are employed for detection,
requiring only an additional photodiode for the measurement
of resonant absorption.

We describe the optical lifetime measurement of Rydberg
states in Sec. II and demonstrate its application in a setup
with cold 87Rb atoms (see Fig. 1) at cryogenic environmental
temperatures in Sec. III. Factors influencing the accuracy of
the method are discussed in Sec. IV.

II. OPTICAL LIFETIME MEASUREMENT METHOD

The optical measurements presented in this article rely on
time-resolved resonant absorption detection in an effective
three-level ladder-type system, as shown in the inset of Fig. 2,
similar to the scheme in [25]. The transmission of a probe
laser pulse resonant to a closed cycling transition between a
ground state |g⟩ and a quickly decaying intermediate excited
state |e⟩ is monitored with a photodiode. The duration of this
pulse should be several times the expected Rydberg lifetime.
The lifetime of |e⟩ must be shorter than the expected time
resolution of the final Rydberg decay curves. For Rydberg
excitation a Rydberg laser resonant to the transition between
|e⟩ and the target Rydberg state |r1⟩ is used simultaneously
with the probe laser. In principle, this configuration allows
excitation by means of a stimulated Raman adiabatic passage
pulse [26]. The experimental sequence, aimed at measuring
changes in the optical density due to the laser pulses, consists
of several steps. In each step, a cloud of ultracold atoms is
prepared and released from the trap, and after a given time of
flight a series of laser pulses depending on the current step is
applied, as shown in Fig. 2.

As a baseline calibration, the probe laser-light-intensity
signals without any atoms [step I, signal I0(t)] and with
ground-state atoms [step II, Ig(t)] are recorded, giving the
time-dependent optical density (Lambert-Beer law):

Dopt
noexc.(t) = − ln[Ig(t)/I0(t)], (1)

In general, during the relevant time scales, the optical density
is proportional to the number of atoms in the volume of the
cloud “seen” by the probe laser beam.

In step III, the Rydberg excitation at t = 0 just before the
start of the probe pulse is added. Due to excited atoms that
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FIG. 2. (Color online) Illustration of the pulse sequence for steps
I to IV used for the optical lifetime measurement for the probe (dashed
red lines) and Rydberg (solid blue lines) lasers, resonant to the |g⟩ ↔
|e⟩ and |e⟩ ↔ |r1⟩ transitions. For the calibration (step I without
atoms and step II with atoms), only the probe laser is turned on after
t = 0 for a duration of several hundred microseconds (much greater
than the Rydberg lifetime; only the initial part is shown in the plot).
Starting at step III, at t = 0 atoms are excited to the Rydberg state
|r1⟩ (Excitation). For step IV, which is repeated several times, the
long probe pulse is interrupted at time ts for a short duration, during
which an optical pumping pulse of the Rydberg laser is applied (Opt.
Pump.). ts is varied with each repetition of step IV.

are missing from the ground state, there will be increased
transmission compared to that in step II. Again, the optical
density of ground-state atoms D

opt
w/exc.(t) can be calculated as

in (1). In combination with the result from step II, an additional
quantity

p̸=g(t) = 1 − D
opt
w/exc.(t)/D

opt
noexc.(t) (2)

can be determined, which gives the number of atoms not in
the ground state due to the excitation pulse, normalized to the
total number of atoms in the detection volume. The value of
p̸=g in the beginning is the fraction of atoms that have been
excited to the Rydberg state, except for transitions to other
states that have already happened due to BBR and possible
superradiance, as was noted in [25]. The whole p ̸=g curve
represents an effective decay of all directly and indirectly
excited states, which is nearly, but generally not perfectly,
exponential in shape because of the differing lifetimes of the
constituent Rydberg states that become populated. Also, if
ionizing effects played a role, the curve will not return to
zero for long times but converge towards a finite value. The
resulting pion = p ̸=g(t → ∞) is a measure for the strength
of any ionizing effects if other mechanisms can be excluded
that specifically remove Rydberg atoms, but not ground-state
atoms, from the detection volume or, alternatively, transfer
them into other stable states outside the probe transition. In
general, the decay curve must consist of the (as yet unknown)
parts

p ̸=g(t) = pr1 (t) + pr̸=1 (t) + pion(t), (3)

012517-2

λ=780 nm λ=480 nm 

chip surface 
 
 
d = 150µm 

Rydberg EIT on the SC chip 

d = 40µm 
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FIG. 1. (Color online) Cloud of ultracold 87Rb atoms (center)
inside the radiation shield of a cryostat (hatched). The radiation shield
is cylindrical in shape with a 4.5-mm gap and 35-mm diameter. While
the cold surface is at Tcryo, the temperature of the radiation shield is
slightly higher. The outside temperature is assumed to be close to
300 K.

compared to that of the SFI approach with the additional
microwave is desired, we developed a similarly powerful,
all-optical method for measuring state-specific lifetimes. The
approach is technologically simplified as the same lasers that
are used for Rydberg excitation are employed for detection,
requiring only an additional photodiode for the measurement
of resonant absorption.

We describe the optical lifetime measurement of Rydberg
states in Sec. II and demonstrate its application in a setup
with cold 87Rb atoms (see Fig. 1) at cryogenic environmental
temperatures in Sec. III. Factors influencing the accuracy of
the method are discussed in Sec. IV.

II. OPTICAL LIFETIME MEASUREMENT METHOD

The optical measurements presented in this article rely on
time-resolved resonant absorption detection in an effective
three-level ladder-type system, as shown in the inset of Fig. 2,
similar to the scheme in [25]. The transmission of a probe
laser pulse resonant to a closed cycling transition between a
ground state |g⟩ and a quickly decaying intermediate excited
state |e⟩ is monitored with a photodiode. The duration of this
pulse should be several times the expected Rydberg lifetime.
The lifetime of |e⟩ must be shorter than the expected time
resolution of the final Rydberg decay curves. For Rydberg
excitation a Rydberg laser resonant to the transition between
|e⟩ and the target Rydberg state |r1⟩ is used simultaneously
with the probe laser. In principle, this configuration allows
excitation by means of a stimulated Raman adiabatic passage
pulse [26]. The experimental sequence, aimed at measuring
changes in the optical density due to the laser pulses, consists
of several steps. In each step, a cloud of ultracold atoms is
prepared and released from the trap, and after a given time of
flight a series of laser pulses depending on the current step is
applied, as shown in Fig. 2.

As a baseline calibration, the probe laser-light-intensity
signals without any atoms [step I, signal I0(t)] and with
ground-state atoms [step II, Ig(t)] are recorded, giving the
time-dependent optical density (Lambert-Beer law):

Dopt
noexc.(t) = − ln[Ig(t)/I0(t)], (1)

In general, during the relevant time scales, the optical density
is proportional to the number of atoms in the volume of the
cloud “seen” by the probe laser beam.

In step III, the Rydberg excitation at t = 0 just before the
start of the probe pulse is added. Due to excited atoms that
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FIG. 2. (Color online) Illustration of the pulse sequence for steps
I to IV used for the optical lifetime measurement for the probe (dashed
red lines) and Rydberg (solid blue lines) lasers, resonant to the |g⟩ ↔
|e⟩ and |e⟩ ↔ |r1⟩ transitions. For the calibration (step I without
atoms and step II with atoms), only the probe laser is turned on after
t = 0 for a duration of several hundred microseconds (much greater
than the Rydberg lifetime; only the initial part is shown in the plot).
Starting at step III, at t = 0 atoms are excited to the Rydberg state
|r1⟩ (Excitation). For step IV, which is repeated several times, the
long probe pulse is interrupted at time ts for a short duration, during
which an optical pumping pulse of the Rydberg laser is applied (Opt.
Pump.). ts is varied with each repetition of step IV.

are missing from the ground state, there will be increased
transmission compared to that in step II. Again, the optical
density of ground-state atoms D

opt
w/exc.(t) can be calculated as

in (1). In combination with the result from step II, an additional
quantity

p̸=g(t) = 1 − D
opt
w/exc.(t)/D

opt
noexc.(t) (2)

can be determined, which gives the number of atoms not in
the ground state due to the excitation pulse, normalized to the
total number of atoms in the detection volume. The value of
p̸=g in the beginning is the fraction of atoms that have been
excited to the Rydberg state, except for transitions to other
states that have already happened due to BBR and possible
superradiance, as was noted in [25]. The whole p ̸=g curve
represents an effective decay of all directly and indirectly
excited states, which is nearly, but generally not perfectly,
exponential in shape because of the differing lifetimes of the
constituent Rydberg states that become populated. Also, if
ionizing effects played a role, the curve will not return to
zero for long times but converge towards a finite value. The
resulting pion = p ̸=g(t → ∞) is a measure for the strength
of any ionizing effects if other mechanisms can be excluded
that specifically remove Rydberg atoms, but not ground-state
atoms, from the detection volume or, alternatively, transfer
them into other stable states outside the probe transition. In
general, the decay curve must consist of the (as yet unknown)
parts

p ̸=g(t) = pr1 (t) + pr̸=1 (t) + pion(t), (3)
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Previous literature value  
for T = 300 K 
τ = (14.5 ± 1.2) µs  
Nascimento et al.,  
PRA 74, 054501 (2006) 
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FIG. 4. (Color online) Measured populations αpr1 (ts) of the
30S1/2 state, proportional to the decays of |r1⟩, at several cryostat
temperatures in the range 20 to 300 K. The lines are exponential
fits to the data, giving the decay parameters τ and their estimated
error based on the fit (add ±1.0µs systematic error common to all
measurements for absolute uncertainty).

The final evaluation step yielding αpr1 (ts) is shown in Fig. 4
for the state |r1⟩ = 30S1/2, measured at cryostat temperatures
in the range of 20 to 300 K, at a TOF of 20.5 ms, resulting
in values τ = 14.3(6)µs (Tcryo = 300 K) up to τ = 17.0(8)µs
(Tcryo = 20 K) with an additional common systematic error
of ±1.0µs. Compared with the established measured value
τ = 14.5(12)µs (30S1/2,T = 300 K, Fig. 2 in [14]), our result
is very compatible.

However, while in our measurements there is a clear
tendency for increased lifetimes at lowered temperatures, the
effect is not as pronounced as expected from the calculated
values from [4], giving τ = 26.6 µs at T = 0 K. In order
to check for any systematic dependencies on geometrical
effects arising due to the falling and expanding cloud, as well
as the presence of any density-dependent lifetime-reducing
effects, the measurements for 30S1/2 were repeated with a
time of flight of 12 ms. This resulted in an increase of the
atom density and the optical density by roughly a factor of
2. The resulting lifetimes for 30S1/2 were τ = 14.1(14)µs
(Tcryo = 300 K) up to τ = 16.0(7)µs (Tcryo = 20 K), i.e., no
discernible difference compared to the measurements with
TOF of 20.5 ms. Therefore, we suspect insufficient shielding
from outside thermal radiation in our setup as the main
cause for the discrepancy in comparison to theory at low
temperatures. The geometry as shown in Fig. 1 leads to a solid
angle of 4π × 0.87 covered by cold surfaces. Also, the lower
part of the radiation shield is not ideally thermally coupled to
the cryostat and is estimated to be at least 20 K warmer than
the upper surface at temperatures near Tcryo = 4.2 K, causing
the effective temperature relevant for BBR to be significantly
higher than the cryostat temperature.

The lifetime of the 38D5/2 state, with a TOF of 20.5 ms,
was measured to be 13(4) µs (Tcryo = 160 K) and 19(3) µs
(Tcryo = 20 K), much lower than the reference value of τ =
30(2)µs (T = 300 K; Fig. 2 in [14]). This lifetime reduction

comes as no surprise due to the interaction-induced ionizing
collisions already observed in Fig. 3.

IV. ACCURACY CONSIDERATIONS

The time resolution of the method presented in Sec. II is
limited by the length and timing accuracy of the excitation
and optical pumping pulses, effectively adding uncertainty
to times t = 0 and ts . For our 1-µs pulses with a timing
accuracy of <10 ns, this results in a systematic uncertainty
of ±1.0µs common to all measurements taken under the
same excitation conditions, limiting their absolute, but not
differential, accuracy. Higher laser intensities, particularly of
the Rydberg laser, would allow for shorter pulses. When
choosing the sizes for both laser beams, geometry effects need
to be considered: If there is any significant atomic motion
due to time of flight or atomic temperature, the excitation
volume should be smaller than the detection volume in order
to avoid any Rydberg atoms leaving the detection volume
during the measurement time. However, the measured Rydberg
signal will be lower for increased detection volumes, affecting
the signal-to-noise ratio. Furthermore, prolonged acceleration
of the atoms due to radiation pressure will lead to Doppler
shifts which can lead to systematical errors, especially with
regard to the narrow Rydberg transitions. This is particularly
relevant for the probe laser, which must be well below the
saturation intensity of the probe transition (I0 ! 0.2Isat in our
experiments).

If, like in our experiments, the pulses are created using an
acousto-optical modulator (AOM) in the laser-beam path, the
probe pulse will have a certain switching time of ≈100 ns and
will show intensity drifts resulting from polarization drifts
during some device-dependent warm-up time. As long as
the signal remains proportional to the light level seen by
the atoms and the pulse shapes are well reproducible, these
drifts cancel out when calculating the Dopt(t) terms. The
optical density itself will not be constant over the duration
of the laser pulse since the atomic cloud is expanding, as well
as being accelerated downwards by gravity; however, these
effects cancel out as well in p̸=g(t).

The measured optical densities depend on the probe light
polarization and Zeeman substates of the atoms. For low Rabi
frequencies, optical pumping effects can become visible in
the dynamic parts of the measured signals, particularly when
turning the probe laser back on after the Rydberg laser pulses at
times ts , which in turn limits the accuracy of the determination
of pr1,s(ts). These effects become especially pronounced when
any stray magnetic fields split up the Zeeman sublevels, which
would need to be compensated well below the magnitude of the
earth’s magnetic field for high accuracy. Stray electric fields,
if sufficiently strong, would additionally lead to state mixing
affecting the underlying physical lifetime of the measured
state. According to our calculations (detailed in [10]), this
would become relevant on a 1% (probability) level at 30 V/cm
for the 30S1/2(|mj |=1/2) state and 2.2 V/cm for 38D5/2(|mj |=1/2),
i.e., not leading to significant state mixing in our setup.

Regarding the measurements taken at a lowered environ-
ment temperature, mainly two sources of systematic error
need to be taken into account: First, as mentioned before and
discussed in [8], the effective temperature as seen by the atoms
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Section 1: Scientific and/or technical quality, relevant to the topics addressed by the call 

1.1 Targeted breakthrough and long-term vision 

We propose to solve the problem of coupling quantum states in atoms to solid-state quantum devices. Such a 
breakthrough would enable the development of a powerful hybrid architecture for quantum information 
science, where long-lived states in atoms store information that is processed rapidly using superconducting 
quantum circuits.  

The success of classical computers is based on a hybrid architecture. Different physical systems are used for 
storage (e.g. magnetic hard disks) and processing (CMOS logic), combining the advantages of each. 
Quantum technologies offer unprecedented opportunities to process information with higher efficiencies than 
classical technologies and to develop secure communication networks. A hybrid architecture would also 
have significant advantages here. Requirements such as fast information processing, scalability, and long 
coherence times1 have been solved each separately in distinct physical systems. However, integrating these 
features and advances, is still a scientific and technological challenge that must be solved before quantum 
information technologies go into real applications.  

 
Figure 1 - Hybrid quantum information architecture combining an ensemble of atoms (quantum memory) 
close to a surface and a resonant super-conducting circuits (fast processors). The two systems are coupled 
by a co-planar waveguide patterned on the surface and the coherent coupling is ensured by controlled 
excitation of the atoms to Rydberg states. The controlled interaction between Rydberg atoms (Udd) allows to 
design collective states of the atoms showing enhanced coupling in the presence of surface noise. 

Our long-term vision (Fig. 1) is an atom-solid state hybrid system that combines scalability, fast gate 
operations (solid-state), and long coherence times (atomic system). Our breakthrough is to provide a high-
quality interface between these two systems - the step that is so far missing, enabling us to integrate these 
features into a single operational unit. A new paradigm for quantum information science would emerge, 
multiplying advantages and eliminating drawbacks by integrating different physical systems into a common 
                                                
1! The coherence time defines how long quantum information can be stored without loss, known as 
decoherence.!
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Sørensen-Mølmer scheme: Conditional excitation of 
a pair of Rydberg atoms in a cavity with n photons 
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